20
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Diversity of Diurnal Butterflies (Lepidoptera: Hesperioidea and Papilionoidea) of Laguna Potosí and Surrounding Area, Guerrero, Mexico Author(s): Ana Luisa Figueroa-Fernández , Alejandro Mélendez- Herrada , Armando Luis-Martínez and Isabel Vargas-Fernández Source: Southwestern Entomologist, 39(1):57-75. 2014. Published By: Society of Southwestern Entomologists DOI: http://dx.doi.org/10.3958/059.039.0107 URL: http://www.bioone.org/doi/full/10.3958/059.039.0107 BioOne (www.bioone.org ) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use . Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

Diversity of Diurnal Butterflies (Lepidoptera: Hesperioidea and Papilionoidea) of Laguna Potosí and Surrounding Area, Guerrero, Mexico

Embed Size (px)

Citation preview

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors,nonprofit publishers, academic institutions, research libraries, and research funders in the common goal ofmaximizing access to critical research.

Diversity of Diurnal Butterflies (Lepidoptera:Hesperioidea and Papilionoidea) of Laguna Potosíand Surrounding Area, Guerrero, MexicoAuthor(s): Ana Luisa Figueroa-Fernández , Alejandro Mélendez-Herrada , Armando Luis-Martínez and Isabel Vargas-FernándezSource: Southwestern Entomologist, 39(1):57-75. 2014.Published By: Society of Southwestern EntomologistsDOI: http://dx.doi.org/10.3958/059.039.0107URL: http://www.bioone.org/doi/full/10.3958/059.039.0107

BioOne (www.bioone.org) is a nonprofit, online aggregation of coreresearch in the biological, ecological, and environmental sciences. BioOneprovides a sustainable online platform for over 170 journals and bookspublished by nonprofit societies, associations, museums, institutions, andpresses.

Your use of this PDF, the BioOne Web site, and all posted and associatedcontent indicates your acceptance of BioOne’s Terms of Use, available atwww.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, andnon-commercial use. Commercial inquiries or rights and permissionsrequests should be directed to the individual publisher as copyright holder.

57

VOL. 39, NO. 1 SOUTHWESTERN ENTOMOLOGIST MAR. 2014 Diversity of Diurnal Butterflies (Lepidoptera: Hesperioidea and Papilionoidea) of Laguna Potosí and Surrounding Area, Guerrero, Mexico Ana Luisa Figueroa-Fernández1, Alejandro Mélendez-Herrada1, Armando Luis-Martínez2, and Isabel Vargas-Fernández2 Abstract. The Mexican state of Guerrero is fourth in butterfly diversity in Mexico. However, little is known about the superfamily Hesperioidea and communities of butterflies that live in coastal ecosystems. Hesperioidea and Papilionoidea of Laguna Potosí and surrounding area were surveyed monthly for 1 year (December 2009-November 2010) in pre-established transects in tropical dry forest; xerophytic shrubland; mangrove; coconut palm crop; secondary vegetation of tropical dry forest; and mixed environment of acacia forest, coconut palm, and mango crops. In total, 188 species in two superfamilies, six families, 18 subfamilies, and 127 genera were identified; seven species were endemic to Mexico, three to the tropical dry forest, and 32 were new records for Guerrero. Most species of butterflies were found in the family Hesperiidae (73), followed by Nymphalidae (52), Pieridae (20), Lycaenidae (19), Riodinidae (15), and Papilionidae (nine species). Most species were found in xerophytic shrubland (114) and tropical dry forest (103) that also had the greatest number of species exclusive to one habitat. Environmental heterogeneity increased the butterfly diversity of the area, including human-altered environments. Tropical dry forest and xerophytic shrubland seemed the vegetation types where butterfly diversity was greatest in the region. Preserving biological diversity, which is affected by both urbanization and the possibility of developing megaprojects for tourism, is necessary.

Introduction

Approximately 20,000 species of diurnal butterflies (Rhopalocera: Hesperioidea and Papilionoidea) have been described, which represent 12% off the total species of Lepidoptera worldwide (Kristensen et al. 2007). In Mexico, 1,929 species and subspecies have been identified (Llorente-Bousquets et al. 2013), 10% of the world total. Study of Lepidoptera has focused on the superfamily Papilionoidea, with little information known about Hesperioidea and communities that live at altitudes less than 200 m above sea level. According to Luis et al. (2003), the Mexican states with the greatest diversity of diurnal butterflies are Chiapas (1,286 species), Oaxaca (1,197), Veracruz (1,111), Guerrero (777), and Michoacán (673). Different authors (New 1992, Raguso and Llorente 1997, Griffis et al. 2001, Sawchik et al. 2005, Ríos-Málaver 2007, Van Swaay and Warren 2012) 1Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana Unidad Xochimilco, Calz. del Hueso No. 1100, Col. Villa Quietud, Delegación Coyoacán C.P. 04960, México D.F. [email protected]. 2Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México D.F.

58

consider the group a good indicator of the conservation status of communities and habitats, because its species are conspicuous, diurnal, widely distributed, short-lived, dependent on plants, and respond quickly to habitat disturbance and fragmentation.

Godman and Salvin (1878-1901), Seitz (1924), and Hoffman (1940, 1941) were first to record butterflies of Guerrero. Although information on generic revisions, descriptions of new species, and faunistic studies was available, until the 1980s, the systematic study of diurnal butterflies focused on inventories of Papilionoidea on an altitudinal-vegetation gradient 300-2,700 m above sea level began with the studies of Vargas-Fernández et al. (1992) and Luis and Llorente (1993). The coast of Guerrero is characterized by lagoons with mangroves, (Miranda and Hernández 1963, Rzedowsky 1978), tropical dry forest (Rzedowsky 1978), and commercial production of mainly coconut palm Cocos nucifera (Linnaeus 1753) and mango Magnifera indica (Linnaeus 1753). The tropical dry forest is one of the most endangered ecosystems with accelerated deforestation, fragmentation, and degradation (Ceballos and Valenzuela 2010, Trejo 2010) and has great species diversity of flora and fauna and degree of endemism (Hernández-Mejía 2009, Lott and Atkinson 2010, Sousa 2010, Trejo 2010). The tropical dry forest is important for butterfly diversity, because 50% of the butterfly species endemic to Mexico are found there (De la Maza 2010). Llorente-Bousquets et al. (2013) recorded 40 species endemic to the Pacific Coast biogeographic province where the dominant vegetation type is tropical dry forest.

The butterfly fauna of Laguna Potosí and surrounding area was surveyed through records, distribution, and abundance of species in different habitats, as well as analysis of alpha and beta diversity. Recognition of the importance of the butterfly species and other taxonomic groups have demonstrated the biological importance of the region (Arizmendi and Márquez 2000, Meléndez-Herrada and García-Vega 2008, CONABIO 2009) that is confronted with accelerated urbanization and the possibility of developing megaprojects for tourism (DOF 2011).

Materials and Methods

Laguna Potosí (Fig. 1), 10 km from the Ixtapa-Zihuatanejo International Airport, is in the municipalities of Petatlán and Teniente José Azueta in the Costa Grande de Guerrero region at the southern end of Bahía el Potosí. The weather is warm and semi-humid with much precipitation during the summer Awo(w)igw" from June to November and a dry winter (García 2004). The average temperature is 23-29°C (Contreras 1985). The highest geographical point is Cerro Huamilule at 180 m above sea level (Diego-Pérez 2000). Economic activities in the area are fishing, tourism, agriculture, livestock production, forestry, and small-scale salt mining (Gobierno del Estado de Guerrero 2009, Mora-Corro and Vázquez-Lule 2009). The lagoon is covered with 454 ha of mangrove; surrounding are patches of tropical dry forest, xerophytic shrubland, and crop areas, mostly coconut palm and mango.

Sampling was done each month from December 2009 to November 2010. Six fixed transects 500 m long and 10 m wide were delimited on different vegetation types: tropical dry forest; xerophytic shrubland; coconut palm crop; secondary vegetation of tropical dry forest; and mixed environment of acacia forest, coconut palm, and mango crop (Fig. 1). Transects were surveyed by walking for 4 hours starting at 0900 and recording date, transect, and data on each individual butterfly observed, released, or collected.

59

Fig. 1. Geographical location of the study area and sampling sites (represented by black dots).

Specimens were collected by two sampling techniques: a) entomological net and b) three Van Someren-Rydon traps (Rydon 1964) hung 1.5-3.0 m above the ground at intervals of 50-150 m. The bait for the traps was banana, raw sugar, and beer (Hernández-Mejía et al. 2008). The sampling effort was 114 days per person (19 days per person per environment) and 180 days per trap (30 days per trap per environment). Nine butterfly specimens were collected in addition to the transect survey because they represented new species for this study. Taxonomic identification followed nomenclature proposed by Warren (2000) for Hesperioidea and Llorente-Bousquets et al. (2006) for Papilionoidea.

Alpha diversity was evaluated based on the number of species observed, released, and collected per sampling unit. The nine species collected in addition to the transect survey were used to determine total species richness. The richness was the number of species including individuals identified only to genera through

60

observation during the fieldwork (12 species total). The richness evaluated was estimated through Chao2 (Moreno 2001) for the area and per habitat: Chao2 = S + (L2/2M), where S = richness, L = number of species in one sample, and M = number of species in two samples.

Seasonal and per habitat abundances were calculated for each species as the sum of all individuals observed, released, and collected in each transect. Species were grouped into six categories depending on the number accumulated during the year, according to Luna-Reyes et al. (2008) who applied the categorization criteria in studies in similar vegetation types: VR (very rare: species with one individual found), R (rare: two to five individuals), S (scarce: six to 21), F (frequent: 22 to 85), C (common: 86 to 331), and VC (very common: 332 or more individuals). For species´ evenness, estimated per month for the area, Pielou´s evenness index (Moreno 2001) was calculated by: J´ = H´ / H´max, where H´= value for Shannon-Wiener diversity index and H´max= Ln S.

Beta diversity was evaluated through similarity between communities, with the Jaccard similarity coefficient (Moreno 2001), which considers qualitative data (presence/absence): IJ = c / (a + b - c), where a = number of species in place A, b = number of species in place B, and c = number of species in both places; and Morisita-Horn´s overlap index (Moreno 2001) that uses quantitative data (abundance): I M-H = 2∑ (ani * bnj ) / ((da+db) aN*bN), where ani = number of individuals from the i-ieth species in place A, bnj = number of individuals from the j-ieth species in place B, and da = ∑ani

2/aN2; db = ∑bnj2/bN2. SYSTAT 12 was used

for hierarchical clustering analysis of values obtained after calculation of both indices.

Species´ spatial distribution was determined from the presence/absence of each species in different habitats, and temporal distribution was determined per month. The frequency of occurrence of each species was determined according to Brower and Zar (1977).

Results and Discussion

Alpha Diversity. A taxonomic list was compiled with two superfamilies, six families, 18 subfamilies, 127 genera, and 188 species (Table 1). The species recorded in the study were 24% of the total species identified in the state; the number is just less than the number of species based on historical records and non-systematic collection of specimens from 1932-1996 at Acahuizotla (471) in an heterogeneous altitudinal-vegetation gradient reported by this name, according to the MARIPOSA database; Río Santiago (260); Las Parotas (222); Puente de los Lugardo (207); and El Faisanal (201), these last four at the Sierra de Atoyac de Álvarez (Vargas-Fernández et al. 1992). All localities were in mountainous areas, while this research was the only study in coastal areas of the state. According to the MARIPOSA database, butterflies have been found at 37 localities near the coast, mostly in the municipalities of Acapulco de Juárez and Teniente José Azueta, but more than 10 species were found at only eight localities.

According to data published by Luis et al. (2000), seven species were endemic to Mexico: Archaeoprepona demophon occidentalis, Bolboneura sylphis beatrix, Chlosyne janais gloriosa, Myscelia cyaniris alvaradia, Taygetis mermeria griseomarginata, Taygetis uncinata, and Temenis laothoe quilapayunia. Three species were endemic to the tropical dry forests of the Mexican Pacific: Hypostrymon critola, Ministrymon leda, and Bolboneura sylhpis beatrix (De la Maza

61

Table 1. Butterfly Species Registered at Laguna Potosí and Surrounding Area TDF XS M CPC ME SV AR MF C

Superfamily Hesperioidea Family Hesperiidae Subfamily Pyrrhopyginae 1. Mysoria affinis (Herrich-Schäfer 1869)* 1 1 1 0 1 0 4 3 R Subfamily Pyrginae 2. Phocides belus (Godman and Salvin 1893)* 2 4 3 0 1 0 10 5 S 3. Epargyreus spp.* 0 0 0 2 0 1 3 2 R 4. Epargyreus exadeus cruza (Evans 1952)* 1 0 0 0 0 0 1 1 VR 5. Polygonus spp. 1 0 0 0 0 0 1 1 VR 6. Chioides catillus albofasciatus (Hewitson 1867) 1 0 0 10 0 43 54 10 F 7. Chioides zilpa (Butler 1872)* 0 0 0 0 0 1 1 1 VR 8. Aguna asander asander (Hewitson 1867) 0 1 0 0 0 0 1 1 VR 9. Aguna metophis (Latreille [1824])* 0 0 0 1 0 1 2 2 R 10. Typhedanus undulatus (Hewitson 1867) 0 0 0 16 1 5 22 7 F 11. Polythrix asine (Hewitson 1867)* 0 1 0 0 1 0 2 1 R 12. Polythrix mexicanus (H.A. Freeman 1969)* 0 1 0 0 0 1 2 2 R 13. Codatractus melon (Godman and Salvin 1893)*, CATS - - - - - - - - 14. Urbanus proteus proteus (Linnaeus 1758) 4 0 0 1 0 5 2 R 15. Urbanus dorantes dorantes (Stoll [1790]) 8 3 0 43 20 58 132 10 C 16. Urbanus teleus (Hübner 1821) 0 0 0 0 1 0 1 1 VR 17. Urbanus simplicius (Stoll [1790]) 8 0 1 20 7 11 48 12 F 18. Urbanus procne (Plötz 1881) 0 0 0 4 5 3 12 3 S 19. Urbanus doryssus chales (Godman and Salvin 1893)* 0 0 0 4 0 0 4 1 R 20. Urbanus albimargo albimargo (Mabille 1875)* 0 0 0 5 1 2 8 3 S 21. Astraptes anaphus annetta (Evans 1952) 1 0 0 0 0 0 1 1 VR 22. Autochton neis (Geyer [1832]) 2 0 0 0 0 0 2 1 R 23. Achalarus spp.* 6 19 0 5 2 6 38 10 F 24. Achalarus albociliatus albociliatus (Mabille 1877)* 0 1 0 1 1 3 6 3 S 25. Cabares potrillo potrillo (Lucas 1857) 0 0 0 0 1 0 1 1 VR 26. Ocyba calathana calanus (Godman and Salvin 1894)* 1 0 0 0 0 0 1 1 VR 27. Celaenorrhinus fritzgaertneri (Bailey 1880)CATS - - - - - - - - - 28. Spathilepia clonius (Cramer [1775]) 1 2 0 4 1 0 8 4 S 29. Cogia hippalus hippalus (W.H. Edwards 1882)* 0 1 0 0 0 0 4 4 R 30. Cogia calchas (Herrich-Schäffer 1869) 0 0 0 16 1 10 27 8 F 31. Pellicia spp. 1 0 0 0 0 0 1 1 VR 32. Staphylus spp. 2 0 0 0 0 0 2 2 R 33. Gorgythion begga pyralina (Möschler 1877) 0 0 0 1 0 0 1 1 VR 34. Paches polla (Mabille 1888)* 11 1 0 0 0 0 12 3 S 35. Mylon pelopidas (Fabricius 1793) 2 0 0 1 0 0 3 3 R 36. Carrhenes fuscescens (Mabille 1891) 1 0 0 0 0 0 1 1 VR 37. Antigonus nearchus (Latreille [1817]) 0 0 0 1 0 0 1 1 VR 38. Antigonus erosus (Hübner [1812]) 1 0 0 4 3 0 8 2 S 39. Antigonus emorsa (R. Felder 1869) 1 0 0 2 0 0 3 3 R 40. Zopyrion sandace (Godman and Salvin 1896) 0 0 0 0 10 0 10 6 S 41. Timochares trifasciata trifasciata (Hewitson [1868])* 2 2 0 2 1 1 8 5 S 42. Anastrus sempiternus sempiternus (Butler and Druce 1872)* 0 0 0 4 0 1 5 4 R 43. Chiomara georgina georgina (Reakirt 1868) 1 0 0 0 0 0 2 1 R 44. Gesta invisus (Butler and Druce 1872) 0 1 0 7 0 0 8 5 S 45. Erynnis spp. 1 1 0 0 0 0 2 2 R 46. Erynnis funeralis (Scudder and Burges 1870) 1 0 0 0 0 0 1 1 VR 47. Pyrgus albescens (Plötz 1884)* 0 0 0 4 0 8 12 7 S 48. Pyrgus oileus (Linnaeus 1767) 4 2 0 10 15 6 37 11 F 49. Heliopetes domicella domicella (Erichson 1848)* 1 0 0 5 1 1 8 6 S 50. Heliopetes macaira (Reakirt [1867]) 2 8 7 50 9 275 351 12 VC 51. Heliopetes laviana laviana (Hewitson 1868) 1 1 0 0 0 0 2 1 R 52. Heliopetes arsalte (Linnaeus 1758) 0 0 0 4 0 1 5 2 R Subfamily Hesperiinae

62

53. Synapte spp.* 0 0 0 1 0 1 2 2 R 54. Synapte pecta (Evans 1955)* 0 0 0 0 2 0 2 2 R 55. Corticea corticea (Plötz 1883) 5 0 0 0 0 2 7 4 S 56. Callimormus saturnus (Herrich-Schäffer 1869) 4 0 1 5 3 2 15 6 S 57. Monca tyrtaeus (Plötz 1883)* 1 2 0 0 5 0 9 3 S 58. Nastra julia (H.A. Freeman 1945)* 1 0 3 0 0 0 4 1 R 59. Cymaenes spp. 1 0 0 0 0 0 1 1 VR 60. Cymaenes trebius (Mabille 1891) 0 0 1 0 0 0 1 1 VR 61. Vehilius illudens (Mabille 1891)* 0 0 19 0 0 0 19 5 S 62. Remella remus (Fabricius 1798) 3 3 0 0 1 0 7 3 S 63. Lerema accius (J.E. Smith 1797) 1 0 0 0 0 0 1 1 VR 64. Lerema liris (Evans 1955)* 17 4 2 3 6 1 33 10 F 65. Vettius fantasos (Stoll [1780]) 3 3 0 0 2 0 8 3 S 66. Hylephila phyleus phyleus (Drury [1773]) 0 0 4 1 0 1 6 2 S 67. Polites vibex praeceps (Scudder 1872) 0 1 1 2 0 0 4 4 R 68. Pompeius pomepius (Latreille [1824]) 0 0 0 0 1 0 1 1 VR 69. Amblyscrites celia (Skinner 1895)* 9 1 0 0 6 0 16 4 S 70. Calpodes ethlius (Stoll [1782])*, CATS - - - - - - - - - 71. Panoquina errans (Skinner 1892)* 0 0 0 0 0 1 1 1 VR 72. Panoquina lucas (Fabricius 1793) 0 0 0 0 1 1 2 2 R 73. Panoquina evansi (H.A Freeman 1946)* 0 1 0 0 1 1 3 3 R Superfamily Papilionoidea Family Papilionidae Subfamily Papilioninae 74. Protographium philolaus philolaus (Boisduval 1836) 0 1 0 0 0 1 2 1 R 75. Battus philenor philenor (Linnaeus 1771) 2 2 2 4 3 8 21 5 S 76. Battus polydamas polydamas (Linnaeus 1758) 1 5 0 6 7 10 29 11 F 77. Parides monetzuma (Westwood 1842) 3 4 0 1 1 0 9 4 S 78. Parides photinus (Doubleday 1844) CATS - - - - - - - - - 79. Heraclides anchisiades idaeus (Fabricius 1793) 0 1 0 0 0 0 1 1 VR 80. Heraclides cresphontes (Cramer 1777) 0 1 0 0 0 0 1 1 VR 81. Heraclides rogeri pharnaces (Doubleday 1846) 0 1 0 0 0 0 1 1 VR 82. Heraclides thoas autocles (Rothschild and Jordan 1906)CATS - - - - - - - - - Family Pieridae Subfamily Coliadinae 83. Zerene cesonia cesonia (Stoll 1790) 0 6 0 3 2 1 12 4 S 84. Anteos clorinde (Godart [1824]) 1 5 0 2 3 5 16 4 S 85. Phoebis agarithe agarithe (Boisduval 1833) 1 1 1 1 0 3 7 5 S 86. Phoebis philea philea (Linnaeus 1763) 1 0 0 0 0 5 6 3 S 87. Phoebis sennae marcellina (Cramer 1777) 4 7 0 19 15 30 75 11 F 88. Abaeis nicippe (Cramer 1779) 1 4 0 9 2 36 52 10 F 89. Pyrisitia lisa centralis (Herrich-Schäfer 1865) 0 2 0 0 0 0 2 1 R 90. Pyrisitia nise nelphe (R. Felder 1869) 15 24 1 81 25 35 181 12 C 91. Pyrisitia proterpia (Fabricius 1775) 2 6 3 32 21 65 129 9 C 92. Eurema arbela boisduvaliana (Felder and Felder 1865) 3 1 0 3 4 5 16 5 S 93. Eurema daira sidonia (R. Felder 1869) 59 18 3 127 89 64 360 12 VC 94. Eurema mexicana mexicana (Boisduval 1836) 0 1 0 0 1 1 3 3 R 95. Nathalis iole (Boisduval 1836) 0 5 0 0 0 0 5 3 R 96. Kricogonia lyside (Godart 1819) 0 10 0 3 2 4 19 7 S Subfamily Pierinae 97. Melete lycimnia isandra (Boisduval 1836) 0 1 0 0 0 1 2 2 R 98. Glutophrissa drusilla tenuis (Lamas 1981) 1 5 0 0 0 1 7 4 S 99. Pontia protodice (Boisduval and Leconte [1830]) 12 0 2 0 0 0 14 2 S 100. Pieriballia viardi (Boisduval 1836) 14 48 1 0 1 2 66 7 F 101. Ascia monuste monuste (Linnaeus 1764) 60 237 301 436 149 215 1398 12 VC 102. Ganyra josephina josepha (Godman and Salvin 1868) 26 73 1 10 16 15 141 11 C Family Lycaenidae Subfamily Theclinae 103. Pseudolycaena damo (H. Druce 1875)CATS - - - - - - - - -

63

104. Rekoa palegon (Cramer 1780) 0 0 0 0 0 1 1 1 VR 105. Arawacus sito (Boisduval 1836) 0 0 0 0 1 0 1 1 VR 106. Electrostrymon sangala (Hewitson 1868) 0 1 0 0 0 0 1 1 VR 107. Strymon rufofusca (Hewitson 1877) 0 0 0 4 0 0 4 3 R 108. Strymon yojoa (Reakirt [1867]) 0 0 0 0 1 0 1 1 VR 109. Strymon bazochii (Godart [1824]) 0 1 0 0 0 0 1 1 VR 110. Strymon istapa (Reakirt [1867]) 1 0 0 3 0 4 8 4 S 111. Strymon serapio (Godman and Salvin 1887) 0 1 0 0 0 0 1 1 VR 112. Strymon ziba (Hewitson 1868) 0 1 0 0 0 0 5 2 R 113. Ministrymon leda (W.H. Edwards 1882)*, ETDF 0 0 0 3 0 0 3 3 R 114. Ministrymon azia (Hewitson 1873)CATS - - - - - - - - - 115. Panthiades bitias (Cramer 1777) 0 0 0 0 0 1 1 1 VR 116. Panthiades bathildis (Felder and Felder 1865) 2 0 0 1 1 1 5 3 R 117. Hypostrymon critola (Hewitson, 1864)ETDF 0 2 0 0 0 0 2 2 R Subfamily Polyommatinae 118. Leptotes cassius cassidula (Boisduval 1870) 4 1 0 12 1 9 27 8 F 119. Brephidium exilis exilis (Boisduval 1852) 0 0 14 0 0 0 14 4 S 120. Cupido amyntula (Boisduval 1852) 1 0 0 31 1 13 46 6 F 121. Hemiargus hanno antibubastus (Hübner [1818]) 14 41 1 208 3 362 631 11 VC Family Riodinidae Subfamily Riodininae 122. Calephelis spp. 1 8 2 0 0 1 12 6 S 123. Calephelis perditalis perditalis (McDunnough 1918)* 0 1 0 0 1 0 2 2 R 124. Calephelis acapulcoensis (McAlpine 1971) 1 3 0 0 0 0 4 2 R 125. Baeotis zonata zonata (R. Felder 1869) 0 5 1 0 0 0 6 5 S 126. Melanis pixe pixe (Boisduval 1836) 0 1 0 0 0 0 1 1 VR 127. Melanis cephise cephise (Ménétriés 1855) 0 0 0 0 0 4 4 3 R 128. Anteros carausius carausius (Westwood 1851) 1 1 0 0 1 0 3 2 R 129. Calydna sturnula (Geyer 1837) 0 10 0 0 0 0 10 5 S 130. Emesis tenedia (C.Felder and R.Felder 1861) 0 0 0 0 1 0 1 1 VR 131. Emesis emesia (Hewitson 1867) 1 26 0 0 0 0 27 8 F 132. Thisbe lycorias (Hewitson [1853]) 0 47 0 0 0 0 47 12 F 133. Synargis mycone (Hewitson 1865) 0 1 0 0 0 0 1 1 VR 134. Hypophylla zeurippa (Boisduval 1836) 0 1 0 0 0 0 1 1 VR 135. Theope eupolis (Schaus 1890) 0 21 1 0 0 2 24 10 F 136. Theope publius incompositus (J. Hall 1999) 0 2 0 0 0 0 2 2 R Family Nymphalidae Subfamily Libytheinae 137. Libytheana carinenta mexicana (Michener 1943) 0 1 0 0 0 0 1 1 VR Subfamily Danainae 138. Danaus eresimus montezuma (Talbot 1943) 0 7 0 27 0 1 35 9 F 139. Danaus gilippus thersippus (H.W. Bates 1863) 0 14 1 24 1 5 45 11 F 140. Danaus plexippus plexippus (Linnaeus 1758) 2 0 2 6 1 4 15 3 S Subfamily Morphinae 141. Morpho polyphemus polyphemus (Westwood [1850]) 2 3 1 1 3 0 10 5 S 142. Opsihpanes boisduvalii (Doubleday [1849]) 0 0 0 0 1 0 1 1 VR 143. Opsiphanes cassina fabricii (Boisduval 1870) 0 0 0 0 2 4 6 4 S Subfamily Satyrinae 144. Cissia similis (Butler 1867) 0 1 0 1 25 0 27 7 F 145. Hermeuptychia hermes (Fabricius 1775) 0 0 0 1 6 9 17 7 S 146. Taygetis mermeria griseomarginata (L.D. Miller 1978)CATS, EM - - - - - - - - - 147. Taygetis uncinata (Weymer 1907)EM 0 0 0 0 5 1 6 4 S Subfamily Charaxinae 148. Siderone galanthis ssp. n. 1 2 0 0 0 1 4 3 R 149. Zaretis ellops (Ménétriés 1855) 4 5 1 1 1 2 14 6 S 150. Anaea troglodyta aidea (Guérin-Méneville [1844]) 0 0 1 0 0 0 1 1 VR 151. Memphis forreri (Godman and Salvin 1884) 22 11 2 0 0 0 35 5 F 152. Memphis pithyusa pithyusa (R. Felder 1869) 8 2 0 0 0 1 11 4 S 153. Archaeoprepona demophon occidentalis (Stoffel and 4 1 0 0 0 0 5 4 R

64

Descimon 1974)EM 154. Prepona laertes octavia (Fruhstrofer 1905) 2 0 0 1 1 0 6 3 S Subfamilia Biblidinae 155. Marpesia petreus ssp. n. 2 7 4 1 3 2 19 7 S 156. Eunica monima (Stoll 1782) 0 0 0 0 0 3 3 1 R 157. Myscelia cyananthe cyananthe (Felder and Felder 1867) 6 0 0 0 0 0 6 6 S 158. Myscelia cyaniris alvaradia (R.G. Maza and Díaz 1982)EM 0 3 0 0 0 0 3 1 R 159. Hamadryas amphinome mazai (Jenkins 1983) 1 1 0 3 11 0 16 3 S 160. Hamadryas februa ferentina (Godart [1824]) 4 8 5 1 28 6 52 12 F 161. Hamadryas glauconome glauconome (H. Bates 1864) 3 2 1 0 0 0 6 4 S 162. Hamadryas guatemalena marmarice (Fruhstrofer 1916) 6 1 0 3 7 8 25 8 F 163. Bolboneura sylphis Beatrix (R.G. Maza 1985)EM, ETDF 1 1 0 0 0 0 2 1 R 164. Pyrrhogyra spp. 0 1 0 0 0 1 2 2 R 165. Pyrrhogyra neaerea hypsenor (Godman and Salvin 1884)CATS - - - - - - - - - 166. Temenis laothoe quilapayunia (R.G. Maza and Turrent 1985)EM 0 0 0 1 0 0 1 1 VR 167. Dynamine postverta mexicana (D´Almeida 1952) 0 3 0 1 7 0 11 6 S 168. Adelpha barnesia leucas (Fruhstrofer 1915) 1 0 0 0 0 0 1 1 VR 169. Adelpha fessonia fessonia (Hewitson 1847) 0 1 1 0 0 0 2 2 R 170. Adelpha iphicleola iphicleola (H.W. Bates 1864) 0 9 0 0 0 0 9 4 S Subfamily Apaturinae 171. Doxocopa laure laure (Drury 1773) 0 0 0 0 1 0 1 1 VR Subfamily Nymphalinae 172. Colobura dirce dirce (Linnaeus 1758) 0 0 3 0 0 0 3 2 R 173. Smyrna blomfildia datis (Fruhstorfer 1908) 0 0 0 1 0 0 1 1 VR 174. Anartia fatima colima (Lamas 1995) 0 9 4 61 13 79 166 9 C 175. Anartia jatrophae luteipicta (Fruhstorfer 1907) 0 11 2 191 41 214 459 11 VC 176. Junonia coenia (Hübner 1822) 6 8 175 16 10 7 222 12 C 177. Siproeta stelenes biplagiata (Fruhstorfer 1907) 4 6 2 2 24 7 45 5 F 178. Chlosyne janais gloriosa (Bauer 1960)EM 0 0 0 0 1 0 1 1 VR 179. Microtia elva elva (H. Bates 1864) 2 132 0 4 31 2 171 9 C 180. Anthanassa frisia tulcis (H. Bates 1864) 1 9 0 21 7 7 45 11 F 181. Phyocides graphica graphica (R. Felder 1869) 0 0 0 0 0 1 1 1 VR Subfamily Heliconinae 182. Euptoieta hegesia meridiana (Stichel 1938) 4 14 0 220 11 197 446 12 VC 183. Agraulis vanillae incarnata (Riley 1926) 6 35 3 45 42 81 212 12 C 184. Dione juno huascuma (Reakirt 1866) 1 8 0 0 0 0 9 3 S 185. Dryadula phaetusa (Linnaeus 1758) 1 0 0 25 1 15 42 7 F 186. Dryas iulia moderata (Riley 1926) 16 60 4 45 45 51 221 12 C 187. Heliconius charithonia vazquezae (W. Comstock and Brown 1950) 19 102 8 75 104 69 377 12 VC 188. Heliconius erato cruentus (Lamas 1998) 6 16 0 16 13 26 77 12 F * = new record for Guerrero State; CATS = species collected in addition to the transect survey; EM = species endemic to Mexico; ETDF = species endemic to tropical dry forest; TDF = tropical dry forest; XS = xerophytic shrubland; M = mangrove, ME = mixed environment; SV = secondary vegetation; AR = accumulated records for the year, MF = months in flight, C = species category according to abundance (VR = very rare, R = rare, S = scarce, F = frequent, C = common, VC = very common). 2010, MARIPOSA database). The presence of Ministrymon leda in the area is important, because the three specimens found during this study are the first in the state of Guerrero; Bolboneura sylphis beatrix, also with three specimens, had already been registered in the state, but not in coastal areas. In total, 32 species--

65

30 Hesperiidae, one Lycaenidae, and one Riodinidae were new records for the state (Table 1) according to the MARIPOSA database. The results were consistent with those of Luis et al. (2004) and Warren et al. (2008) who mentioned the overall lack of information known about Hesperiidae in Mexico.

The families with greatest species richness were Hesperiidae with 73 species (39%), followed by Nymphalidae with 52 (27%), Pieridae with 20 (11%), Lycaenidae with 19 (10%), Riodinidae with 15 (8%), and Papilionidae with nine (5%). The results agreed with those of Llorente et al. (1990), De la Maza and De la Maza (1993), and Warren (2000), who affirmed that Hesperiidae contributed 40% of the total butterfly fauna of Mexico. The most diverse genera were Urbanus with seven species, Strymon with six, and Heraclides, Hamadryas, and Heliopetes with four each. Calculation of the Chao2 index estimated 240 species for the area, 75% of the total found.

The greatest species richness was in xerophytic shrubland with 114 species (59% of the total), followed by tropical dry forest with 103 (54%), secondary vegetation with 96 (50%), mixed environment with 95 (49%), coconut palm crop with 91 (47%), and mangrove with 51 (27%). The potential species richness per habitat, estimated through Chao2, indicated greatest species richness for xerophytic shrubland (202) and tropical dry forest (166), followed by mixed environment (144), secondary vegetation (132), coconut palm crop (107), and mangrove (62). These data suggested the importance of xerophytic shrubland and tropical dry forest for diversity of the area and were consistent with those of Flores and Gerez (1994) who mentioned that xerophytic shrubland is a vegetation type with much diversity of different taxonomic groups, and with Ceballos and Martínez (2010), Ceballos and Valenzuela (2010), De la Maza (2010), and Lott and Atkinson (2010) who affirmed that in tropical dry forests is much diversity of taxonomic groups (butterflies, birds, mammals, reptiles, and plants), many of them endemic to habitats with that vegetation.

The six families were found in all habitats except coconut palm crop, but Riodinidae was not found. Hesperiidae and Nymphalidae were first and second in species richness in all habitats. All families except Hesperiidae had greatest richness in xerophytic shrubland (Fig. 2a).

Greatest species richness in the area was found in October, with 104 species, and the least in June with 50. In general for the area and per habitat, greatest richness occurred during the rainy season (Figs. 2b,c); these results were similar to those obtained from other studies in Guerrero and other parts of Mexico (Vargas-Fernández et al. 1992, Luis and Llorente 1993, Vargas-Fernández et al. 1999, Pozo et al. 2008, Luna-Reyes et al. 2010) where greatest species richness was found during the rainy season, especially during the second part of it. According to Vargas-Fernández et al. (1999), this is attributed to richness and availability of plants as a food source, as well as more favorable daily weather conditions. Least species richness, attributed to low diversity of plants (Rzedowsky 1978), during the year was found in mangrove.

Most individuals per month were found during September (1,277) and the fewest in June (227). Months during which butterflies were most abundant, in general for the area and per habitat, were those at the end of the rainy season (September, October, and November), with decreasing abundance observed as the dry season passed (Figs. 3a,b). The results were similar to those obtained by Luna-Reyes et al. (2010) who attributed it to the fact that, during the first half of the year, much of the vegetation of a tropical dry forest is dry, especially herbs and trees

66

used as food by butterfly larvae and adults, which influence the composition and abundance of a butterfly community.

Fig. 2. a) Species richness per family and habitat; b) temporal variation of species richness in the area; c) temporal variation of species richness per habitat.

67

Fig. 3. a) Temporal variation of abundance and evenness for the area; b) temporal variation of abundance per habitat.

Tropical dry forest and mangrove were habitats with the fewest individuals during the year (Fig. 3b); this emphasized the great but delicate diversity of the tropical dry forest where species richness is represented by few individuals. Coconut palm and secondary vegetation were the habitats with most individuals; the presence and distribution of coconut palm crops generally substituted for tropical forests, in this case tropical dry forest; secondary vegetation became established after total or partial destruction of primary vegetation (Rzedowsky 1978).

Pielou´s evenness index, estimated per month for the area, had values that ranged from 0.72 in December to 0.88 in June (Fig. 3a), which suggested the existence of much butterfly diversity at Laguna Potosí and surrounding area. According to Moreno (2001), an increase in the value of this index indicates more diversity. Although abundance and species richness were least in June, evenness´ values were greatest.

68

Of the species recorded, 41 were very rare, 46 rare, 52 scarce, 30 frequent, 15 common, and seven very common (Table 1). The seven very common species were: Ascia monuste monuste with 1,398 individuals, Hemiargus hanno antibubastus with 631, Anartia jatrophae luteipicta with 459, Euptoieta hegesia meridiana with 446, Heliconius charithonia vazquezae with 377, Eurema daira sidonia with 360, and Heliopetes macaira with 351. E. daira sidonia, H. hanno antibubastus, and H. charithonia vazquezae already had been identified as very abundant (Luna-Reyes et al. 2008, 2010). Of the 41 very rare species, 18 were Hesperiidae, nine Nymphalidae, seven Lycaenidae, four Riodinidae, and three Papilionidae.

Beta Diversity. The data matrix obtained from calculation of Jaccard´s similarity coefficient (Table 2) had low values; only three were greater than 0.5, while the greatest was between coconut palm crop and secondary vegetation (0.61), 71 shared species and 45 non-shared species. The lowest values were between mangrove and mixed environment/secondary vegetation/xerophytic shrubland, with 0.32 similarity of the three.

These results complemented the hierarchical clustering analysis; at the association of coconut palm crop and secondary vegetation (0.39) adhered the mixed environment (0.42), creating a group of human-altered environments. Another group of tropical dry forest and xerophytic shrubland was at 0.50; the mangrove separated since the beginning, which demonstrated least similarity in species composition with other habitats (Fig. 4a). According to Magurran (2004), low similarity values between habitats indicate much diversity, so the area surrounding Laguna Potosí, including the most modified environments, is very diverse based on species richness.

The data matrix obtained from calculation of Morisita-Horn´s overlap index (Table 2) had values greater than did Jaccard´s index; all but five values were greater than 0.5. The greatest values again were between coconut palm crop and secondary vegetation (0.82), and subsequently, between mixed environment and tropical dry forest/xerophytic shrubland (0.78). The mangrove again was least similar to other habitats; in general, the values were small. These data complemented the hierarchical clustering analysis (Fig. 4b), where a group was established between coconut palm crop and secondary vegetation (0.2), followed by a group of tropical dry forest, mixed environment, and xerophytic shrubland (0.25). The mangrove was not part of any group until a distance of almost 0.4, adding to the group composed of all habitats.

Table 2. Data Matrix Obtained from Calculation of Jaccard´s Similarity Coefficient (lower left) and Morisita-Horn´s Overlap Index (upper right)

TDF XS M CPC ME SV TDS 1 0.65 0.36 0.62 0.78 0.42 XS 0.49 1 0.50 0.68 0.78 0.46 M 0.33 0.32 1 0.52 0.43 0.26 CPC 0.46 0.39 0.33 1 0.74 0.82 ME 0.48 0.47 0.32 0.58 1 0.52 SV 0.43 0.43 0.32 0.61 0.53 1

TDF = tropical dry forest, XS = xerophytic shrubland, M = mangrove, CPC = coconut palm crop, ME = mixed environment, SV = secondary vegetation.

69

I Fig. 4. Hierarchical clustering analysis between different habitats. a) Jaccard´s similarity coefficient; b) Morisita-Horn´s overlap index. TDF = tropical dry forest, Xer. Shrub. = xerophytic shrubland, Palm crop = coconut palm crop, Mix. Env. = mixed environment, Sec. Veg. = secondary vegetation.

70

These results, together with those obtained from Jaccard´s similarity coefficient, indicated most similarity, either in species composition or abundance, between coconut palm crop and secondary vegetation. Mangrove seemed different than the other habitats.

Spatial and Temporal Distribution. Twenty-five species of butterflies were found in the six habitats (Tables 1 and 3), where A. m. monuste, E. daira sidonia, H. hanno antibubastus, H. charithonia vazquezae, and H. macaira were identified as very common species. According to Luna-Reyes et al. (2010), such species are capable of using different food sources, besides considering their great vagility that lets them survive in different types of vegetation. From the Pieridae family, 12 of 20 species were found in five or six habitats, which indicated the family can tolerate different environmental conditions, consistent with the findings of De la Maza and De la Maza (1993) who catalogued Pieridae as a family of resistant and invasive species.

Sixty-five species (34%) were present in only one habitat (Table 3). According to Montero et al. (2009), this suggested the life cycle could be completed only on one vegetation type; 41 of the species had only one individual recorded so according to Méndez (1998), Magurran (2004), and Luna-Reyes et al. (2010), were very rare species about which little is known.

The greatest numbers of species unique to a habitat were in the xerophytic shrubland (21), followed by tropical dry forest (14), mixed environment (11), coconut palm crop and secondary vegetation (seven each), and mangrove (five). This demonstrated that each habitat contributed specifically to the butterfly diversity of the area and made explicit the importance of environmental heterogeneity in biological diversity as suggested by Willis and Whittaker (2002) who believed the spatial structure of a landscape affected species diversity and that its different components varied in contribution to conformation of the community.

The temporal distribution of species indicated 33 species (17.3%) were in flight from 10 to 12 months of the year (Table 1), with seven species catalogued as very common. Meanwhile, 99 species (51.8%) were found in flight during 1 to 3 months of the year, in most cases, during the rainy season.

The species in flight during 7 months or more (51 = 26.7%) were believed to have more than one generation per year and, according to Scott and Epstein (1987), could use a greater variety of plants for food. The species in flight during 6 or fewer months (140 = 73.3%) were considered univoltine if they were recorded in only one season (Pozo et al. 2008) or bivoltine if they were found in both seasons (dry and rainy). In general, species in flight during 6 or fewer months were not abundant during the study. Table 3. Number of Species per Family and Habitat

Family Total

species Species in number of habitats

6 5 4 3 2 1 Papilionidae 9 3 1 1 0 1 3 Pieridae 22 6 6 2 2 3 3 Lycaenidae 17 1 1 2 1 0 12 Riodinidae 16 0 0 1 2 5 8 Nymphalidae 53 11 10 2 10 7 13 Hesperiidae 74 4 8 5 14 17 26 Total 191 25 26 13 29 33 65

71

The results as a whole suggested much diversity at Laguna Potosí and

surrounding area. The region is one of the most diverse in Guerrero State, where greatest species richness and abundance happened during the rainy season. The main reason attributed to diversity of butterflies was environmental heterogeneity, including crop areas and secondary vegetation. Xerophytic shrubland and tropical dry forest were important for butterfly diversity, with species richness and large numbers of habitat-specialist and endemic species. It is necessary to preserve these vegetation types to maintain the biological diversity of the region. It also is important to emphasize the importance of preserving coastal ecosystems as habitats for butterfly diversity.

Acknowledgment

To M. en C. Blanca Claudia Hernández Mejía for her support in the

identification of Hesperioidea and to the communities of Barra de Potosí, Los Farallones, and the Eco-Park “El Refugio de Potosí” for allowing access to the area.

References Cited Arizmendi, M., and L. Márquez. 2000. Áreas de Importancia para la Conservación

de las Aves. Sociedad para el Estudio y Conservación de las Aves en México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad and Universidad Nacional Autónoma de México, México.

Brower, J., and J. Zar. 1977. Field and Laboratory Methods for General Ecology. Brown Company Publishers, Iowa, IA.

Ceballos, G., and L. Martínez. 2010. Mamíferos. pp. 119-144. In Ceballos, G., L. Martínez, A. García, E. Espinoza, J. Bezaury and R. Dirzo [ed]. Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas Secas del Pacífico Mexicano. Fondo de Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

Ceballos, G., and D. Valenzuela. 2010. Diversidad, ecología y conservación de los vertebrados de Latinoamérica. pp. 93-118. In Ceballos, G., L. Martínez, A. García, E. Espinoza, J. Bezaury and R. Dirzo [ed]. Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas Secas del Pacífico Mexicano. Fondo de Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

CONABIO. 2009. Manglares de México: Extensión y Distribución. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

Contreras, E. F. 1985. Las Lagunas Costeras Mexicanas. Centro de Ecodesarrollo, Secretaría de Pesca, México.

De la Maza, R. 2010. Lepidópteros diurnos, pp. 179-194. In G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezaury, and R. Dirzo [eds.], Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas Secas del Pacífico Mexicano. Fondo de Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

De la Maza, E., and J. E. De la Maza. 1993. Mariposas de Chiapas. Espejo de Obsidiana, México.

72

DOF [Diario Oficial de la Federación]. 2011. Título de Concesión Otorgado a Favor de la Empresa FONATUR Operadora Portuaria S.A. de C.V. para la Administración Portuaria Integral, tanto del Recinto Portuario Correspondiente al Puerto de Zihuatanejo y sus Aguas Adyacentes, que Comprenden la Zona de Fondeo de la Bahía del Mismo Nombre, Ubicado en el Municipio de Zihuatanejo de Azueta, así como de la Barra de Potosí Localizada en el Municipio de Petatlán, ambos, en el Estado de Guerrero. (20 January 2011; http://dof.gob.mx/nota_detalle.php?codigo=5174483& fecha=12/01/2011).

Diego-Pérez, N. 2000. Estudios Florísticos en Guerrero, No.10 Lagunas Playa Blanca, El Potosí, Salinas del Cuajo y Zonas Circundantes. Facultad de Ciencias, Universidad Nacional Autónoma de México, México.

Flores, O., and P. Gerez. 1994. Biodiversidad y Conservación en México: Vertebrados, Vegetación y Uso de Suelo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad and Universidad Nacional Autónoma de México, México.

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Koeppen, para Adaptarlo a las Condiciones Climáticas de la República Mexicana. Instituto de Geografía, Universidad Nacional Autónoma de México, México.

Gobierno del Estado de Guerrero. 2009. Programa de Ordenamiento Ecológico y Territorial del Municipio de Petatlán, Guerrero. Gobierno del Estado de Guerrero, México.

Godman, F. D., and O. Salvin. 1878-1901. Biologia Centrali-Americana, vol. II. Bernard Quaritch, Dulau, London.

Griffis, K., S. Mann, and M. Wagner. 2001. The suitability of butterflies as indicators of ecosystem condition: a comparison of butterfly diversity across stand treatments in northern Arizona, pp. 125-135. In C. Van Riper, K. Thomas, and M. Stuart [eds.], Proceedings of the 5th Biennial Conference of Research on the Colorado Plateau. U.S. Geological Survey, Forest and Rangeland Ecology Science Center.

Hernández-Mejía, C., J. Llorente-Bousquets, I. Vargas-Fernández, and A. Luis-Martínez. 2008. Las mariposas (Hesperioidea y Papilionoidea) de Malinalco, Estado de México. Revista Mexicana de Biodiversidad 79: 117-130.

Hernández-Mejía, C. 2009. Riqueza, distribución y gremios alimentarios de la familia Hesperiidae (Insecta:Lepidoptera), en el Sur del Estado de México. Master´s theses, Universidad Nacional Autónoma de México, México.

Hoffmann, C. C. 1940. Catálogo sistemático y zoogeográfico de los lepidópteros mexicanos. Primera parte. Papilionoidea. Anales del Instituto de Biología, Universidad Nacional Autónoma de México 11: 639-739.

Hoffmann, C. C. 1941. Catálogo sistemático y zoogeográfico de los lepidópteros mexicanos. Segunda parte. Hesperioidea. Anales del Instituto de Biología, Universidad Nacional Autónoma de México 12: 237-294.

Kristensen, N., M. Scoble, and O. Karsholt. 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668: 699-747.

Llorente-Bousquets, J., A. Luis-Martínez, and I. Vargas-Fernández. 1990. Catálogo Sistemático de los Hesperioidea de México. Facultad de Ciencias, Universidad Nacional Autónoma de México, México.

73

Llorente-Bousquets, J., A. Luis-Martínez, and I. Vargas-Fernández. 2006. Apéndice general de Papilionoidea: lista sistemática, distribución estatal y provincias biogeográficas, pp. 945-1009. In J. J. Morrone and J. Llorente-Bousquets [eds.], Componentes Bióticos Principales de la Entomofauna Mexicana. Facultad de Ciencias, Universidad Nacional Autónoma de México, México.

Llorente-Bousquets, J., I. Vargas-Fernández, A. Luis-Martínez, M. Trujano-Ortega, C. Hernández-Mejía, and A. Warren. 2013. Biodiversidad de Lepidoptera en México. Revista Mexicana de biodiversidad. DOI: 10.7550/rmb.31830.

Lott, E., and T. Atkinson. 2010. Diversidad florística, pp. 63-76. In G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezaury, and R. Dirzo [eds.], Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas Secas del Pacífico Mexicano. Fondo de Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

Luis, A., and J. Llorente. 1993. Mariposas, pp. 335-363. In I. Luna and J. Llorente [eds.], Historia Natural del Parque Ecológico Estatal Omiltemi, Chilpancingo, Guerrero, México. Facultad de Ciencias, Universidad Nacional Autónoma de México, México.

Luis, A., J. Llorente, I. Vargas, and A. Gutiérrez. 2000. Síntesis preliminar del conocimiento de los Papilionoidea (Lepidoptera: Insecta) de México, pp. 275-285. In F. Martín-Piera, J. J. Morrone, and A. Melic [eds.], Hacia un Proyecto CYTED para el Inventario y la Estimación de la Diversidad Entomológica en Iberoamérica: PrIBES-2000, Vol. I. Monografías Tercer Milenio, Zaragoza, España.

Luis, A., J. Llorente, I. Vargas, and A. Warren. 2003. Biodiversity and biogeography of Mexican butterflies (Lepidoptera: Papilionoidea and Hesperioidea). Proceedings of the Entomological Society of Washington 105: 209-224.

Luis, A., J. Llorente, A. Warren, and I. Vargas. 2004. Lepidópteros: Papilionoideos y Hesperioideos, pp 335-355. In A. J. García-Mendoza, M. J. Ordoñez, and M. Briones-Salas [eds.], Biodiversidad de Oaxaca. Universidad Nacional Autónoma de México, Fondo Oaxaqueño para la Conservación de la Naturaleza and World Life Fund, México.

Luna-Reyes, M., J. Llorente-Bousquets, and A. Luis-Martínez. 2008. Papilionoidea de la Sierra de Huautla, Morelos y Puebla, México. Revista de Biología Tropical 56: 1677-1716.

Luna-Reyes, M., J. Llorente-Bousquets, A. Luis-Martínez, and I. Vargas-Fernández. 2010. Composición faunística y fenología de las mariposas (Rhopalocera: Papilionoidea) de Cañón de Lobos, Yautepec, Morelos, México. Revista Mexicana de Biodiversidad 81: 315-342.

Magurran, A. 2004. Measuring Biological Diversity. Blackwell Publishing. Meléndez-Herrada, A., and C. S. García-Vega. 2008. Barra de Potosí: un

diagnóstico para la avifauna costera de Guerrero. Paper presented at the VIII Congreso para el Estudio y Conservación de las Aves en México, 8-11 October 2008, Durango, México.

Méndez, M. 1998. Aves comunes y raras: patrones, causas y consecuencias. El Draque 3: 187-200.

Miranda, F., and E. Hernández. 1963. Los tipos de vegetación de México y su clasificación. Boletín de la Sociedad Botánica de México 29: 29-179.

74

Montero, F., M. Moreno, and L. C. Gutiérrez. 2009. Mariposas (Lepidoptera: Papilionoidea y Hesperioidea) asociadas a fragmentos de bosque seco tropical en el departamento del Atlántico, Colombia. Boletín Científico Centro de Museos, Museo de Historia Natural 13: 157-173.

Mora-Corro, S. A., and A. D. Vázquez-Lule. 2009. Caracterización del sitio de manglar Laguna El Potosí (accessed 30 April 2011; http://www.conabio.gob. mx/conocimiento/manglares/doctos/caracterizacion/PS26_Laguna_El_Potosi_carcaterizacion.pdf).

Moreno, C. 2001. Métodos Para Medir la Biodiversidad. GORFI, S.A., España. New, T. R. 1992. Butterfly Conservation. Oxford University Press, Australia and

New Zealand. Pozo, C., A. Luis-Martínez, J. Llorente-Bousquets, N. Salas-Suárez, A. Maya-

Martínez, I. Vargas-Fernández, and A. D. Warren. 2008. Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea y Hesperioidea) of Mexico´s Calakmul region. Florida Entomol. 91: 407-422.

Raguso, A., and J. Llorente. 1997. Papilionoidea, pp. 257-291. In E. González, R. Dirzo, and R. Vogt [eds.], Historia Natural de Los Tuxtlas. Instituto de Biología, Universidad Nacional Autónoma de México, México.

Ríos-Malaver, C. 2007. Riqueza de especies de mariposas (Hesperioidea y Papilionoidea) de la quebrada “El Águila” cordillera central (Manizales, Colombia). Boletín Científico Centro de Museos, Museo de Historia Natural 11: 272-291.

Rydon, A. 1964. Notes on the use of butterfly traps in east Africa. J. Lepidopterists´ Soc. 18: 51-58.

Rzedowsky, J. 1978. Vegetación de México. Editorial Limusa, México. Sawchik, J., M. Dufrêne, and P. Lebrun. 2005. Distribution patterns and indicator

species of butterfly assemblages of wet meadows in southern Belgium. Belgian J. Zool. 135: 43-52.

Scott, J., and M. Epstein. 1987. Factors affecting phenology in a temperate insect community. Am. Midland Nat. 17: 103-118.

Seitz, A. 1924. The Macrolepidoptera of the World, Vol. V. Alfred Kernen Verlag Stuttgart.

Sousa, M. 2010. Centros de endemismo: las leguminosas, pp. 77-92. In G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezaury, and R. Dirzo [eds.], Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas Secas del Pacífico Mexicano. Fondo de Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

Trejo, I. 2010. Las selvas secas del Pacífico Mexicano, pp. 41-52. In G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezaury, and R. Dirzo [eds.], Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas Secas del Pacífico Mexicano. Fondo de Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

Van Swaay, C., and M. Warren. 2012. Developing Butterflies as Indicators in Europe: Current Situation and Future Options. De Vlinderstichting-Butterfly Conservation-Butterfly Conservation Europe, Netherlands.

Vargas-Fernández, I., J. Llorente-Bousquets, and A. Luis-Martínez. 1992. Listado lepidopterofaunístico de la Sierra de Atoyac de Álvarez en el Estado de Guerrero: notas acerca de su distribución local y estacional (Rhopalocera: Papilionoidea). Folia Entomológica Mexicana 86: 41-178.

75

Vargas-Fernández, I., J. Llorente-Bousquets, and A. Luis-Martínez. 1999. Distribución de los Papilionoidea (Lepidoptera: Rhopalocera) de la Sierra de Manantlán (250-1650 m) en los Estados de Jalisco y Colima. Facultad de Ciencias, Universidad Nacional Autónoma de México, México.

Warren, A. D. 2000. Hesperioidea (Lepidoptera), pp. 535-580. In J. Llorente, E. González, and N. Papavero [eds.], Biodiversidad, Taxonomía y Biogeografía de Artrópodos de México: Hacia una Síntesis de su Conocimiento, Vol. II. Universidad Nacional Autónoma de México, México.

Warren, A. D., S. R. Steinhauser, C. Hernández-Mejía, and N. V. Grishin. 2008. Notes on the genus Celotes, with the description of a new species from Mexico (Lepidoptera: Hesperiidae: Pyrginae: Pyrgini). Zootaxa 1926: 27-40.

Willis, K. J., and R. J. Whittaker. 2002. Species diversity: scale matters. Science 295: 1245-1247.