23
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233739549 Ferroelectric properties of HfO2 and its implication on highly scaled Ferroelectric Field Effect Transistors DATASET · NOVEMBER 2012 READS 35 15 AUTHORS, INCLUDING: Ekaterina Yurchuk Anvo-Systems Dresden GmbH 30 PUBLICATIONS 111 CITATIONS SEE PROFILE Jonas Sundqvist Lund University 72 PUBLICATIONS 803 CITATIONS SEE PROFILE Available from: Thomas Mikolajick Retrieved on: 04 February 2016

Ferroelectric properties of HfO2 and its implication on highly scaled Ferroelectric Field Effect Transistors

Embed Size (px)

Citation preview

Seediscussions,stats,andauthorprofilesforthispublicationat:https://www.researchgate.net/publication/233739549

FerroelectricpropertiesofHfO2anditsimplicationonhighlyscaledFerroelectricFieldEffectTransistors

DATASET·NOVEMBER2012

READS

35

15AUTHORS,INCLUDING:

EkaterinaYurchuk

Anvo-SystemsDresdenGmbH

30PUBLICATIONS111CITATIONS

SEEPROFILE

JonasSundqvist

LundUniversity

72PUBLICATIONS803CITATIONS

SEEPROFILE

Availablefrom:ThomasMikolajick

Retrievedon:04February2016

0 12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

Ferroelectric properties of HfO2 and its implication on highly scaled

Ferroelectric Field Effect Transistors

Ekaterina Yurchuk1, Johannes Müller2, Steve Knebel1, Raik Hoffmann2, Thomas Melde3, Stefan Müller1, Dominik Martin1, Stefan Slesazeck1, Jonas Sundqvist2, Roman Boschke3, Till Schlösser3, Ralf van Bentum3 , Martin Trentzsch3, Uwe Schröder1 and Thomas Mikolajick1

1 2 3

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

2

Ferroelectric Field Effect Transistor

Metal-Gate

n+ n+ - - -

Ferroelectric

p-Substrate

- +

- + - +

Semiconductor

Idrain

Vgate

„0“ high Vth

„1“ low Vth

• Performance advantages:

• non-volatility

• non-destructive readout

• low power consumption

• reading and writing speed in

ns-time range

• low operation voltages

• high endurance

• Challenges:

• Compatibility with existing

CMOS process

• buffer layer between Si and

ferroelectric with high-k is

required

• scalibility below 20 nm

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

3

Ferroelectric Field Effect Transistor

Idrain

Vgate

„0“ high Vth

Metal-Gate

n+ n+ + + +

Ferroelectric

p-Substrate

- +

- +

- +

Semiconductor

• Performance advantages:

• non-volatility

• non-destructive readout

• low power consumption

• reading and writing speed in

ns-time range

• low operation voltages

• high endurance

• Challenges:

• Compatibility with existing

CMOS process

• buffer layer between Si and

ferroelectric with high-k is

required

• scalibility below 20 nm

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

4

Ferroelectric Field Effect Transistor

Metal-Gate

n+ n+ - - -

Ferroelectric

p-Substrate

- +

- +

- +

Semiconductor

Idrain

Vgate

„1“ low Vth

• Performance advantages:

• non-volatility

• non-destructive readout

• low power consumption

• reading and writing speed in

ns-time range

• low operation voltages

• high endurance

• Challenges:

• Compatibility with existing

CMOS process

• buffer layer between Si and

ferroelectric with high-k is

required

• scalibility below 20 nm

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

5

Ferroelectricity in HfO2

Orthorhombic phase

Tetragonal phase

Advantages of ferroelectric HfO2 over conventional ferroelectrics:

• fully compatible with the existing CMOS process

• low k-value (~20) (PZT and SBT: ~200-300)

• SiO2 can be used as buffer layer

• thin HfO2 films (10-30nm) can be used

• better scalibility due to more suitable aspect ratio

Monoclinic phase

P21/c

P42/nmc

Pbc21

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

6

Ferroelectricity in HfO2

Orthorhombic phase

Tetragonal phase

Advantages of ferroelectric HfO2 over conventional ferroelectrics:

• fully compatible with the existing CMOS process

• low k-value (~20) (PZT and SBT: ~200-300)

• SiO2 can be used as buffer layer

• thin HfO2 films (10-30nm) can be used

• better scalibility due to more suitable aspect ratio

Monoclinic phase

P21/c

P42/nmc

Pbc21

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

7

Ferroelectricity in HfO2

(220) o

(101) t

(111) m

(-111) m

(421) o

(133) o

(331) o

(022) o

cappedlog c

ounts

no cap

10 nm Si:HfO2

orthorhombic

monoclinic

tetragonal

2 Theta (degree)

20 40 60 80

• Crystallisation of Si:HfO2 under TiN Capping – ferroelectric behavior

• Piezoelectric behaviour – confirmation of the true ferroelectric properties

T.S. Böscke et al. Appl. Phys. Lett. 99, 102903 (2011)

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

8

Effect of Si -Doping

• Doping of HfO2 with Si → Increase of crystallization temperature (TK)

• With increasing Si content → stabilization of the tetragonal phase in HfO2

100

200

300

400

500

600

700

10 20 30 40 50

SiO2

TiN

8.5 mol%

0 mol%

4.4 mol%

5.6 mol%

6.6 mol%

9 nm Si:HfO2

after 650oC Anneal

Sig

nal

[cou

nts

/sec

]

2Theta [degree]

m t m

m

m

t

TiN Si:HfO2

TiN Si-Substrate

0 2 4 6 8 10 12200

400

600

800

1000

amorphous mixture tetragonal/ monoclinic

monoclinic tetragonal

Tem

per

atu

re [

oC

]

SiO2 concentration [mol%]

Amorphous

M/T

T O

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

9

-60

-40

-20

0

20

40

60

-3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3

SiO2

Ele

ctr

ic D

isp

lac

em

en

t [

C/c

m2

]

0 mol %

4.4 mol %

5.6 mol %

6.6 mol %

Electric Field [MV/cm]

8.5 mol %

1.5

2.0

2.5

3.0

3.5

4.0

4.5

-3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3

SiO2

Cap

ac

itan

ce

[F

/cm

2]

0 mo %

4,4 mol %

5,6 mol %

6,6 mol %

Electric Field [MV/cm]

8,5 mol %

• Increase of SiO2 concentration

→ Change in the electrical

properties :

paraelectric

ferroelectric

antiferroelectric

• The effect was confirmed

using both polarisation - and

capacitance -voltage

measurements

• Similar behavior for 9 nm

and 27 nm Si:HfO2 films

9 nm Si:HfO2 after 800oC Anneal

Effect of Si -Doping Pt

TiN

TiN

Si-substrate

Si:HfO2

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

10

-50

-25

0

25

50

-3 0 3 -3 0 3 -3 0 3 -3 0 3

after TiN

deposition

Ele

ctr

ic D

isp

lac

em

en

t [

C/c

m2

]

450C

650C

800C

1000C

1

2

3

4

5

6

7

-3 0 3 -3 0 3 -3 0 3 -3 0 3

after TiN

deposition

Ca

pacit

an

ce [

F/c

m2

]

450C

Electric Field [MV/cm]

650C

800C

1000C

Increasing film crystallinity with

annealing temperature

→ higher fraction of the ferroelectric

phase

→ rise in the remanent polarisation

9 nm Si:HfO2 with 4.4mol% SiO2

Effect of annealing temperature

500 600 700 800 900 10000

50

100

150

200

250

300

24.6 m

42.8 TiN

35.6 m

30.8 t

Re

man

en

t po

lariza

tion

[C

/cm

2]

17.6 m

Anneal T [oC]

-30

-20

-10

0

10

20

30

Inte

gra

l pea

k inte

nsity

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

11

Effect of film thickness

0

5

10

15

20

25

400 500 600 700 800 900 10000.0

0.5

1.0

1.5

4.4 mol % SiO2

9 nm

27 nm

Rem

anen

t p

ola

riza

tio

n [

C/c

m2]

4.4 mol % SiO2

9 nm

27 nm

Co

erci

ve

fiel

d s

tren

gth

[M

V/c

m]

Anneal T [oC]

-3 0 3-50

-25

0

25

50

-3 0 3-50

-25

0

25

50

9 nm

Ele

ctri

c D

isp

lace

men

t [µ

C/c

m²]

Electric Field [MV/cm]

27 nm

Electric Field [MV/cm]

For thicker films:

• Pr reduction down to 2.5C/cm2

• Pr shows no dependence on the annealing

temperature

Coercive field strength shows no dependence on

the film thickness

Si:HfO2 with 4.4mol% SiO2 annealed at 1000oC

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

12

• Decrease of TK with increasing film thickness

• Higher Si-Doping is needed to prevent crystallization of 27nm layers during

deposition of the top TiN electrode

• Monoclinic phase becomes more stable in thicker films

Effect of film thickness

0

100

200

300

400

500

25 30 35 40

SiO2 5.6 mol%

TiN

0 mol%

4.4 mol%

9nm Si:HfO2

after TiN deposition

Sig

nal

[cou

nts

/sec

]

2Theta [degree]

0

250

500

750

1000

1250

1500

25 30 35 40

SiO2 5.6 mol%

TiN

0 mol%

4.4 mol%

27 nm Si:HfO2

after TiN deposition

Sig

nal

[cou

nts

/sec

]2Theta [degree]

m m t

m m t

t

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

13

-0.5 0.0 0.5 1.00

25

50

75

100

125

Idra

in [

A]

MW ~0,8V

-6 V

100 ns

+4.5 V

100 ns

Vgate [V]

Ferroelectric Field Effect Transistor

Poly-Si

Si-Substrate

SiO2 1.2 nm

Si:HfO2 9 nm

TiN 8 nm

• Memory window 800mV

• Program/erase performed with pulses: -6V 100ns and+4.5V 100ns

• 10 years retention is expected

Memory Window N-channel MFIS-FET W: 2m L:100nm

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

14

Ferroelectric Field Effect Transistor

• Memory window 800mV

• Program/erase performed with pulses: -6V 100ns and+4.5V 100ns

• 10 years retention is expected

Memory Window

100

101

102

103

104

105

106

107

108

-0.5

0.0

0.5

1.0

10

day

s

Experimental data 25 oC

Extrapolation

10

yea

rs

programmed -6.0 V 100 ns

erased +4.5 V 100 ns

Thre

shold

volt

age

(V)

time (s)

Retention

-0.5 0.0 0.5 1.00

25

50

75

100

125

Idra

in [

A]

MW ~0,8V

-6 V

100 ns

+4.5 V

100 ns

Vgate [V]

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

15

Conclusions

• Si-doped HfO2

• Increasing Si-content → increase of crystallyzation temperature ,

stabilization of tetragonal phase

• Ferroelectric behavior revealed at the phase transition between monoclinic and

tetragonal phases

• Increase of the remanent polarisation for higher annealing temperatures

due to higher film crystallinity

• 27 nm thick HfO2 films show reduced remanent polarisation and

a negligible change in the coercive field strength in comparison to 9 nm thick films

• Si:HfO2 based FeFET

• MFIS-FET with 100 nm channel length was fabricated

• memory window – 0.8V, switching time 100ns using +4.5V and -6V,

10 years data retention is expected

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

16

Thank you for your attention!

Thanks to the FeFET – TEAM at:

This work was financially supported by

the free state of Saxony and the EFRE fund

(HEIKO project 100064806).

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

17

MIM capacitors / Fabrication process

Deposition of TiN

bottom electrode

(CVD at 450oC)

Deposition of Si:HfO2

ALD (HfCl4 , SiCl4 ,H2O)

Deposition of TiN

top electrode

(CVD at 450oC)

Annealing in N2

Si-Substrate

Deposition of Pt-dots

+

Wet etch of TiN

TiN TiN Si:HfO2

TiN Si:HfO2

TiN

Pt

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

18

Modeling (Thickness dependence)

0 2 4 6 8 10 120

1

2

3

4

5

0 5 10 15 20 25 300

1

2

3

4

5

Me

mo

ry W

indo

w [

V]

Remanent polarization [C/cm2]

Pr/Ps = 0.72

Ec=0.9 MV/cm

=25

fe-thickness 9 nm

1 nm SiO2

Me

mo

ry W

indo

w [

V]

Ferroelectric layer thickness [nm]

Pr=24 C/cm2

Ps=33 C/cm2

Ec=0.9 MV/cm

=25

1 nm SiO2

0 5 10 15 20 25 3070

75

80

85

90

95

100

Pr=24 C/cm2

Ps=33 C/cm2

Ec=0.9 MV/cm

=25

1 nm SiO2

Ed

ep /

Ec [

%]

Ferroelectric layer thickness [nm]

• For the remanent polarization > 3C/cm2 – marginal change of the memory window

• Increasing thickness of the ferroelectric layer

• larger memory window

• reduced depolarization field → better retention properties

Memory Window Depolarisation field at Vgate =0V

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

19

Modeling (Thickness dependence)

0 2 4 6 8 10 12 14 160.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0Interface layer 1nm SiO

2

27 nm

9 nm

Me

mo

ry W

ind

ow

[V

]

Programming Voltage [V]

9 nm 27 nm0

50

100

Ede

po

lari

zation / E

c [%

] *

* for saturated memory window

-3 0 3-50

-25

0

25

50

-3 0 3-15

-10

-5

0

5

10

15Ec =0.9 MC/cm

Pr=24C/cm2

Ps=33 C/cm2

Pr/Ps=0,72

=25

9 nm

Ele

ctri

c D

ispla

cem

ent

[µC

/cm

²]

Electric Field [MV/cm]

27 nm

Electric Field [MV/cm]

Ec= 0.7 MV/cm

Pr =2.5 C/cm2

Ps=2.51 C/cm2

Pr/Ps=1

=25

Expected gain from implementation of

27 nm instead of 9nm thick Si:HfO2 :

• 2 times larger memory window

• better switching behavior

• lower depolarisation field →

better retention behavior

Experiment MIM 4,4 mol% SiO2 1000oC Anneal Simulation MFIS-FET

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

20

Ferroelectric Field Effect Transistor

• Memory window 0.8V

• Program/erase performed with pulses : -6V 100ns and+4V 100ns

• 10 years retention is expected

Retention Temperature dependent

100

101

102

103

104

105

106

107

108

-0.5

0.0

0.5

1.0

10

day

s

Experimental data 25 oC

Experimental data 150 oC

Extrapolation

10

yea

rs

programmed -6.5 V 100 ns

erased +4.5 V 100 ns

T

hre

shold

volt

age

(V)

time (s)

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

21

Phase transition

12,00 12,20

4,80

6,40

12,00 12,20 0

0

4,80

6,40

8,00

7,80

8,00

7,80

22

• With increasing SiO2 content →

stabilization of the tetragonal phase

in HfO2

• Ferroelectric behavior is observed at

the phase transition from monoclinic to

tetragonal phase

Effect of Si -Doping 9 nm Hf1-xSixO2 after 800oC Anneal

10 20 30 40 50 60 70

TiN

8.5 mol% SiO2

6.6 mol%

5.6 mol%

4.4 mol%

0 mol%

Sig

na

l [c

ou

nts

/se

c]

orthorhombic Pbc2_1

tetragonal

2Theta (degree)

monoclinic

0 2 4 6 80

50

100

150

200

42.8 TiN

28.5 m

31.7 m

30.8 t/o

Inte

gra

l p

ea

k in

ten

sity

17.6 m/o

SiO2 content [mol %]

-20

-10

0

10

20

Re

ma

ne

nt p

ola

risa

tio

n [C

/cm

2]