15
Original article Brachiopods and other fossils from the PermoTriassic boundary beds of the Antalya Nappes (SW Taurus, Turkey) Brachiopodes et autres fossiles de la limite Permien Trias dans les Nappes d’Antalya (Taurus, Sud-Ouest de la Turquie) Lucia Angiolini a, * , Laura Carabelli a , Alda Nicora a , Sylvie Crasquin-Soleau b , Jean Marcoux c , Roberto Rettori d a Dipartimento di Scienze della Terra ‘‘A. Desio’’, Via Mangiagalli 34, 20133 Milano, Italy b CNRS UMR 5143 « paléobiodiversité et paléoenvironnements », laboratoire de micropaléontologie, université Pierre-et-Marie-Curie, PO 104, 75252 Paris cedex 05, France c Sciences physiques de la Terre, université Denis-Diderot Paris-7, 2, place Jussieu, 75252 Paris cedex 05, France d Dipartimento di Scienze della Terra, Piazza università-1, 06123 Perugia, Italy Received 2 January 2006; accepted 3 January 2007 Available online 24 October 2007 Abstract An uppermost PermianLower Triassic biota of brachiopods, conodonts, algae and foraminifers from the Pamucak and Kokarkuyu formations at Çürük Dag ˘ (Antalya, Turkey) is here described. The brachiopods belong to two different assemblages: a lower assemblage, early Wuchiapingian in age, with Spinomarginifera cf. S. helica, Spinomarginifera cf. S. iranica, Alatorthotetina sp. ind., Orthothetina sp. ind., Ombonia antalyensis nov. sp. and few specimens of Pennospiriferinoidea; an upper assemblage, Changhsingian in age, comprising S. cf. S. iranica, Spinomarginifera cf. S. spinosocostata, Spinomarginifera sp. ind. and Orthothetina sp. ind., characteristic taxa of the low diversity survival brachiopod faunas of latest Permian age (Survival Fauna 1). The occurrence of the conodont Hindeodus cf. praeparvus above the brachiopod fauna confirms its Changhsingian age. The oolitic grainstones at the top of the Pamucak Formation contain Permocalculus sp., Macroporella cf. apachena, species of Hemigordius and Palaeozoic Lagenida. Coarse calcite fibrous cements pervade the oo-bioclastic grainstones, suggesting early marine cementation. The base of the Kokarkuyu Formation is characterized by the disaster forms Earlandia amplimuralis and ‘‘Cornuspira’’ mahajeri, gastropods and ostracods. The conodont Isarcicella lobata has been recovered 31 m above the base of the Kokarkuyu Formation, indicating the occurrence of the second Triassic conodont zone above the parvus biozone and below the staeschei biozone. The faunal content at the transition of the Pamucak and Kokarkuyu formations records the biotic survival in the aftermath of the end-Permian extinction. Facies evolution from lower energy inner platform wackestones and packstones to higher energy open platform oolitic grainstones indicates a transgression at the top of the Pamucak Formation, which continues into the Lower Triassic Kokarkuyu Formation. # 2007 Elsevier Masson SAS. All rights reserved. Résumé Une faune et flore de brachiopodes, conodontes, algues et foraminifères, datée du Permien terminal est ici décrite. Elle provient des formations de Pamucak et Kokarkuyu du Çürük Dag ˘ (Nappes Antalya, Turquie). Les brachiopodes appartiennent à deux assemblages différents : un assemblage inférieur, d’âge Wuchiapingien, avec Spinomarginifera cf. S. helica, Spinomarginifera cf. S. iranica, Alatorthotetina sp. ind., Orthothetina sp. ind., Ombonia antalyensis nov. sp. et quelques spécimens de Pennospiriferinoidea ; un assemblage supérieur, d’âge Changhsingien, comprenant S. cf. S. iranica, Spinomarginifera cf. S. spinosocostata, Spinomarginifera sp. ind. et Orthothetina sp. ind., taxons caractéristiques des faunes survivantes faiblement diversifiées du Permien terminal (Survival Fauna 1). La présence du conodonte Hindeodus cf. praeparvus au dessus de la faune de brachiopodes confirme l’âge Changshingien de la partie supérieure de la Formation de Pamucak. Les grainstones à oolithes du sommet de la Formation de Pamucak contiennent Permocalculus sp., Macroporella cf. apachena, Hemigordius sp. et http://france.elsevier.com/direct/GEOBIO Disponible en ligne sur www.sciencedirect.com Geobios 40 (2007) 715729 * Corresponding author. E-mail address: [email protected] (L. Angiolini). 0016-6995/$ see front matter # 2007 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.geobios.2007.01.007

Brachiopods and other fossils from the Permo–Triassic boundary beds of the Antalya Nappes (SW Taurus, Turkey)

Embed Size (px)

Citation preview

http://france.elsevier.com/direct/GEOBIO

Disponible en ligne sur www.sciencedirect.com

Geobios 40 (2007) 715–729

Original article

Brachiopods and other fossils from the Permo–Triassic boundarybeds of the Antalya Nappes (SW Taurus, Turkey)

Brachiopodes et autres fossiles de la limite Permien Triasdans les Nappes d’Antalya (Taurus, Sud-Ouest de la Turquie)

Lucia Angiolini a,*, Laura Carabelli a, Alda Nicora a, Sylvie Crasquin-Soleau b,Jean Marcoux c, Roberto Rettori d

a Dipartimento di Scienze della Terra ‘‘A. Desio’’, Via Mangiagalli 34, 20133 Milano, Italyb CNRS UMR 5143 « paléobiodiversité et paléoenvironnements », laboratoire de micropaléontologie,

université Pierre-et-Marie-Curie, PO 104, 75252 Paris cedex 05, Francec Sciences physiques de la Terre, université Denis-Diderot Paris-7, 2, place Jussieu, 75252 Paris cedex 05, France

d Dipartimento di Scienze della Terra, Piazza università-1, 06123 Perugia, Italy

Received 2 January 2006; accepted 3 January 2007

Available online 24 October 2007

Abstract

An uppermost Permian–Lower Triassic biota of brachiopods, conodonts, algae and foraminifers from the Pamucak and Kokarkuyu formationsat Çürük Dag (Antalya, Turkey) is here described. The brachiopods belong to two different assemblages: a lower assemblage, early Wuchiapingianin age, with Spinomarginifera cf. S. helica, Spinomarginifera cf. S. iranica, Alatorthotetina sp. ind., Orthothetina sp. ind., Ombonia antalyensisnov. sp. and few specimens of Pennospiriferinoidea; an upper assemblage, Changhsingian in age, comprising S. cf. S. iranica, Spinomarginifera cf.S. spinosocostata, Spinomarginifera sp. ind. and Orthothetina sp. ind., characteristic taxa of the low diversity survival brachiopod faunas of latestPermian age (Survival Fauna 1). The occurrence of the conodont Hindeodus cf. praeparvus above the brachiopod fauna confirms its Changhsingianage. The oolitic grainstones at the top of the Pamucak Formation contain Permocalculus sp., Macroporella cf. apachena, species of Hemigordiusand Palaeozoic Lagenida. Coarse calcite fibrous cements pervade the oo-bioclastic grainstones, suggesting early marine cementation. The base ofthe Kokarkuyu Formation is characterized by the disaster forms Earlandia amplimuralis and ‘‘Cornuspira’’ mahajeri, gastropods and ostracods.The conodont Isarcicella lobata has been recovered 31 m above the base of the Kokarkuyu Formation, indicating the occurrence of the secondTriassic conodont zone above the parvus biozone and below the staeschei biozone. The faunal content at the transition of the Pamucak andKokarkuyu formations records the biotic survival in the aftermath of the end-Permian extinction. Facies evolution from lower energy innerplatform wackestones and packstones to higher energy open platform oolitic grainstones indicates a transgression at the top of the PamucakFormation, which continues into the Lower Triassic Kokarkuyu Formation.# 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Une faune et flore de brachiopodes, conodontes, algues et foraminifères, datée du Permien terminal est ici décrite. Elle provient des formationsde Pamucak et Kokarkuyu du Çürük Dag (Nappes Antalya, Turquie). Les brachiopodes appartiennent à deux assemblages différents : unassemblage inférieur, d’âge Wuchiapingien, avec Spinomarginifera cf. S. helica, Spinomarginifera cf. S. iranica, Alatorthotetina sp. ind.,Orthothetina sp. ind., Ombonia antalyensis nov. sp. et quelques spécimens de Pennospiriferinoidea ; un assemblage supérieur, d’âgeChanghsingien, comprenant S. cf. S. iranica, Spinomarginifera cf. S. spinosocostata, Spinomarginifera sp. ind. et Orthothetina sp. ind., taxonscaractéristiques des faunes survivantes faiblement diversifiées du Permien terminal (Survival Fauna 1). La présence du conodonte Hindeodus cf.praeparvus au dessus de la faune de brachiopodes confirme l’âge Changshingien de la partie supérieure de la Formation de Pamucak. Lesgrainstones à oolithes du sommet de la Formation de Pamucak contiennent Permocalculus sp., Macroporella cf. apachena, Hemigordius sp. et

* Corresponding author.E-mail address: [email protected] (L. Angiolini).

0016-6995/$ – see front matter # 2007 Elsevier Masson SAS. All rights reserved.doi:10.1016/j.geobios.2007.01.007

L. Angiolini et al. / Geobios 40 (2007) 715–729716

paléozoïque Lagenida. La base de la Formation de Kokarkuyu renferme des « formes désastres » Earlandia amplimuralis, « Cornuspira »mahajeri, des gastéropodes et des ostracodes. Le conodonte Isarcicella lobata a été mis en évidence 31 m au dessus de la base de la Formation deKokarkuyu, caractérisant la seconde zone à conodonte du Trias au dessus de la biozone à parvus et en dessous de la biozone à staeschei. Le contenufaunistique à la transition des formations de Pamucak et de Kokarkuyu montre l’absence de hiatus entre les deux formations et met en évidence lacontinuité de sédimentation à la limite Permien–Trias pendant une transgression globale. Il représente aussi la faune survivant après la crise duPermien supérieur.# 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Permo–Triassic boundary; Brachiopods; Conodonts; Foraminifers; Survival faunas; Disaster taxa; New species

Mots clés : Limite Permo–Trias ; Brachiopodes ; Conodontes ; Foraminifères ; Faunes survivantes ; « Formes désastres » ; Espèce nouvelle

1. Introduction

The Permian has been the theatre of major global changesconcerning the geodynamics, the climate, the seawater/atmo-sphere geochemistry and the biota itself. In this changing world,the biotic response was dramatic, culminating at the end of theperiod with the severest of the big five mass extinctions also

Fig. 1. Geographical and geological setting of the studied sections (modified fromFig. 1. Situation géographique et géologique des coupes étudiées (modifié d’après

known as the ‘‘Palaeozoic nemesis’’, leading to the extinctionof 75–96% of the species and to the lowest post-Ordovicianbiodiversity levels of the Phanerozoic (Hallam and Wignall,1997).

Many processes have been suggested to explain the end-Permian mass extinction, including changes of sea level(regression), climate changes (global cooling or global

Marcoux et al., 1989).Marcoux et al., 1989).

L. Angiolini et al. / Geobios 40 (2007) 715–729 717

warming), extensive volcanism, bolide impact, cosmicradiation, marine superanoxia, salinity drop, rising atmo-spheric CO2, catastrophic release of methane gas hydrates,toxic gases release and finally multiple interactions of a widevariety mechanisms (i.e. Erwin, 1994; Hallam and Wignall,1997; Berner, 2002; Heydari and Hassanzadeh, 2003; Dolenecet al., 2004; Kidder and Worsley, 2004; Newton et al., 2004).Among these, the favourite explanations include climaticwarming, anoxia, addition of methane from gas hydrates andvolcanism. However, both the causes and the effects of theextinction are still strongly debated. For instance, thegeochemical signatures at the P/T boundary may representan effect of mass mortality rather than a cause (Berner, 2002;Krull et al., 2004); the postulated global regression hasreceived no consensus (Hallam and Wignall, 1999); anoxicconditions did not affect the shelf settings of the southernmargins of Neotethys (Wignall and Twitchett, 2002; Heydari,2005); the new age of 249 � 0.5 My suggested for the Siberiantraps by Reichow et al. (2002) may suggest that the mainvolcanism is slightly younger than the P/T boundary, which issomewhat controversially placed at 251.4 My (Bowring et al.,1998) or at 253 My (Mundil et al., 2001). However, other datashow that the main pulse of the Siberian flood volcanism issynchronous with the Meishan extinction event (Mundil et al.,2004). The most recent models seeking for the causes of the

Fig. 2. Çürük Dag section (368410320 0N–308270400 0E) with location of samples shoKokarkuyu Formation. d13C curve at the P/T boundary from Baud et al. (1989).Fig. 2. Coupe du Çürük Dag (N 368410320 0–E 308270400 0) avec la position des échantde Kokarkuyu du Trias inférieur. d13C à la limite P/T d’après Baud et al. (1989).

P/T boundary extinctions focus on climate warming and theaddition of methane from gas hydrates (i.e. Heydari andHassanzadeh, 2003; Krull et al., 2004; Kidder and Worsley,2004).

A critical aspect of the end-Permian mass extinction is theanomalous pattern of the post-extinction recovery, which seemsto be significantly delayed for most clades (Erwin, 1998;Twitchett, 1999; Rong and Shen, 2002; Pruss and Bottjer, 2004;Chen et al., 2005c). However, very recent studies (Krystynet al., 2003) suggest that there are places – free from lowoxygen restriction – where the recovery of benthic group wasmore rapid. The delayed recovery may also be interpreted as thetime interval required for the active creation of a new ecologicalfabric, independently of the intensity of the extinction (Erwin,2000).

The Permo–Triassic events recorded by the Pamucak andKokarkuyu formations at Çürük Dag, Kemer, Antalya (Fig. 1)have been already described by Crasquin-Soleau et al. (2002,2004a, 2004b), who chiefly focused on the ostracod faunalchange through the boundary, showing the occurrence of a lowdiversity survival assemblage at least for the first two biozonesof the Early Triassic, with a complete renewal of the classdelayed to the Middle Triassic. This paper is aimed to describethe faunal change of conodonts, brachiopods and foraminifersin the same boundary beds.

wing the Upper Permian Pamucak Formation and the overlying Lower Triassic

illons, montrant la Formation de Pamucak du Permien supérieur et la Formation

L. Angiolini et al. / Geobios 40 (2007) 715–729718

2. Geological setting

The fauna described in the present paper has been collectedin the Middle-Upper Permian Pamucak Formation along threesections measured on the flanks of Çürük Dag (3684103200N–

3082704000E) near Kemer, Antalya, SW Turkey (Figs. 1–4). ThePamucak Formation, as originally defined by Lys and Marcoux(1978), belongs to the Kemer Gorge units of the Upper AntalyaNappes (western Taurus), a system of thrust sheets cropping outalong the Antalya bay, south of the platform units belonging tothe axe calcaire du Taurus (Marcoux et al., 1989). The UpperAntalya Nappes comprise sedimentary rocks, which record theLower Palaeozoic to Upper Cretaceous evolution of the distalpart of the southern Neotethyan margin (Marcoux, 1979;Marcoux and Baud, 1986; Marcoux et al., 1989).

At Çürük Dag, the Pamucak Formation is 400–600 m thickand it is overlain by the Lower Triassic Kokarkuyu Formationof Altiner (1981). The Pamucak Formation chiefly consists ofinner to outer platform well bedded bioclastic wackestones andpackstones with local occurrence of cherty limestones. Biotacomprises calcareous algae, foraminifers, brachiopods, ostra-

Fig. 3. Çürük-left section with location of samples showing the Upper PermianPamucak Formation and the overlying Lower Triassic Kokarkuyu Formation.Fig. 3. Coupe du Çürük-gauche avec la position des échantillons, montrant laFormation de Pamucak du Permien supérieur et la Formation de Kokarkuyu duTrias inférieur.

cods, conodonts, echinoderms and bryozoans. At the top of theformation oolitic grainstones occur and are considered tobelong to the Pamucak Formation (Lys and Marcoux, 1978;Crasquin-Soleau et al., 2002, 2004a, 2004b; Baud et al., 2005).The Pamucak Formation has been assigned a Capitanian toChanghsingian age by Lys and Marcoux (1978) and Altiner(1984), later restricted to the Capitanian-Wuchiapingian byMarcoux and Baud (1986) and finally dated again Guadalupian-Changhsingian by Baud et al. (2005). As shown in thefollowing paragraph, conodonts and brachiopods described inthis paper confirm the first and the last interpretations andindicate a latest Permian age for the top of the formation. Theoverlying Triassic Kokarkuyu Formation records at its basethrombolitic–stromatolic boundstones and oolitic grainstonespassing upwards to microbial limestones and wackestones. Theostracods at the base of the Kokarkuyu Formation are the oldestTriassic forms ever discovered (Crasquin-Soleau et al., 2004a,2004b).

Fig. 4. Çürük Dag, southeast ridge section with location of samples showing theUpper Permian Pamucak Formation.Fig. 4. Coupe du Çürük Dag, crête du sud-est avec la position des échantillons,montrant la Formation de Pamucak du Permien supérieur.

Fig. 5. 1a–d. Isarcicella lobata Perri and Farabegoli, 2003. a, b: lateral views, sample TK131. c: lower view, sample TK131. d: upper view, sample TK131.2a, b, d. Hindeodus cf. praeparvus Kozur, 1996. a, b: lateral views, sample TK133. d: upper view, sample TK133.Fig. 5. 1a–d. Isarcicella lobata Perri et Farabegoli, 2003. a, b : vues latérales, échantillon TK131. c : vue inférieure, échantillon TK131. d : vue supérieure, échantillonTK131. 2a, b, d. Hindeodus cf. praeparvus Kozur, 1996. a, b : vue latérale, échantillon TK133. d : vue supérieure, échantillon TK133.

L. Angiolini et al. / Geobios 40 (2007) 715–729 719

Fig. 6. 1. Globivalvulina cf. G. graeca Reichel, 1945. Sample TK59. 2. Dagmarita chanakchiensis Reitlinger, 1965. Sample TK114. 3. Hemigordius sp. SampleTK116. 4. Lagenid. Sample TK59. 5–7. Earlandia amplimuralis (Pantic, 1972). Sample TK51bis. 8–11. ‘‘Cornuspira’’ mahajeri (Brönnimann et al., 1972).Sample TK51bis. 12, 15. Macroporella cf. M. apachena Johnson, 1951. Sample TK51. 13, 14, 16. Permocalculus plumosus Elliott, 1955. 13–15: Sample TK51. 16:Sample TK48. 1–4, 14–18 scale bar: 250 m; 5–13 scale bar: 100 m.

L. Angiolini et al. / Geobios 40 (2007) 715–729720

L. Angiolini et al. / Geobios 40 (2007) 715–729 721

3. Faunal assemblages and age

The rich faunal content of the Permo–Triassic boundarysuccession of the Antalya Nappes comprises brachiopods,conodonts, foraminifers and algae, in addition to the ostracodsalready described by Crasquin-Soleau et al. (2002, 2004a,2004b).

The brachiopods described in the present paper come fromthe uppermost 200 m of the Pamucak Formation (Figs. 2–4) andcomprise two different assemblages: (1) a lower assemblagechiefly consisting of Spinomarginifera cf. S. helica (Abich,1878), Spinomarginifera cf. S. iranica Fantini Sestini, 1965b,Alatorthotetina sp. ind., Orthothetina sp. ind., Omboniaantalyensis nov. sp. and few specimens of Pennospiriferinoi-dea; (2) an upper assemblage comprising Spinomarginifera cf.S. iranica, S. cf. S. spinosocostata (Abich, 1878), Spinomargi-nifera sp. ind. and Orthothetina sp. ind. The latter assemblage –

which occurs in the uppermost 10 m of the Pamucak Formationbelow the oolitic bed – was briefly reported by Nakamura inMarcoux and Baud (1986).

The occurrence of Alatorthotetina suggests an earlyWuchiapingian age for the first assemblage, because this taxononly occurs in the early Wuchiapingian of South China (Chenet al., 2005a).

Within this assemblage, O. antalyensis nov. sp. formsmonospecific shell beds repleted with rosettes of calcite, whichmay possibly represent pseudomorphs of ikaite. As this mineralforms naturally at temperature between 1.9 and 7 8C in alkalineand orthophosphate rich marine and continentals waters (DeLurio and Frakes, 1999), its possible occurrence at Çürük Dagmay indicate a change of oceanographic regime with influenceof cold water masses.

The foraminifers Dagmarita chanakchiensis Reitlinger,1965 and species of Hemigordius have been detected inassociation with the lower brachiopod assemblage.

The upper brachiopod assemblage is dominated bySpinomarginifera and Orthothetina which are characteristiccomponents of the low diversity brachiopod faunas of latestPermian age, such as those from the Tesero Member, WerfenFormation in the Dolomites, Italy (Broglio Loriga et al., 1988;Posenato, 1988; Beretta et al., 1999), the Gerennavar Lime-stone in the Bükk Mountains, Hungary (Posenato et al., 2005),the lower Kathwai Member, Mianwali Formation of the SaltRange, Pakistan (Grant, 1970). Their occurrence at the top ofthe Çürük Dag sections – about 200 m above the earlyWuchiapingian Alatorthotetina fauna – suggests a Changhsin-gian age for the topmost part of the Pamucak Formation. This issupported by the occurrence of the conodont Hindeodus cf.praeparvus Kozur, 1996 in sample TK133, about 6 m above thefirst occurrence of the brachiopod fauna (Figs. 3 and 5). Lys andMarcoux (1978) reported the occurrence of the foraminiferParadagmarita monodi Lys in Lys and Marcoux, 1978 in the

Fig. 6. 1. Globivalvulina cf. G. graeca Reichel, 1945, échantillon TK59. 2. Dagmaéchantillon TK116. 4. Lagenid, échantillon TK59. 5–7. Earlandia amplimuralis (Panal., 1972), échantillon TK51bis. 12, 15. Macroporella cf. M. apachena Johnson, 195échantillon TK51. 16 : échantillon TK48. 1–4, 14–18 échelle : 250 m ; 5–13 éche

oolitic grainstones at the top of the Pamucak Formation,confirming its latest Permian age (Groves et al., 2003).

Microfacies analyses at the top of the Pamucak Formation(TK51) indicates that it chiefly consists of oolitic grainstoneswith mollusc shell fragments and the algae Permocalculusplumosus Elliott, 1965 and Macroporella cf. M. apachenaJohnson, 1951 together with species of Hemigordius s.l.,Globivalvulina cf. G. graeca Reichel, 1945 and Palaeozoiclagenids. Worthy of note is the occurrence of coarse calcitefibrous cements in the oo-bioclastic grainstones, indicatingearly marine cementation.

At the base of the Kokarkuyu Formation, 80 cm above TK51(Figs. 2 and 6), sample TK51bis yields the disaster formsreferable to Earlandia amplimuralis (Pantic, 1972) and‘‘Cornuspira’’ mahajeri (Brönnimann et al., 1972) andgastropods, which are typical and characteristic of the baseof the Early Triassic of Italy, Austria, Bulgaria, Iran and China(Groves and Altiner, 2005).

According to Crasquin-Soleau et al. (2004a, 2004b), theconodont Isarcicella staeschei Dai and Zhang, 1989 occurs atthe base of the same bed (TK51bis), whereas Hindeodus parvusKozur and Pjatakova, 1976 occurs 95 cm above it. For whatconcerns these samples – their position being not marked bypaint along the section – they were collected by A. Baud in1996 and determined by S. Richoz (Richoz, 2004). Notwith-standing heavy and extremely detailed re-sampling in the samesection during 2001 and 2002, one of us (A. Nicora) failed tofind any conodonts in the same beds. We thus place the P/Tboundary at the base of bed TK51bis based on foraminifers.Thirty-one metres above the base of the Kokarkuyu Formation,A. Nicora found Isarcicella lobata Perri and Farabegoli, 2003from sample TK131 (Fig. 2). According to the new biozonationof Perri and Farabegoli (2003) the lobata biozone is the secondTriassic biozone above the parvus biozone and below thestaeschei biozone.

This finding of I. lobata, which has been identified byforaminifers and algae at the base of bed TK51bis, has veryinteresting implications on the effectiveness of occurrence of agap at between the Pamucak and Kokarkuyu Formations alongthe Çürük Dag section, as there is all the physical thickness forthe first Triassic biozone to develop below its occurrence.Furthermore, no real evidence of exposure occurs at theboundary between the Pamucak and Kokarkuyu Formations,their transition being gradual with interfingering of ooliticshoals and subtidal thrombolitic and stromatolitic boundstones– as in the recent carbonate settings of Bahamas – and not sharpand unconformable as previously described (Marcoux andBaud, 1986; Baud et al., 1997; Crasquin-Soleau et al., 2002).According to Baud et al. (2005), if an unconformity exists itshould be placed at the base of the oolitic beds, but it is difficultto evaluate the associated time gap. However, facies evolutionfrom lower energy inner platform wackestones and packstones

rita chanakchiensis Reitlinger, 1965, échantillon TK114. 3. Hemigordius sp.,tic, 1972), échantillon TK51bis. 8–11. « Cornuspira » mahajeri (Brönnimann et1, échantillon TK51. 13, 14, 16. Permocalculus plumosus Elliott, 1955. 13–15 :lle : 100 m.

L. Angiolini et al. / Geobios 40 (2007) 715–729722

to higher energy open platform oolitic grainstones indicates atransgression at the top of the Pamucak Formation whichcontinues across the Permo–Triassic boundary with thedeposition of subtidal thrombolites. The same stratigraphicarchitecture with a third-order transgression across the Permo–

Triassic boundary has been recorded and described in detail inthe Upper Dalan Member and Kangan Formation of offshoreFars and the Zagros Mountains, Iran by Insalaco et al. (2006)and in the Khuff Formation of the Arabian platform (Sharlandet al., 2001).

This is consistent with recent studies showing evidence of aglobal transgression at the Permo–Triassic boundary (i.e.Wignall and Twitchett, 2002). The global transgression eventrecorded in South China predates also the end-Permianextinction event (Chen et al., 1998) and it occurs below theH. praeparvus Zone as it does in the Çürük sections.

4. Biotic survival at the Pamucak–Kokarkuyuformations transition

The brachiopod assemblage collected in the upper 10 m ofthe Pamucak Formation just below the topmost ooliticgrainstones is a low diversity fauna comprising three speciesof Spinomarginifera and a species of Orthothetina. These taxaare typical representatives of the low diversity brachiopodfaunas of latest Permian age, such as those from the TeseroMember, Werfen Formation in the Dolomites, Italy (BroglioLoriga et al., 1988; Posenato, 1988; Beretta et al., 1999), theGerennavar Limestone in the Bükk Mountains, Hungary(Posenato et al., 2005), the Blind Fiord Formation of AxelHeiberg Island (Waterhouse, 1972), Unit E1 of the KhunamuhFormation of Kashmir (Teichert et al., 1970), the lower KathwaiMember, Mianwali Formation of the Salt Range, Pakistan(Grant, 1970). These faunas have been interpreted as survivalbrachiopods by Chen et al. (2005b) and are considered to becontemporaneous with the ‘‘Mixed Fauna 1’’ ( = SurvivalFauna 1 in Chen and McNamara, 2006) of South China, whichrepresents the first phase of the post-extinction survival in theMeishan section. The thin-shelled spiny Spinomarginifera andthe Orthotetids of the upper assemblage of the PamucakFormation may thus represent survivors of the end-Permianextinction, whose peak is not distinctly recorded in the Kemersuccession, due to scanty brachiopod preservation. Accordingto Baud et al. (1989) and Crasquin-Soleau et al. (2004a), atÇürük Dag a negative excursion of d13C has been found at thebase of the Kokarkuyu Formation, just above the low diversitybrachiopod fauna (Fig. 2). This finding may support theinterpretation of the brachiopod association as a survival faunabecause in most Tethyan Permo–Triassic sections, the negativeshift of d13C is observed at the Permo–Triassic boundary abovethe extinction event (i.e. Koeberl et al., 2004; Dolenec et al.,2004; Grice et al., 2005). However, in Meishan section (SouthChina) the negative shift is located above the extinction eventbut it is associated to the Survival Fauna 1.

The interpretation of the upper brachiopod assemblage of thePamucak Formation as survivor is further supported by: (1) thetaxonomic selectivity of the survival brachiopod faunas, which

according to Chen et al. (2005b) favours small spinoseProductida (Spinomarginifera) and Orthotetids; (2) the generallow diversity of most other organisms (notably foraminifers andalgae) in the same beds; (3) the co-occurrence of both Permian-type and Triassic-type (Liuzhinia and Callicythere) ostracods(Crasquin-Soleau et al., 2004a); (4) the co-occurrence ofPermian-type algae and foraminifers (P. plumosus, Macroporellacf. M. apachena, Hemigordius s.l., Globivalvulina cf. G. graecaReichel, 1945, Lagenids); (5) the occurrence of the conodont H.cf. praeparvus in the bed just above, which is associated with the‘‘Crurithyris’’ fauna of Posenato (1988) in the Tesero Member ofthe Dolomites and it is correlated with the ‘‘Mixed Fauna 1’’( = Survival Fauna 1) by Chen et al. (2005b).

According to Chen et al. (2005b), brachiopods are amongthe most successful post-extinction survivors and one of theirstrategies of survival was frequent speciation and rapidcolonization of the vacant niches in the warm oceans ofpalaeoequatorial zone. The occurrence of survival brachiopodsin the Changhsingian of Turkey bridges the gap betweenprevious findings of Survival Fauna 1 in Asia eastward and theDolomites westward (Chen et al., 2005b).

The late Changhsingian survival biota is capped by oo-bioclastic grainstones, which show evidence of a strong earlymarine cementation. This cementation has been observed inmany other Neotethyan settings and ascribed to catastrophicrelease of methane gas hydrates, which caused carbonatesupersaturation in seawater (Heydari and Hassanzadeh, 2003;Insalaco et al., 2006). However, this is not a strong evidence forsupersaturated oceans.

Following this, the base of the Kokarkuyu Formation recordsthe widespread development of primitive microbial moundsduring the stressful P/T environmental conditions, whichcaused the metazoan reef gap and delayed major bioticrecovery (Baud et al., 2005) coincidentally with the abruptproliferation of the disaster forms E. amplimuralis and‘‘Cornuspira’’ mahajeri, as observed in several Tethyansections (Groves and Altiner, 2005). Furthermore, the ostracodfauna from the base of the Kokarkuyu Formation comprise amixture of survival Palaeocopidae and Triassic-type taxa(Liuzhinia antalyaensis Crasquin-Soleau in Crasquin-Soleauet al., 2004a) and it is correlative of the ‘‘Survival Faunas 2 and3’’ of South China (Crasquin-Soleau et al., 2004a, 2004b). Thisagain supports the interpretation of the upper brachiopodassemblage of the Pamucak Formation as contemporaneous ofSurvival Fauna 1 of South China.

Interestingly, the Lower Triassic recovery of the brachiopodfauna is not recorded by the Kokarkuyu Formation. This is inagreement with the Early Triassic recovery pattern postulatedby Chen et al. (2005c), who showed that Lower Triassicbrachiopods repopulate only the regions, which lack Changh-singian representatives of the Phylum or where the survivingbrachiopods are very rare.

5. Conclusions

Conodonts, brachiopods and foraminifers at the top of thePamucak Formation and at the base of the Kokarkuyu

L. Angiolini et al. / Geobios 40 (2007) 715–729 723

Formation indicates the absence of a gap and continuity ofsedimentation during a major transgression across the Permo–

Triassic boundary, in agreement with the recent evidence of aglobal transgression at the boundary (i.e. Wignall andTwitchett, 2002). This is also supported by field observations,which do not show the occurrence of an unconformity betweenthe two formations. Early marine cementation at the top of thePamucak Formation correlates with what observed in othercoeval Neotethyan sections (Heydari and Hassanzadeh, 2003;Insalaco et al., 2006).

The brachiopods of the Pamucak Formation comprise twodifferent assemblages: an early Wuchiapingian assemblagedominated by Alatorthotetina sp. ind. and O. antalyensis nov. sp.(besides Spinomarginifera cf. S. helica, Spinomarginifera cf. S.iranica and Orthothetina sp. ind.) and a late Changhsingiansurvival fauna comprising three species of Spinomarginifera andOrthothetina sp. ind. The latter is considered to be probablycontemporaneous of Survival Fauna 1 of South China.

The top of the Pamucak Formation and the base of theKokarkuyu Formation record the survival phases of the biota inthe aftermath of the end-Permian extinction showing thesuccess of brachiopods and ostracods among the survivors, theproliferation of disaster forms of foraminifers and thewidespread development of microbial mounds during thestressful end-Permian–Early Triassic environmental condi-tions. No recovery brachiopod fauna occurs at the base of theKokarkuyu Formation.

6. Systematics

All the described specimens are housed in the Paleontolo-gical Museum of the University of Milan, Italy (MPUMcollection numbers). The systematic study follows theclassification of Brunton et al. (2000) for the productids andof Williams et al., 2000 for the orthotetids.

Except for the new species, the nomenclature is left openbecause of the preservation and paucity of the material.

Class STROPHOMENATA Williams, Carlson, Brunton,Holmer and Popov, 1996.

Order PRODUCTIDA Sarycheva and Sokolskaya, 1959.Suborder PRODUCTIDINA Waagen, 1883.Superfamily PRODUCTOIDEA Gray, 1840.Family PRODUCTELLIDAE Schuchert, 1929.Subfamily MARGINIFERINAE Stehli, 1954.Tribe MARGINIFERINI Stehli, 1954.Genus Spinomarginifera Huang, 1932.Type-species: Spinomarginifera kueichowensis Huang,

1932.Remarks: the genus Spinomarginifera occurs in the

Guadalupian–Lopingian of South China (Huang, 1932),Dolomites (Neri and Pasini, 1985; Posenato, 1988), BükkMountains (Schréter, 1963; Posenato et al., 2005), Serbia andSlovenia (Simic, 1933), Alborz Mountains, North Iran (FantiniSestini, 1965a, 1965b; Fantini Sestini and Glaus, 1966),Armenia (Ruzhentsev and Sarycheva, 1965), Karakorum(Angiolini, 2001), Central Tibet (Shi and Shen, 2001), Baoshan

Block (Shi and Archbold, 1998), Peninsular Malaysia (Soneet al., 2001), Indochina (Shi and Shen, 1998), and Japan(Yanagida, 1973).

Spinomarginifera cf. S. spinosocostata (Abich, 1878)Fig. 7(1–4).Material: two ventral valves.Occurrence: Çürük-left section, Pamucak Formation, bed

TK59. Changhsingian.Description: medium sized concavo-convex shell with

longitudinally subrectangular outline. Ventral valve convex,with maximum geniculation at about one third of the valvelength. Maximum width at mid-length of the valve. Umbobroad and strongly projecting on the cardinal margin. Ventralvalve ornamentated by spines bases forming coarse ridges,more prominent and more densely spaced anteriorly.

Discussion: Spinomarginifera spinosocostata (Abich, 1878)is chiefly characterized by its large size and its coarseornamentation of spines and spines ridges. S. spinosocostatadiffers from the type-species S. kueichowensis Huang, 1932because of its strongly projecting umbo, its very weak mediansulcus and the distribution and coarseness of the spines.

According to Sarycheva and Sokolskaja in Ruzhentsev andSarycheva (1965), S. spinosocostata ranges from the Araxilevisbeds up to the base of the Oldhamina beds of Armenia.Moreover, S. spinosocostata occurs in the Ruteh Limestone andNesen Formation of North Iran (Fantini Sestini, 1965a, 1965b;Fantini Sestini and Glaus, 1966).

Spinomarginifera cf. S. helica (Abich, 1878)Fig. 7(5–7).Material: two articulated shells, 3 ventral valves.Occurrence: Çürük Dag southeast ridge, Pamucak Forma-

tion, bed TK138. Early Wuchiapingian.Description: medium sized, concavo-convex shell with

transverse sub-trapezoidal outline.Ventral valve convex, maximum geniculation at about mid-

length of the valve. Umbo broad moderately projecting over thecardinal margin. Flanks subparallel. Median sulcus weak orabsent and variable. Spines and spine ridges widely spaced on theventral valve. Dorsal valve concave ornamented by fine spines.

Discussion: according to Sarycheva and Sokolskaja inRuzhentsev and Sarycheva, 1965, Spinomarginifera helicaAbich, 1878 is a very variable species for what concerns its size,the outline of the shell, the number of spines and their positionon the valves.

S. helica occurs in the Araxalevis, Oldhamina andHaydenella beds of Armenia (Sarycheva and Sokolskaja inRuzhentsev and Sarycheva, 1965), in the Ruteh Limestone andNesen Formation of North Iran (Fantini Sestini, 1965a, 1965b;Fantini Sestini and Glaus, 1966).

Spinomarginifera cf. S. iranica Fantini Sestini, 1965bFig. 7(8).Material: 3 articulated shells, 1 ventral valve.Occurrence: Çürük-left section, Pamucak Formation, bed

TK59. Çürük Dag, southeast ridge, bed TK138. EarlyWuchiapingian-Changhsingian.

Fig. 7. 1–2. Spinomarginifera cf. S. spinosocostata. 1: ventral valve, specimen MPUM9344 (TK59-6) � 1.5. 2: postero-lateral views of a ventral valve showing basesof spines, specimen MPUM9342 (TK59-9) � 2.5. 4. Spinomarginifera cf. S. iranica, ventral valve, specimen MPUM9362 (TK138-7) � 2.5. 3, 5–7. Spinomargi-nifera cf. S. helica. 3: ventral view of an articulated specimen MPUM 9343 (TK59-5) � 3.5: ventral valve, specimen MPUM 9361 (TK-138-23) � 2.5. 6, 7: ventraland dorsal views of an articulate specimen MPUM 9360 (TK138-37) � 2. 8–11. Alatorthotetina sp. ind. 8: dorsal valve, specimen MPUM9352 (TK112-23) � 1.5.9: external cast of a ventral valve, specimen MPUM9351 (TK112-28A) � 1.5. 10, 11: ventral valves, specimens MPUM9349 (TK113-5), MPUM9350 (TK113-6) � 1.5. 12–15. Orthothetina sp. ind. 13: ventral valve, specimen MPUM9345 (TK49-3) � 1.5. 12, 14, 15: dorsal valves, specimens MPUM9348 (TK49.1-1),MPUM9346 (TK59-4), MPUM9347 (TK59.2-14A) � 1.5. 16–21. Ombonia antalyensis nov. sp. 16: postero-dorsal view of an articulated specimen MPUM9353(TK116-83) � 2.2. 17: dorsal view of an articulated specimen MPUM 9357 (TK113-2) � 1.5. 18: ventral valve of an articulated specimen MPUM9353 (TK116-83) � 1.5. 19: dorsal valve, specimen MPUM9356 (TK111-37) � 1.5. 20, 21: dorsal and ventral view of the holotype, specimen MPUM9355 (TK116-81D) � 1.5.

L. Angiolini et al. / Geobios 40 (2007) 715–729724

L. Angiolini et al. / Geobios 40 (2007) 715–729 725

Description: small to medium sized, concavo-convex shell,with longitudinally sub-rectangular to transversely sub-trapezoidal outline. Ventral valve convex, with geniculationat about one third of the valve length. Umbo small, acute,weakly projecting on the cardinal margin, which is shorter thanthe greatest width of the valve. Median sulcus very weak orabsent. Ventral valve ornamentation with densely spacedspines both on the visceral disk and on the trail, lacking spinesridges.

Discussion: S. iranica Fantini Sestini, 1965b shows externalcharacters, which are transitional between Spinomarginiferaciliata Arthaber, 1900 and S. helica Abich, 1878. S. iranicadiffers from S. ciliata because its ornamentation consists ofcoarser and more widely spaced spine bases. S. iranica differsfrom S. helica because of its deeper median sulcus, itsornamentation of spines densely spaced on the trail and on thevisceral disk and the lack of spines ridges.

Spinomarginifera sp. indet.Material: 20 ventral valves.Occurrence: Çürük Dag section, Pamucak Formation, bed

TK46. Çürük-left section, beds TK59, TK59.2. Çürük Dag,southeast ridge, bed TK138. Early Wuchiapingian-Changhsin-gian.

Description: ventral profile strongly convex with long trail.Visceral disk with subtriangular outline. Bases of spines widelyspaced.

Discussion: the samples are not well preserved, so that theirspecific assignment is prevented.

Order ORTHOTETIDA Williams, Brunton and Wright,2000.

Suborder ORTHOTETIDINA Waagen, 1884.Superfamily ORTHOTETOIDEA Waagen, 1884.Family MEEKELLIDAE Stehli, 1954.Subfamily MEEKELLINAE Stehli, 1954.Genus Alatorthotetina He and Zhu, 1985.Type-species: Alatorthotetina sichuanensis He and Zhu,

1985.Remarks: A. sichuanensis occurs in Member II of the

Longtan Formation (early Wuchiapingian) at the Daijiagousection in Hechuan County, Sichuan Province (southwesternChina) (He and Zhu, 1985). A. derbyiformis He and Zhu, 1985from the same locality and stratigraphic position differs by itssmaller dimensions and by less mucronate cardinal extremities.A. sichuanensis differs from Orthotetes persicus Schellwien,1900 by its planoconvex shell and by its mucronate cardinalextremities.

Fig. 7 1–2. Spinomarginifera cf. S. spinosocostata. 1 : valve ventrale, spécimen MPUdes épines, spécimen MPUM9342 (TK59-9) � 2,5. 4. Spinomarginifera c3, 5–7. Spinomarginifera cf. S. helica. 3: vue ventrale de spécimen MPUM 93436, 7 : vues ventrales et dorsales du spécimen MPUM9360 (TK138-37) � 2. 8–11. Ala9 : moule externe de la valve ventrale, spécimen MPUM9351 (TK112-28A) � 1,(TK113-6) � 1,5. 12–15. Orthothetina sp. ind. 13 : valve ventrale, spécimen MPU(TK49.1-1), MPUM9346 (TK59-4), MPUM9347 (TK59.2-14A) � 1,5. 16–21. Om(TK116-83) � 2,2. 17 : vue dorsale du spécimen MPUM 9357 (TK113-2) � 2. 18spécimen MPUM9356 (TK11-37) � 1,5. 20, 21 : vues dorsales et ventrales de l’h

Alatorthotetina sp. indet.Fig. 7(9–12).Material: two articulated shells, 22 ventral valves; three

ventral external casts; three dorsal external casts; 22 fragments.Occurrence: Çürük Dag, southeast ridge, Pamucak For-

mation, beds TK111, TK112, TK112bis, TK113, TK114,TK138.

Description: medium size, planoconvex shell with mucro-nate hinge line. Ornamentation of fine costellae numbering 12per 5 mm at mid-length, 16–18 per 5 mm at the anterior margin.Strong growth lines do also occur.

Interior of ventral valve with parallel dental plates.Discussion: the specimens of our collection are very similar

to the type species, figured by He and Zhu (1985: Pl. 1, Figs. 10,11; Pl. 2, Figs. 1–6), but they are ornamented by finer and morenumerous costellae.

Genus Orthothetina Schellwien, 1900.Type-species: Orthotetes persicus Schellwien, 1900.

Orthothetina sp. indet.Fig. 7(13–16).Material: one articulated shell; 30 ventral valves; six dorsal

valves.Occurrence: Çürük Dag section, Pamucak Formation, beds

TK47, TK49 and TK49.1. Çürük-left section, beds TK59.2,TK59.2. Çürük Dag, southeast ridge, bed TK138. EarlyWuchiapingian-Changhsingian.

Description: biconvex shell with transversely subovaloutline. Maximum width at mid-length. Ventral valve withpseudodeltidium with a strong monticulus. Dorsal valve withshallow median sulcus, starting from the umbo extending to twothird of the length. Ornamentation of ventral valve of finecostellae mainly arising by branching; interspaces betweencostellae wider than the costellae themselves and finelyornamented by growth lines. Dorsal valve sulcate, ornamentedby costellae. On both valves costellae number 13 per 5 mm at5 mm from the umbo and they number about 20 per 5 mm at theanterior margin.

Discussion: the specimens of these stratigraphic sectionsare not well preserved but they clearly show the pseudodelti-dium with a strong monticulus, the ornamentation of bothvalves of fine, acute costellae typical of the wide rangingGuadalupian–Lopingian Orthothetina. These specimens ofOrthothetina are externally similar to Alatorthotetina sichua-nensis He and Zhu, 1985 and to Paraorthotetina provecta(Liao, 1980) (type-species of Paraorthotetina). A. sichua-nensis has planoconvex shell and mucronate hinge line, while

M9344 (TK59-6) � 1,5. 2 : vues postéro-latérales de la valve ventrale montrantf. S. iranica, valve ventrale, spécimen MPUM9362 (TK138-7) � 2,5.

(TK59-5) � . 5 : valve ventrale, spécimen MPUM9361 (TK-138-23) � 2,5.torthotetina sp. ind. 8 : valve dorsale, spécimen MPUM9352 (TK112-23) � 1,5.5. 10, 11 : valves ventrales, spécimens MPUM9349 (TK113-5), MPUM9350M9345 (TK49-3) � 1,5. 12, 14, 15 : valves dorsales, spécimen MPUM9348

bonia antalyensis nov. sp. 16 : vue postéro-dorsale du spécimen MPUM9353: vue ventrale du spécimen MPUM9353 (TK116-83) � 1,5. 19 : valve dorsale,olotype, spécimen MPUM9355 (TK116-81D) � 1,5.

Fig. 8. 1–3. Ombonia antalyensis nov. sp., specimen MPUM 9354 (TK116-3). Sections respectively at 10 mm, 12 mm, 14 mm from the umbo showing dental platesconverging to a strong median septum forming a ‘‘V’’ shaped spondylium inside the ventral valve. 4–8, 10. Ombonia antalyensis nov. sp., specimen MPUM 9733(TK116-70). Sections respectively at 14 mm, 16 mm, 18 mm, 20 mm, 26 mm, 30 mm from the umbo showing dental plates converging to a strong median septumforming a ‘‘U’’ shaped spondylium inside the ventral valve. 9. Ombonia antalyensis nov. sp., specimen MPUM 9733(TK116-70). Enlargement of section at 20 mmfrom the umbo showing a particular of the fibres where the dental plates join to the median septum forming the spondylium.

L. Angiolini et al. / Geobios 40 (2007) 715–729726

L. Angiolini et al. / Geobios 40 (2007) 715–729 727

Orthothertina sp. ind. has biconvex shell and does not show amucronate hinge line. P. provecta of the Late Permian ofwestern Guizhou shows the greatest width at the hinge line andthe wide interarea.

Subfamily OMBONIINAE Sokolskaya, 1960.Genus Ombonia Caneva, 1906.Type-species: Streptorhynchus tirolensis Stache, 1878.Remarks: the genus Ombonia occurs in the late Changh-

singian of the Dolomites and of the Bükk Mountains (Posenatoet al., 2005), in the Permian of North Caucasus (Orlov, 1960)and in the Guadalupian of Texas (Cooper and Grant, 1974).According to a recent revision of Posenato et al. (2005: p. 226),O. canevai Merla, 1930 is a junior synonym of O. tirolensis,which is the type-species of Ombonia.

Ombonia antalyensis nov. sp.Figs. 7(17–22) and 8.Etymology: from the region of Antalya, where the

specimens have been collected.Material: holotype: an articulated shell TK116-81-D

(MPUM9355) (Fig. 7(20, 21)). Fifty-six articulated shells;26 ventral valves; 21 dorsal valves; several fragments.

Locus and stratum typicum: SW Turkey, Çürük Dag,southeast ridge, Pamucak Formation, bed TK116, earlyWuchiapingian.

Occurrence: Çürük Dag southeast ridge, Pamucak Forma-tion, beds TK115, TK116, TK112bis.

Diagnosis: Ombonia with flabellate outline and narrow, highinterarea.

Description: biconvex shell with transversely suboval,flabellate outline. Anterior commissure rectimarginate. Ventralvalve flat with variably oriented interarea (apsacline to nearlycatacline) with pseudodeltidium holding strong monticulus.Dorsal valve more convex with an indistinct median flatteningor shallow depression located anteriorly to two thirds the lengthof the valve; dorsal umbo hidden below the base of thepseudodeltidium. Ornamentation of valves of fine roundedcostellae arising mainly by branching with a very regularintercalation of coarser costellae and finer ones at the anteriormargin. On both valves the costellae number 18–20 per 5 mm at5 mm from the umbo; they number 18–22 per 5 mm at theanterior margin.

Interior of ventral valve with dental plates converging on astrong median septum forming a ‘‘U’’ shaped or ‘‘V’’ shapedspondylium.

Discussion: the specimens are ascribed to the genusOmbonia because of their rounded, densely spaced costellaeand the dental plates converging to a septum to form aspondylium inside the ventral valve. O. antalyensis nov. sp.differs from O. tirolensis (Stache, 1878) by its shorter hinge andits less transverse, flabellate outline.

Fig. 8. 1–3. Ombonia antalyensis nov. sp., spécimen MPUM 9354 (TK116-3). Sectiplaques dentales et le septum médian formant un spondylium en forme de « V » à l’MPUM 9733 (TK116-70). Sections sériées transversales à 14 mm, 16 mm, 18 mm, 2médian formant un spondylium en forme de « U » à l’intérieur de la valve venGrossissement d’une coupe à 20 mm de l’umbo montrant les fibres où les plaques

Acknowledgments

The authors are grateful to Süleyman Demirel, University ofIsparta, and particularly to Prof. Fuzuli Yagmurlu, Head of theGeological Department, for his kind assistance and help withlogistics. One of us (J.M.) thanks the CNRS, UMR 7578 (Paris)for fieldwork grant. R. Posenato is warmly thanked for havingprovided thoughtful comments to an earlier version of themanuscript. D. Vachard is thanked for his kind help in thedetermination of Macroporella. Z. Chen and P. Wignall arethanked for their careful revision. A. Checconi, G. Chiodi,C. Malinverno and A. Rizzi are thanked for technicalassistance.

References

Abich, H., 1878. In: Holder, (Ed.), Th. I. Eine Bergkalkfauna aus der Araxe-senge bei Djoulfa in Armenien. Geologische Forschungen in den kaukasi-schen Ländern, Wien.

Altiner, D., 1981. Recherches stratigraphiques et micropaléontologiques dans leTaurus oriental au NW de Pinarbasi (Turquie). Thèse, université de Genève,Suisse (unpublished).

Altiner, D., 1984. Upper Permian Foraminiferal biostratigraphy in somelocalities of the Taurus Belt. In: Tekeli, O., Gönc?oglu, M.C. (Eds.),Geology of the Taurus Belt. Proceedings of an international TaurideSymposium. Mineral Research and Exploration Institute of Turkey(MTA) Publications, Ankara, pp. 255–268.

Angiolini, L., 2001. Permian brachiopods from Karakorum (Pakistan), part 3.Rivista Italiana di Paleontologia e Stratigrafia 107, 307–344.

Arthaber, G. von, 1900. Das jüngere Paläozoicum aus der Araxes-Enge beiDjulfa. In: Frech, F., Arthaber, G. von (Eds.), Über das Paläozoicum inHocharmenein und Persien. Beiträge zur Paläontologie und GeologieÖsterreich-Ungarns und des Orients, Wien 12, pp. 209–308.

Baud, A., Magaritz, M., Holser, W.T., 1989. Permian–Triassic of the Tethys:carbon isotopes studies. Geologische Rundschau 78, 649–677.

Baud, A., Cirilli, S., Marcoux, J., 1997. Biotic response to mass extinction: thelowermost Triassic microbialites. Facies 36, 238–242.

Baud, A., Richoz, S., Marcoux, J., 2005. Calcimicrobial cap rocks from thebasal Triassic units: western Taurus occurrences (SW Turkey). ComptesRendus Palevol 4, 501–514.

Beretta, C., Cimmino, F., Cirilli, S., Neri, C., Nicora, A., Perri, M.C., PiriniRadrizzani, C., Posenato, R., Radrizzani, S., 1999. The P/T boundary in theTesero section, western Dolomites (Trento). In: Cassinis, G. et al. (Eds.),Stratigraphy and facies of the Permian deposits between eastern Lombardyand the western Dolomites, Field Trip Guidebook, International fieldconference on ‘‘The continental Permian of the southern Alps and Sardinia(Italy)’’. Regional reports and general correlations, Brescia, 15–27 Sep-tember 1999, pp. 90–109.

Berner, R.A., 2002. Examination of hypotheses for the Permo–Triassic boun-dary extinction by carbon cycle modelling. Proceedings of the NationalAcademy of Sciences 99, 4172–4177.

Bowring, S.A., Erwin, D.H., Jin, Y.G., Martin, M.W., Davidek, K., Wang, W.,1998. U/Pb Zircon geochronology and Tempo of the end-Permian massextinction. Science 280, 1039–1045.

Broglio Loriga, C., Neri, C., Pasini, M., Posenato, R., 1988. Marine Fossilassemblages from upper Permian to lowermost Triassic in the westernDolomites (Italy). Memorie della Società Geologica Italiana 38, 5–44.

ons sériées transversales à 10 mm, 12 mm, 14 mm depuis l’umbo, montrant lesintérieur de la valve ventrale. 4–8, 10. Ombonia antalyensis nov. sp., spécimen0 mm, 26 mm, 30 mm depuis l’umbo montrant les plaques dentales et le septumtrale. 9. Ombonia antalyensis nov. sp., spécimen MPUM 9733 (TK116-70).dentales rejoignent le septum médian pour former le spondylium.

L. Angiolini et al. / Geobios 40 (2007) 715–729728

Brönnimann, P., Zaninetti, L., Bozorgnia, F., 1972. Triassic (Skythian)smaller Foraminifera from the Elika Formation of the central Alborz,northern Iran, and from the Siusi Formation of the Dolomites, northernItaly. Mitteilungen der Gesellschaft der Geologie und Bergsbaustudenten21, 861–884.

Brunton, C.H.C., Lazarev, S.S., Grant, R.E., 2000. Productida. In: Kaesler, R.L.(Ed.), Treatise on Invertebrate Paleontology. Part H, Brachiopoda Revised(3). Geological Society of America and University of Kansas Boulder,Colorado, and Lawrence, Kansas, pp. 350–643.

Caneva, G., 1906. Über die Bellerophonkalkfauna zur frage der Perm–Trias-grezen. Neues Jahrbuch für Mineralogie. Geologie und PaläontologieAbhandlungen 1, 52–60.

Chen, Z.Q., McNamara, K.J., 2006. End-Permian extinction and subsequentrecovery of the Ophiuroidea (Echinodermata). Palaeogeography, Palaeo-climatology, Palaeoecology 236, 321–344.

Chen, Z.Q., Jin, Y.G., Shi, G.R., 1998. Permian transgression–regressionsequences and sea-level changes of South China. Proceedings of the RoyalSociety of Victoria 110, 345–367.

Chen, Z.Q., Campi, M.J., Shi, G.R., Kaiho, K., 2005a. Post-extinction bra-chiopod faunas from the Late Permian Wuchiapingian coal series of SouthChina. Acta Palaeontologica Polonica 50, 343–363.

Chen, Z.Q., Kaiho, K., George, A.D., 2005b. Survival strategies of brachiopodfaunas from the end-Permian mass extinction. Palaeogeography, Palaeo-climatology, Palaeoecology 224, 232–269.

Chen, Z.Q., Kaiho, K., George, A.D., 2005c. Early Triassic recovery of thebrachiopod faunas from the end-Permian mass extinction: a global review.Palaeogeography, Palaeoclimatology, Palaeoecology 224, 270–290.

Cooper, G.A., Grant, R.E., 1974. Permian brachiopods of West Texas, II.Smithsonian Contributions to Paleobiology 15, 233–793.

Crasquin-Soleau, S., Richoz, S., Marcoux, J., Angiolini, L., Nicora, A., Baud,A., 2002. Les événements de la limite Permien-Trias : derniers survivants et/ou premiers re-colonisateurs parmi les ostracodes du Taurus (Sud-Ouest dela Turquie). Comptes Rendus Geoscience 334, 489–495.

Crasquin-Soleau, S., Marcoux, J., Angiolini, L., Nicora, A., Bertho, Y., 2004a.A new ostracode fauna from the Permian–Triassic boundary in Turkey(Taurus, Antalya Nappes). Micropaleontology 50, 281–296.

Crasquin-Soleau, S., Marcoux, J., Angiolini, L., Nicora, A., 2004b. Palaeoco-pida (Ostracoda) across the Permian–Triassic events: new data from south-western Taurus (Turkey). Journal of Micropaleontology 23, 67–76.

Dai, J., Zhang, J., 1989. Conodonts. In: Li, Z., Zhan, L., Dai, J., Jin, R., Zhu, X.,Zhang, J., Huang, H., Xu, D., Yan, Z., Li, H. (Eds.), Study on the Permo–

Triassic biostratigraphy and event stratigraphy of northern Sichuan andsouthern Shaanxi. Ministry of Geology and Mineral Resources. Geologicalmemoirs, series 2, pp. 428–435.

De Lurio, J., Frakes, L.A., 1999. Glendonites as a paleoenvironmental tool:implications for early Cretaceous high latitude climates in Australia.Geochimica et Cosmochimica Acta 63, 1039–1048.

Dolenec, T., Ogorelec, B., Dolenec, M., Lojen, S., 2004. Carbon isotopevariability and sedimentology of the Upper Permian carbonate rocks andchanges across the Permian–Triassic boundary in the Masore section(western Slovenia). Facies 50, 287–299.

Elliott, G.F., 1955. The Permian calcareous alga Gymnocodium. Micropaleon-tology 1, 83–90.

Erwin, D.H., 1994. The Permo–Triassic Extinction. Nature 367, 231–236.Erwin, D.H., 1998. The end and the beginning: recoveries from mass extinc-

tions. Trends in Ecology and Evolution 13, 344–349.Erwin, D.H., 2000. Life’s downs and ups. Nature 404, 129–130.Fantini Sestini, N., 1965a. The geology of the Upper Djadjerud and Lar Valleys

(North Iran) II. Palaeontology. Bryozoans, Brachiopods and Molluscs fromthe Ruteh Limestone (Permian). Rivista Italiana di Paleontologia e Strati-grafia 71, 13–108.

Fantini Sestini, N., 1965b. The geology of the Upper Djadjerud and Lar Valleys(North Iran) II. Palaeontology. On some ‘‘Spinomarginifera’’ from theUpper Permian of Mubarak-Abad. Rivista Italiana di Paleontologia eStratigrafia 71, 989–996.

Fantini Sestini, N., Glaus, M., 1966. Brachiopods from the Upper PermianNesen Formation (North Iran). Rivista Italiana di Paleontologia e Strati-grafia 72, 887–930.

Grant, R.E., 1970. Brachiopods from Permian–Triassic boundary beds and ageof Chhidru Formation, West Pakistan. In: Kummel, B., Teichert, C. (Eds.),Stratigraphic boundary problems: Permian and Triassic of West Pakistan.University of Kansas, Department of Geology, special publication 4,pp.117–151.

Gray, J.E., 1840. Synopsis of the contents of the British Museum. Forty-seconded. British Museum, London.

Grice, K., Cao, C., Love, G.D., Böttcher, M.E., Twitchett, R.J., Grosjean, J.,Summons, R.E., Turgeon, S.C., Dunning, W., Jin, Y., 2005. Photic zoneEuxinia during the Permian–Triassic superanoxic event. Science 307,706–709.

Groves, J.R., Altiner, D., 2005. Survival and recovery of calcareous forami-nifera pursuant to the end-Permian mass extinction. Comptes RendusPalevol 4, 419–448.

Groves, J.R., Altiner, D., Boyce, M.D., 2003. Stratigraphy and apparentextinction of Lagenide foraminifers at the Permian–Triassic boundary inthe western Taurides, Turkey. Abstract Book, XV International congresson carboniferous and Permian stratigraphy, 10–16 August 2003, Utrecht.

Hallam, A., Wignall, P.B., 1997. Mass extinctions and their aftermath. OxfordUniversity Press, Oxford.

Hallam, A., Wignall, P.B., 1999. Mass extinctions and sea-level changes. EarthScience Review 48, 217–250.

He, Xi-lin, Zhu, Mei-li, 1985. Some Upper Permian new genera and speciesof Orthotetacea in southwest China. Acta Palaeontologia Sinica 24, 198–204.

Heydari, E., 2005. Reply to the comments on Permian–Triassic boundaryinterval in the Abadeh section of Iran with implications for mass extinction:Part 1. Sedimentology. In: Heydari, E., Hassanzadeh, J., Wade, W.J., Ghazi,A.M. (Eds.), Palaeogeography, Palaeoclimatology, Palaeoecology 193:405–424 (2003): reply. Palaeogeography, Palaeoclimatology, Palaeoeco-logy 217, pp. 319–325.

Heydari, E., Hassanzadeh, J., 2003. Deev Jahi model of the Permian–Triassicboundary mass extinction: a case for gas hydrates as the main cause ofbiological crisis on Earth. Sedimentary Geology 163, 147–163.

Huang, T.K., 1932. Late Permian brachiopods of southwestern China, Part 1.Palaeontologia Sinica, Series B 9, 1–107.

Insalaco, E., Virgone, A., Courme, B., Gaillot, G., Kamali, M., Moallemi, A.,Lotfpour, M., Monibi, S., 2006. Upper Dalan Member and Kangan Forma-tion between the Zagros Mountains and offshore Fars, Iran: depositionalsystem, biostratigraphy and stratigraphic architecture. GeoArabia 11,75–176.

Johnson, J.H., 1951. Permian calcareous algae from the Apache Mountains,Texas. Journal of Paleontology 25, 21–30.

Kidder, D.L., Worsley, T.R., 2004. Causes and consequences of extremePermo–Triassic warming to globally equable climate and relation to thePermo–Triassic extinction and recovery. Palaeogeography, Palaeoclimato-logy, Palaeoecology 203, 207–237.

Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, B., Sephton, M.A., 2004.Geochemistry of the end-Permian extinction event in Austria and Italy:no evidence for an extraterrestrial component. Geology 32, 1053–1056.

Kozur, H., 1996. The conodonts Hindeodus, Isarcicella and Sweetohindeodus inthe uppermost Permian and lowermost Triassic. Geologia Croatica 49,81–115.

Kozur, H., Pjatakova, M., 1976. Die Conodontenart Anchignathodus parvus n.sp., eine wichtige Leitform der basalen Trias. Koninklijke NederlandseAkademie van Wetenschappen. Proceedings, Series B 79, 123–128.

Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y., Li, R., 2004. Stablecarbon isotope stratigraphy across the Permian–Triassic boundary in shal-low marine carbonate platforms, Nanpanjiang basin, South China. Palaeo-geography, Palaeoclimatology, Palaeoecology 204, 297–315.

Krystyn, L., Richoz, S., Baud, A., Twitchett, R.J., 2003. A unique Permian–

Triassic boundary section from the Neotethyan Hawasina basin, CentralOman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology191, 329–344.

Liao, Zhuo-ting, 1980. Upper Permian brachiopods from western Guizhou. In:Nanjing Institute of Geology and Paleontology (Ed.), stratigraphy andpaleontology of Upper Permian coal-bearing Formation in western Guizhouand eastern Yunnan. Science Press, Beijing, pp. 241–277 (in Chinese, withEnglish abstract).

L. Angiolini et al. / Geobios 40 (2007) 715–729 729

Lys, M., Marcoux, J., 1978. Les niveaux du Permien supérieur des Nappesd’Antalya (Taurides occidentales, Turquie). Comptes Rendus de l’Acadé-mie des Sciences de Paris 286, 1417–1420.

Marcoux, J., 1979. Analyse des unités des nappes calcaires d’Antalya. Impli-cations paléogéographiques et contraintes paléostructurales. Rapport duComité International de la Mer Méditerranée 25/26, 157–158.

Marcoux, J., Baud, A., 1986. The Permo–Triassic boundary in the AntalyaNappes (Western Taurides, Turkey). Memorie della Società GeologicaItaliana 34, 243–252.

Marcoux, J., Ricou, L.E., Burg, J.-P., Brun, J.-P., 1989. Shear-sense criteria inthe Antalya and Alanya thrust system (southwestern Turkey): evidence for asouthward emplacement. Tectonophysics 161, 81–91.

Merla, G., 1930. La fauna del calcare a Bellerophon della regione Dolomitica.Memorie dell’Istituto Geologico e Mineralogico della Università di Padova9, 1–221.

Mundil, R., Metcalfe, I., Ludwig, K.R., Renne, P.R., Oberli, F., Nicoll, R.S.,2001. Timing of the Permian–Triassic biotic crisis: implications from newzircon U/Pb age data (and their limitations). Earth and Planetary ScienceLetters 187, 131–145.

Mundil, R., Ludwig, K.R., Metcalfe, I., Renne, P.R., 2004. Age and timing ofthe Permian mass extinctions: U/Pb dating of closed-system Zircons.Science 305, 1760–1763.

Neri, C., Pasini, M., 1985. A mixed fauna at the Permian–Triassic boundary,Tesero section, western Dolomites (Italy). Bollettino della Società Paleon-tologica Italiana 23, 113–117.

Newton, R.J., Pevitt, E.L., Wignall, P.B., Bottrell, S.H., 2004. Large shifts in theisotopic composition of seawater sulphate across the Permo–Triassic boun-dary in northern Italy. Earth and Planetary Science Letters 218, 331–345.

Orlov, Y.A., 1960, Mshanki, Brakhiopody (Bryozoa, Brachiopoda). OsnovyPaleontologii, vol. 7, Izdatel’stvo Akademii Nauk SSSR, Moscow.

Pantic, S., 1972. Aeolisaccus amplimuralis, n. sp., and Aeolisaccus gracilis, n.sp., from the middle Triassic of the southeastern Dinarides. Bulletin duMuséum d’Histoire Naturelle de Belgrade série A 27, 211–221.

Perri, M.C., Farabegoli, E., 2003. Conodonts across the Permian–Triassicboundary in the southern Alps. Courier Forschungsinstitut Senckenberg245, 281–313.

Posenato, R., 1988. The Permian/Triassic boundary in the western Dolomites,Italy: review and proposal. Annali dell’Università di Ferrara 1 (3), 31–45.

Posenato, R., Pelikán, P., Hips, K., 2005. Bivalves and brachiopods near thePermo–Triassic boundary from the B?kk Mountains (Bálvány-north sec-tion, northern Hungary). Rivista Italiana di Paleontologia e Stratigrafia 111,215–232.

Pruss, S.B., Bottjer, D.J., 2004. Late Early Triassic microbial reefs of thewestern United States: a description and model for their deposition in theaftermath of the end-Permian mass extinction. Palaeogeography, Palaeo-climatology, Palaeoecology 211, 127–137.

Reichel, M., 1945. Sur quelques foraminifères nouveaux du permien méditer-ranéen. Eclogae Geologicae Helvetiae 38, 524–560.

Reichow, M.K., Saunders, A.D., White, R.V., Pringle, M.S., Al’Mukhamedov,A.I., Medvedev, A.I., Kirda, N.P., 2002. 40Ar/39Ar dates from the WestSiberian basin: Siberian flood basalt province doubled. Science 269, 1846–

1849.Reitlinger, E.A., 1965. Développement des foraminifères aux époques per-

mienne supérieure et triasique inférieure sur le territoire transcaucasien.Question de Micropaléontologie, Moscow 9, 45–70.

Richoz, S., 2004. Stratigraphie et variations isotopiques du C dans le Permien etle Trias inférieur de quelques localités de la Néotéthys (Turquie, Oman etIran). Mémoire de Géologie de Lausanne 46, 1–284.

Rong, J., Shen, S., 2002. Comparative analysis of the end-Permian and end-Ordovician brachiopod mass extinction and survivals in South China.Palaeogeography, Palaeoclimatology, Palaeoecology 188, 25–38.

Ruzhentsev, V.E., Sarycheva, T.G., 1965. Evolution and succession of marineorganisms at the Permo–Triassic boundary. Akad Nauk SSSR, TrudyPaleontologicheskogo Instituta Moscow 108, 1–430.

Sarycheva, T.G., Sokolskaya, A.N., 1959. O klassifikatsin lozhnoporistykhbrachiopod [on the classification of pseudopunctate brachiopods]. Akade-miia Nauk SSSR, Doklady (Moscow) 125, 181–184.

Schellwien, E.T.T., 1900. Beitrag zur systematik der Strophomeniden desoberen Paläozoicum. Neues Jahrbuch für Mineralogie, Geologie undPaläontologie 1, 1–15.

Schréter, Z., 1963. Die Brachiopoden aus dem Oberen Perm des Bükkge-birges in Nordungarn. Geologica Hungarica series palaeontologica 28,87–179.

Schuchert, C., 1929. Classification of Brachiopod Genera, fossil and recent. In:Schuchert, C., Levene, C.M. (Eds.), Brachiopoda. Fossilium Catalogus I:Animalia volume 42. W. Junk, Berlin, pp. 10–25.

Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P.,Horbury, A.D., Simmons, M.D., 2001. Arabian plate sequence stratigraphy.GeoArabia Special Publication 2, 1–371.

Shi, G.R., Archbold, N.W., 1998. Permian marine biogeography of SE Asia. In:Hall, R., Holloway, J.D. (Eds.), Biogeography and geological evolution ofSE Asia. Backhuys Publishers, Leiden, pp. 57–72.

Shi, G.R., Shen, S., 1998. A Changhsingian (Late Permian) brachiopod faunafrom Son La, northwestern Vietnam. Journal of Asian Earth Sciences 16,501–511.

Shi, G.R., Shen, S., 2001. A biogeographically mixed, Middle Permian Bra-chiopod fauna from the Baoshan Block, Western Yunnan, China. Palaeon-tology 44, 237–258.

Simic, V., 1933. Gornji Perm u Zapadnoj Srbiji. Rasprave Geoloskog InstitutaKralj 1, 1–130.

Sokolskaya, A.N., 1960. Otriad Strophomenida. In: Sarycheva, T.G., Orlov,Y.A. (Eds.), Mshanki, Brakhiopody (Bryozoa, Brachiopoda), OsnovyPaleontologii, 7. Akademiia Nauk SSSR, Moscow, pp. 206–220.

Sone, M., Leman, M.S., Shi, G.R., 2001. Middle Permian brachiopods fromcentral Peninsular Malaysia – faunal affinities between Malaysia and westCambodia. Journal of Asian Earth Sciences 19, 177–194.

Stache, G., 1878. Beitrage zur fauna der Bellerophonkalke Sudtirol. N. 2.Pelecypoden und Brachiopoden. Jahrbuch der kaiserlich-königlichen geo-logischen Reichsanstalt 28, 93–168.

Stehli, F.G., 1954. Lower leonardian Brachiopoda of the Sierra Diablo. Bulletinof the American Museum of Natural History 105, 257–358.

Teichert, C., Kummel, B., Kapoor, H.M., 1970. Mixed Permian–Triassic fauna,Guryul ravine, Kashmir. Science 167, 174–175.

Twitchett, R.J., 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoeco-logy 154, 27–37.

Waagen, W.H., 1882–1885. Salt Range fossils. Part 4 Brachiopoda. Memoirs ofthe geological survey of India, Palaeontologia Indica, Series 13, 1 (1–5),329–770.

Waterhouse, J.B., 1972. A Permian overtoniid brachiopod in the Early Triassicsediments of Axel Heiberg Island, Canadian Arctic, and its implications onthe Permian–Triassic boundary. Canadian Journal of Earth Sciences 9,486–499.

Wignall, P.B., Twitchett, R.J., 2002. Permian–Triassic sedimentology of Jame-son land, east Greenland: incised submarine channels in an anoxic basin.Journal of the Geological Society 159, 691–703.

Williams, A., Carlson, S.J., Brunton, C.H.C., Holmer, L.E., Popov, L.E.,1996. A supra-ordinal classification of the Brachiopoda. PhilosophicalTransaction of the Royal Society of London Series B 351, 1171–

1193.Williams, A., Brunton, C.H.C., Wright, A.D., 2000. Orthotetida. In: Kaesler,

R.L. (Ed.), Treatise on invertebrate paleontology. Part H, Brachiopodarevised (3). Geological Society of America, Boulder and University ofKansas. Lawrence, Kansas, pp. 644–689.

Yanagida, J., 1973. Late Permian brachiopods from Yamamba limestone inSakawa basin, Shikoku, Japan. Science reports of the Tohoku UniversitySeries 2: Geology, special vol. 6, Sendai, 353–369.