28
Journal of Earth Science, Vol. 21, No. 5, p. 641–668, October 2010 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-010-0116-y Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China: Partial Melting and Metasomatism Su Benxun (苏本勋) Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China Zhang Hongfu* (张宏福) State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Patrick Asamoah Sakyi Department of Earth Science, University of Ghana, Legon-Accra, Ghana Qin Kezhang (秦克章), Liu Pingping (刘平平) Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Ying Jifeng (英基丰), Tang Yanjie (汤艳杰) State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Sanjeewa P K Malaviarachchi Research School of Earth Sciences, The Australian National University, Canberra, Act 0200, Australia Xiao Yan (肖燕), Zhao Xinmiao (赵新苗), Mao Qian (毛骞), Ma Yuguang (马玉光) State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ABSTRACT: Two types of melt pockets, closed melt pocket (CMP) and open melt pocket (OMP), are This study was supported by the Special Research Project of the State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences (No. 1008), and the National Natural Science Foundation of China (No. 90714008). *Corresponding author: [email protected] © China University of Geosciences and Springer-Verlag Berlin Heidelberg 2010 Manuscript received April 4, 2010. Manuscript accepted June 20, 2010. recognized from the peridotite xenoliths en- trained in the Cenozoic kamafugites in western Qinling (秦岭), Central China. The Haoti (好梯) CMPs have a mineral assemblage of olivine+ clinopyroxene+amphibole+K-feldspar, whereas the Baiguan ( 白关) CMPs are composed of olivine+clinopyroxene+ilmenite+carbonate. The components of the OMPs are more complicated. In the Haoti OMPs, there are olivine, clinopy- roxene, glass, low modal abundances of amphi- bole, K-feldspar (Kfs), ilmenite, sulfide, chlorite, perovskite, chromite and phlogopite. The

Formation of melt pocket in mantle peridotite xenolith from western Qinling, Central China: Partial melting and metasomatism

Embed Size (px)

Citation preview

Journal of Earth Science, Vol. 21, No. 5, p. 641–668, October 2010 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-010-0116-y

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China:

Partial Melting and Metasomatism

Su Benxun (苏本勋) Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences,

Beijing 100029, China; State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; Graduate University of Chinese Academy of Sciences,

Beijing 100049, China Zhang Hongfu* (张宏福)

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Patrick Asamoah Sakyi Department of Earth Science, University of Ghana, Legon-Accra, Ghana

Qin Kezhang (秦克章), Liu Pingping (刘平平) Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences,

Beijing 100029, China Ying Jifeng (英基丰), Tang Yanjie (汤艳杰)

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Sanjeewa P K Malaviarachchi Research School of Earth Sciences, The Australian National University, Canberra, Act 0200, Australia

Xiao Yan (肖燕), Zhao Xinmiao (赵新苗), Mao Qian (毛骞), Ma Yuguang (马玉光) State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,

Chinese Academy of Sciences, Beijing 100029, China

ABSTRACT: Two types of melt pockets, closed melt pocket (CMP) and open melt pocket (OMP), are

This study was supported by the Special Research Project of

the State Key Laboratory of Lithospheric Evolution, Institute of

Geology and Geophysics, Chinese Academy of Sciences (No.

1008), and the National Natural Science Foundation of China

(No. 90714008).

*Corresponding author: [email protected]

© China University of Geosciences and Springer-Verlag Berlin

Heidelberg 2010

Manuscript received April 4, 2010.

Manuscript accepted June 20, 2010.

recognized from the peridotite xenoliths en-

trained in the Cenozoic kamafugites in western

Qinling (秦岭), Central China. The Haoti (好梯)

CMPs have a mineral assemblage of olivine+

clinopyroxene+amphibole+K-feldspar, whereas

the Baiguan (白关) CMPs are composed of

olivine+clinopyroxene+ilmenite+carbonate. The

components of the OMPs are more complicated.

In the Haoti OMPs, there are olivine, clinopy-

roxene, glass, low modal abundances of amphi-

bole, K-feldspar (Kfs), ilmenite, sulfide, chlorite,

perovskite, chromite and phlogopite. The

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 642

Baiguan OMPs contain olivine, clinopyroxene, glass, chlorite and chromite. Compositionally, olivines in

the CMPs and OMPs are both apparently depleted in Ni, and those in the OMPs are also depleted in Fe

and Mg, and enriched in Ca compared to the primary ones. Clinopyroxenes display large and system-

atical compositional variations between the CMPs and OMPs, particularly in Al, Cr, Na, Ca and Ti.

Glasses are generally depleted in Si compared to the worldwide glasses in melt pockets, although they

still have large variations. Amphiboles and K-feldspars have relatively restricted compositional varia-

tions. The petrographical observations and mineral chemistry suggest that the Haoti and Baiguan

CMPs were generated by the in-situ decompression melting of orthopyroxenes, olivines and clinopy-

roxenes, and by the addition of minor external K-rich and Ca-rich melt/fluids. The OMPs formed dur-

ing the latest metasomatic event in the lithospheric mantle beneath the western Qinling.

KEY WORDS: mantle metasomatism, melt pocket, partial melting, peridotite xenolith, western

Qinling.

INTRODUCTION

As an exclusive feature of peridotite xenoliths in volcanics, melt pocket provides valuable information on partial melting and related mantle metasomatism, which are significant processes in the upper mantle, resulting in depletion and refertilization of the litho-spheric mantle (Su et al., 2009; Zhang et al., 2009, 2007; Bonadiman et al., 2008; Tang et al., 2008; Ying et al., 2006; Shaw et al., 2005; Zhang, 2005; Franz and Wirth, 1997; Hibbard and Sjoberg, 1994; Tsuchi-yama, 1986). Partial melting is responsible for the generation of magmas/melts to form volcanic rocks and intrusions within the crust or to quench to in-situ glasses if no migration occurs (Shaw and Klügel, 2002; Morgan and Morgan, 1999; Liang and Elthon, 1990). Mantle metasomatism is usually evidenced by the presence of hydrous minerals such as phlogopite, am-phibole and glass (Su et al., 2010a, b, c, 2009; Zheng et al., 2005; Laurora et al., 2001; Xu et al., 1996). Melt pockets within mantle xenoliths are commonly composed of glass and secondary minerals, and have been well documented to infer mantle processes (Bali et al., 2008, 2007, 2002; Laurora et al., 2001; Embey- Isztin and Scharbert, 2000; Litasov et al., 1999; Shaw, 1999; Shaw et al., 1998; Carpenter, 1997; Chazot et al., 1996; Szabo et al., 1996; Xu et al., 1996; Ionov et al., 1994, 1993; Francis, 1987; Kuo and Essene, 1986; Dawson, 1984; Stosch and Seck, 1980; Tracy, 1980). Schiano and Bourdon (1999) and Bali et al. (2008) suggested that most melt pockets originated from melts that were trapped at mantle depth and generally in equilibrium with peridotite assemblages, and that interstitial melt pockets are assumed to be open sys-

tems that reacted continuously with surrounding min-erals, thus only preserving the last equilibrium or dis-equilibrium state. However, the genesis of melt pock-ets hosted in mantle xenoliths, e.g., the generation of melts in relation to the composition of their parental material and the agent involved, has remained a sub-ject of debate. Many authors have attributed the melt pockets to breakdown of amphibole and phlogopite, induced by reaction with external metasomatic melts (e.g., Bali et al., 2008, 2007, 2002; Embey-Isztin and Scharbert, 2000; Chazot et al., 1996; Szabo et al., 1996; Ionov et al., 1993; Dawson, 1984), or partial melting due to decompression (Laurora et al., 2001; Francis, 1987; Stosch and Seck, 1980; Tracy, 1980) and/or increasing temperature (Bali et al., 2008; Ban et al., 2005). Other authors ascribed the melt pockets to dissolution of orthopyroxene through reaction with Si-undersaturated melts at low pressure (Litasov et al., 1999; Shaw et al., 1998) and/or in-situ partial melting due to heating (Carpenter, 1997; Kuo and Essene, 1986). Furthermore, it has been proved that melt pockets could be formed by fluid-clinopyroxene/ spinel interaction (Bali et al., 2002; Xu et al., 1996; Ionov et al., 1994).

Melt pockets in mantle peridotite xenoliths of the western Qinling kamafugites have been reported by Shi et al. (2003) and Su et al. (2010a, c, 2009). How-ever, a detailed study has not been done yet. These melt pockets can be divided into two types: closed melt pocket (CMP) and open melt pocket (OMP). The former consists of mineral crystals, while the latter has additional glasses besides mineral crystals. The main objectives of this study, therefore, are to constrain the

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China 643

genesis of melt pockets and investigate their related mantle processes.

GEOLOGICAL BACKGROUND AND SAMPLE DESCRIPTION

The western Qinling, located in Central China, is part of the Qinling-Sulu-Dabie suture zone (Fig. 1b) where the Tethyan Ocean was subducted, followed by the collision between the North China and Yangtze cratons in the Paleozoic (Xu et al., 2002; Zhang et al., 2002, 2001; Gao et al., 1996). Acidic volcanism oc-

curred in the Mesozoic (Fig. 1a). The Cenozoic ka-mafugites and associated carbonatites (7.1–23 Ma) in-truded Tertiary sedimentary covers and are sparsely distributed in the Tianshui-Lixian fault basin, which is related to extensional tectonics (Fig. 1a; Su et al., 2010a, c, 2009, 2006; Dong et al., 2008; Yu et al., 2004, 2003). Geochemical studies conducted on these volcanic rocks by Yu et al. (2004, 2003) and Dong et al. (2008) suggested that asthenosphere upwelling event took place beneath the western Qinling litho-spheric mantle in the Cenozoic.

Figure 1. Cenozoic kamafugite distributions in the western Qinling (a), and geological map showing the lo-cation of western Qinling (b) (modified from Dong et al., 2008; Yu et al., 2004).

The investigated xenolith samples in this study were collected from the Cenozoic kamafugites in Haoti and Baiguan cinder cones of the western Qinling volcanic field (Fig. 1a). Most of them are garnet or spinel lherzolites except one garnet wehrlite. The petrological features are similar to the descrip-tions in Yu et al. (2001), Shi et al. (2003) and Su et al. (2010a, c, 2009, 2007, 2006). These xenoliths display apparent textures such as elongated mineral orienta-tion and undulose or banded extinction in olivine, in-dicating deformations. All garnets are partially de-composed and characterized by fresh cores with an outer coronal assemblages consisting of aluminous spinel, orthopyroxene and clinopyroxene grains. Oc-casionally, garnet grains are completely absent (Su et al., 2010a, c, 2009, 2007). Spongy textures occur in most clinopyroxenes and are rarely present in spinels. There is low modal abundance of orthopyroxenes, most of which exhibit reactive features. Melt pockets

are observed in all samples. PETROGRAPHY OF MELT POCKET

The open melt pockets (OMPs) in the western Qinling xenoliths are either interconnected with each other or show channels to their surroundings, indicat-ing an open system. On the other hand, the closed melt pockets (CMPs) occur as isolated or interstitial patches without any channel to the surroundings, in-dicative of a closed system. Although the classifica-tion is not very rigorous, considering that the CMP just shows two dimensions in thin-sections, the CMP and OMP defined above show quite distinct features in mineral assemblage and chemical compositions. The orthopyroxene and olivine with melting/reaction rims are ascribed to the CMP group because of their similar mineral assemblage and chemical composi-tions, and consequently are considered to be the origin form of the CMP. This will be discussed in detail in

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 644

the following sections.

Closed Melt Pocket Most of the CMPs have regular, rounded or

sub-rounded shape, 250–600 μm in width and 350– 1 500 μm in length (Fig. 2). These CMPs and their surrounding minerals (mainly olivine) display distinct curved boundaries (Figs. 2a–2c, and 2g), occasionally with very narrow reaction rims (several μm in width) (Figs. 2e, 2f). The reaction features can be observed in the contact of melt pockets and spongy clinopyroxene (Fig. 2c). Relict orthopyroxenes or olivines are occa-sionally found in the core of the pockets. In the Haoti peridotites, the CMPs are mainly composed of olivine, clinopyroxene, amphibole and K-feldspar (Figs. 2b, 2d). Olivines in the CMPs occur as granular grains, ranging from 10 to 100 μm in diameter, and some grains contain clinopyroxene inclusions. Clinopyrox-enes occur between olivine grains or within olivines and display irregular shape, usually <50 μm in diame-ter. Amphiboles are disseminated in a relatively large area within the CMPs, whereas K-feldspars, with a low modal abundance, generally preserve crystal shape.

The Baiguan CMPs are different in mineral as-semblage from the Haoti CMPs (Figs. 2e–2h). In ad-dition to olivine and clinopyroxene, ilmenite and car-bonate are usually present in the Baiguan CMPs, and chromite and barite can also be observed in some melt pockets with the absence of amphibole and K-feldspar. Olivines exhibit rounded shape and display straight boundaries (Figs. 2f, 2h). Clinopyroxenes have rela-tively higher modal abundances and are disseminated in the melt pockets. Ilmenite and carbonate occur as very tiny globules and disseminated flakes, respec-tively.

Most orthopyroxenes and rare olivines exhibit melting/reaction features to variable degrees (Fig. 3), which are characteristics for the Haoti xenoliths, in-stead of the Baiguan samples. The orthopyroxene rims, ranging from 50 to 200 μm, are composed of olivine, clinopyroxene, amphibole and K-feldspar, represent-ing the same mineral assemblage as CMPs (Figs. 3a–3f). Minerals in relatively thin orthopyroxene rims show orientation features perpendicular to the inter-face of the host grain (Figs. 3b, 3d), but in well-

developed rims, the mineral orientation is disturbed (Figs. 3e, 3f). Most minerals display crystal forms ex-cept for clinopyroxenes, which occur as rods. The cores of olivine crystals, rather than that of orthopy-roxenes, display apparent zoning textures (Figs. 3g, 3h). The zoned olivine is surrounded by secondary olivine plus sulfide assemblage. Open Melt Pocket

The OMPs in the western Qinling xenoliths have irregular shapes and are open to their surroundings usually via channels or veins (Figs. 4, 5). Most neighboring minerals of the OMPs have zoning tex-tures. Mineral assemblage in the OMP is more com-plex than that in the CMP, and featured by the pres-ence of glasses. The composite melt pockets occur in the Baiguan xenoliths and partially preserve both CMP and OMP features.

The Haoti OMPs are mainly composed of olivine, clinopyroxene, amphibole and glass, with minor sul-fide, ilmenite, K-feldspar, chlorite, perovskite, and chromite (Figs. 4a, 4b, 4e, 4f, and 4h). Phlogopite is only observed in garnet wehrlite (HT08-12). Olivines and clinopyroxenes are prismatic, orienting towards the cores of the melt pockets (Figs. 4c, 4d, 4e, and 4h). Colorless to pale glasses occur as interstitial globule or vein and are widespread in the melt pockets. Com-pared to the CMP, the OMP shows a decreasing modal abundance of K-feldspar and an increase in clinopy-roxene. Anhedral sulfides are mainly Fe and/or Ni sul-fides. Other accessory minerals are sparsely distrib-uted in various melt pockets.

The Baiguan OMPs usually coexist with the CMPs with well defined boundaries, forming compos-ite melt pockets (Fig. 5). The CMP portions preserve their parental mineralogical components of olivine+ clinopyroxene±carbonate±ilmenite. The OMP portions are generally connected to the surrounding melt pock-ets via channels or veins, and have a mineral assem-blage of olivine, clinopyroxene, chlorite, chromite and glass. Olivines in the OMPs are relatively larger and brighter in back-scattered images than those in the CMPs. The clinopyroxenes with low modal abun-dances are altered to chlorites and contain emptyvesi-cles (Figs. 5a–5e, and 5h). Glasses occur as globular or disseminated in constituent minerals of the melt

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China 645

Figure 2. Back-scattered images of the closed melt pockets (CMPs) in the Haoti (HT) and Baiguan (BG) pe-ridotite xenoliths. (a) and (b) represent CMP in spinel lherzolite (HT08-5), displaying closed appearance and consisting of secondary olivine (Ol), and clinopyroxene (Cpx); (c) and (d) are CMPs in garnet lherzolite (HT08-2B) which consists of olivine, clinopyroxene, amphibole (Amph) and K-feldspar (Kfs) and showing reaction with spongy primary clinopyroxene; (e) and (f) are CMPs in spinel lherzolite (BG08-3) with min-eral assemblage of olivine, clinopyroxene, ilmenite (Ilme) and empty vesicle; (g) and (h) represent dissemi-nated clinopyroxene in spinel lherzolite (BG08-3) enclosing olivine and globular carbonate (Ca). Note: (b), (d), (f) and (h) are enlarged portions of (a), (c), (e) and (g), respectively.

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 646

Figure 3. Back-scattered images of orthopyroxene and olivine with melting/zoning textures in the Haoti pe-ridotite xenoliths. (a) and (b) represent orthopyroxene rim in spinel lherzolite (HT08-3), consisting of sec-ondary olivine, clinopyroxene rod, amphibole and K-feldspar, indicating incipient partial melting; (c) and (d) represent well developed melting texture of orthopyroxene rims in garnet lherzolite (HT08-2S), consist-ing of oriented olivine and clinopyroxene; (e) and (f) represent relict orthopyroxene setting in a melt pocket in spinel lherzolite (HT08-5); (g) and (h) represent secondary olivine and sulfide surrounding zoned olivine in garnet lherzolite (HT08-1). Note: (b), (d), (f) and (h) are enlarged portions of (a), (c), (e) and (g) respec-tively.

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China 647

Figure 4. Back-scattered images of the open melt pockets (OMPs) in the Haoti peridotite xenoliths. (a), (b), OMP in garnet lherzolite (HT08-1), connected to its surroundings via melt channels and veins, and consist-ing of secondary olivine, clinopyroxene, glass, Kfs and sulf; (c)–(f) OMPs in spinel lherzolite (HT08-11), connected to each other and consisting of oriented olivine and clinopyroxene, and minor glass, amphibole, Kfs perovskite and ilmenite; (g) and (h) OMPs in garnet wehrlite (HT08-12), surrounded by glass and con-sisting of secondary olivine, clinopyroxene and ilmenite. Sulf. Sulfide; Pvk. perovskite.

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 648

Figure 5. Back-scattered images of the open melt pockets (OMPs) in the Baiguan peridotite xenoliths. (a), (b) and (c) composite melt pocket in spinel lherzolite (BG08-4), consisting of OMP with mineral assemblage of olivine, empty vesicle and clinopyroxene and CMP with mineral assemblage of olivine and clinopyroxene; (d), (e) and (f) composite melt pocket, chromite, olivine and chlorite occurring in the OMP portion of lher-zolite (BG08-5), whereas the CMP portion has a mineral assemblage of olivine, clinopyroxene and carbon-ate; (g) and (h) composite melt pocket in spinel lherzolite (BG08-2), showing the reaction between CMP and external melts producing an OMP. Chr. Chromite.

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China 649

pockets, and occasionally intrude into the CMPs (Figs. 5b, 5c, 5g, and 5h). MINERAL CHEMISTRY

Mineral compositions were analyzed by wavelength-dispersive spectrometry using JEOL JXA8100 electron probe operating at an accelerating voltage of 15 kV with 12 nA beam current, 5 μm beam spot and 10–30 s counting time. The precisions of all analyzed elements are better than 2.0%. Natural min-erals and synthetic oxides were used as standards, and a program based on the ZAF procedure was used for data correction. The measurements were performed at the State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Acad-emy of Sciences. Analytical results are given in Tables 1, 2, 3, 4.

Primary Minerals

Olivines in the western Qinling peridotite xeno-liths have forsterite (Fo) contents between 90.5 and 91.7, NiO contents between 0.30 wt.% and 0.40 wt.%,

and CaO generally less than 0.01 wt.%, plotting with-in the overlapped fields of worldwide cratonic and off-cratonic peridotitic olivines (Table 1; Fig. 6). Or-thopyroxenes from the Haoti xenoliths have Mg#s ranging from 90.9 to 91.7 and Al2O3 from 3.15 wt.% to 4.39 wt.%, whereas the Baiguan orthopyroxenes have slightly higher Mg# (91.5 to 92.5) and lower Al2O3 (1.90 wt.%–2.71 wt.%) (Table 1). The Haoti clinopyroxenes have Mg# of 90.3–92.4 and show va-riable contents of Al2O3, Cr2O3, CaO, TiO2 and Na2O (Table 1; Fig. 7). The Baiguan clinopyroxenes have lower Al2O3, TiO2 and Na2O, and higher CaO and Mg# (Table 1). Garnets in the Haoti peridotites are pyropic with very similar compositions reported by Su et al. (2010a, 2009, 2007). Spinels in the Baiguan peri-dotites possess higher TiO2 and Cr2O3 contents com-pared to those in the Haoti peridotites. Minerals in the Closed Melt Pocket (Orthopyrox-ene and Olivine Rims are Included)

Minerals in the reaction rims of the orthopyrox-enes and olivines show very similar compositions to

Figure 6. Plots of olivine compositions including primary olivines and secondary olivines in closed and open melt pockets from the Haoti and Baiguan peridotite xenoliths. Cratonic and off-cratonic fields are from Tang et al. (2008) and references therein.

Tabl

e 1

Maj

or e

lem

ent c

ompo

sitio

ns (w

t.%) o

f pri

mar

y m

iner

als o

f the

Hao

ti (H

T) a

nd B

aigu

an (B

G) p

erid

otite

xen

olith

s in

the

wes

tern

Qin

ling

Sam

ple

Roc

k ty

pe

Min

eral

Si

O2

TiO

2 A

l 2O3

Cr 2

O3

FeO

M

nO

MgO

C

aO

Na 2

O

K2O

N

iO

Tota

l M

g# O

l 41

.4

0.00

0.

00

0.08

9.

05

0.13

48

.1

0.09

0.

09

0.00

0.

32

99.3

90

.5

Opx

55

.9

0.06

3.

52

0.62

5.

63

0.10

32

.2

0.99

0.

09

0.00

0.

10

99.2

91

.2

Cpx

53

.8

0.20

4.

17

0.99

2.

71

0.16

16

.3

20.5

1.

06

0.02

0.

07

100.

0 91

.6

HT0

8-1

Grt

lher

zolit

e

Grt

42.8

0.

12

22.0

1.

91

6.77

0.

33

19.4

5.

54

0.24

0.

03

0.01

99

.2

83.8

Ol

41.4

0.

00

0.00

0.

04

8.43

0.

12

48.3

0.

08

0.00

0.

00

0.34

98

.7

91.2

O

px

55.5

0.

07

4.13

0.

73

5.40

0.

10

31.8

1.

11

0.16

0.

01

0.09

99

.0

91.4

Cpx

52

.6

0.28

5.

18

1.35

2.

96

0.12

16

.3

18.8

1.

62

0.03

0.

06

99.3

90

.8

HT0

8-2S

G

rt lh

erzo

lite

Grt

42.2

0.

21

22.3

1.

51

6.31

0.

28

20.7

5.

05

0.54

0.

09

0.01

99

.3

85.5

Ol

41.8

0.

00

0.00

0.

04

8.61

0.

13

49.4

0.

09

0.02

0.

00

0.35

10

0.4

91.2

O

px

55.6

0.

11

4.04

0.

78

5.42

0.

12

32.5

1.

14

0.15

0.

00

0.08

99

.9

91.5

C

px

52.9

0.

36

5.31

1.

23

2.91

0.

11

16.7

18

.8

1.57

0.

02

0.06

10

0.0

91.2

HT0

8-2B

G

rt lh

erzo

lite

Grt

42.5

0.

16

21.9

1.

87

5.80

0.

28

20.7

4.

74

0.42

0.

17

0.01

98

.6

86.5

Ol

41.0

0.

00

0.00

0.

03

8.70

0.

11

49.1

0.

10

0.00

0.

00

0.34

99

.5

91.0

O

px

55.3

0.

10

3.53

0.

86

5.51

0.

15

32.1

1.

27

0.10

0.

02

0.10

99

.1

91.3

Cpx

52

.0

0.29

4.

01

1.30

2.

89

0.10

17

.3

20.7

0.

69

0.01

0.

10

99.4

91

.5

HT0

8-3

Sp lh

erzo

lite

Sp

0.10

0.

62

31.8

31

.7

14.8

0.

16

16.7

0.

00

0.04

0.

00

0.22

96

.1

67.0

Ol

41.1

0.

00

0.03

0.

04

8.59

0.

14

48.7

0.

04

0.02

0.

00

0.32

99

.0

91.1

O

px

55.1

0.

09

3.95

0.

88

5.25

0.

09

32.1

1.

14

0.16

0.

02

0.14

98

.9

91.7

H

T08-

4-1

Lher

zolit

e

Cpx

52

.4

0.22

4.

81

1.44

2.

87

0.12

16

.2

19.2

1.

27

0.02

0.

03

98.6

91

.0

Ol

41.1

0.

00

0.00

0.

03

8.74

0.

11

49.3

0.

09

0.00

0.

01

0.30

99

.6

91.0

O

px

55.8

0.

12

3.15

0.

62

5.43

0.

13

33.1

0.

86

0.10

0.

00

0.06

99

.4

91.6

C

px

53.0

0.

37

3.79

1.

10

2.47

0.

08

16.6

21

.4

1.05

0.

03

0.05

99

.9

92.4

HT0

8-5

Sp lh

erzo

lite

Sp

0.01

0.

60

36.2

30

.1

13.2

0.

18

17.2

0.

00

0.02

0.

00

0.26

97

.8

70.1

Ol

41.9

0.

03

0.02

0.

06

9.30

0.

14

49.1

0.

10

0.00

0.

00

0.39

10

1.1

90.5

O

px

55.0

0.

10

3.89

0.

81

5.45

0.

13

32.4

1.

17

0.15

0.

00

0.10

99

.2

91.5

Cpx

52

.4

0.24

4.

84

1.81

2.

89

0.07

16

.6

19.8

1.

35

0.01

0.

07

100.

1 91

.2

HT0

8-7-

2 Sp

lher

zolit

e

Sp

0.08

0.

41

37.0

28

.7

13.6

0.

20

17.8

0.

00

0.01

0.

00

0.19

97

.9

70.2

HT0

8-9

Grt

lher

zolit

eO

l

Opx

41.0

55.7

0.00

0.10

0.05

4.39

0.08

0.60

9.20

5.72

0.11

0.12

48.8

31.9

0.11

1.34

0.01

0.20

0.00

0.01

0.35

0.12

99.8

100.

2

90.5

90.9

Con

tinue

d

Sam

ple

Roc

k ty

pe

Min

eral

Si

O2

TiO

2 A

l 2O3

Cr 2

O3

FeO

M

nO

MgO

C

aO

Na 2

O

K2O

N

iO

Tota

l M

g# C

px

52.6

0.

10

5.02

1.

05

3.17

0.

12

17.3

18

.9

1.32

0.

00

0.08

99

.6

90.8

H

T08-

9 G

rt lh

erzo

lite

Grt

42.8

0.

14

22.5

1.

82

6.54

0.

27

20.6

5.

63

0.02

0.

00

0.00

10

0.3

85.0

Ol

41.3

0.

00

0.02

0.

04

8.75

0.

14

49.3

0.

09

0.00

0.

00

0.39

10

0.0

91.0

O

px

55.4

0.

10

3.54

0.

86

5.59

0.

11

32.5

1.

25

0.09

0.

01

0.11

99

.6

91.3

C

px

52.3

0.

26

3.85

1.

25

2.89

0.

11

17.0

20

.6

0.81

0.

02

0.10

99

.1

91.4

HT0

8-11

Sp

lher

zolit

e

Sp

0.10

0.

62

32.1

32

.4

15.0

0.

18

17.4

0.

00

0.00

0.

02

0.23

98

.1

67.7

Ol

41.2

0.

01

0.00

0.

02

9.18

0.

12

48.7

0.

10

0.01

0.

00

0.34

99

.7

90.5

C

px

52.0

0.

33

5.56

1.

11

3.16

0.

09

16.3

19

.1

1.70

0.

02

0.08

99

.5

90.3

H

T08-

12

Grt

weh

rlite

Gon

e 40

.6

0.09

20

.5

1.04

5.

19

0.19

19

.4

0.25

8.

03

5.29

0.

06

100.

7 87

.1

Ol

41.5

0.

00

0.01

0.

09

8.24

0.

08

49.7

0.

11

0.00

0.

00

0.36

10

0.1

91.6

O

px

56.7

0.

00

1.90

0.

80

5.07

0.

06

33.6

1.

30

0.03

0.

00

0.08

99

.5

92.3

Cpx

53

.4

0.01

1.

83

1.10

2.

63

0.07

18

.7

21.6

0.

39

0.03

0.

06

99.9

92

.7

BG

08-2

Sp

lher

zolit

e

Sp

0.10

6.

28

14.6

35

.9

28.9

0.

43

11.3

0.

22

0.04

0.

00

0.21

98

.0

41.2

Ol

41.7

0.

02

0.00

0.

05

8.03

0.

15

49.4

0.

08

0.00

0.

01

0.35

99

.8

91.7

O

px

56.9

0.

00

2.36

0.

92

5.03

0.

12

32.9

1.

48

0.02

0.

01

0.09

99

.8

92.2

C

px

53.4

0.

02

2.25

1.

15

2.72

0.

10

18.8

21

.4

0.30

0.

05

0.05

10

0.3

92.6

BG

08-3

Sp

lher

zolit

e

Sp

0.05

22

.2

0.40

23

.8

47.1

0.

70

5.43

0.

05

0.00

0.

01

0.24

10

0.0

17.2

Ol

41.2

0.

00

0.01

0.

04

8.15

0.

08

49.1

0.

11

0.02

0.

00

0.36

99

.1

91.6

O

px

56.0

0.

00

2.71

0.

94

4.89

0.

10

33.1

1.

38

0.04

0.

00

0.11

99

.3

92.4

Cpx

53

.6

0.00

2.

64

1.23

2.

66

0.09

18

.2

21.1

0.

42

0.00

0.

10

100.

0 92

.5

BG

08-4

Sp

lher

zolit

e

Sp

0.06

0.

12

24.3

43

.1

14.0

0.

21

15.7

0.

00

0.00

0.

01

0.15

97

.6

66.9

Ol

41.0

0.

00

0.02

0.

04

9.03

0.

13

49.8

0.

12

0.02

0.

00

0.40

10

0.5

90.9

O

px

56.4

0.

03

2.71

0.

75

5.53

0.

10

33.2

1.

16

0.10

0.

00

0.08

10

0.1

91.5

B

G08

-5

Lher

zolit

e

Cpx

54

.2

0.09

3.

03

1.21

2.

69

0.09

17

.3

20.8

0.

83

0.01

0.

03

100.

3 92

.1

Ol

41.5

0.

00

0.00

0.

07

8.32

0.

12

50.0

0.

09

0.00

0.

01

0.38

10

0.4

91.5

O

px

55.5

0.

00

2.71

0.

85

4.89

0.

16

33.4

1.

27

0.00

0.

00

0.11

98

.9

92.5

B

G08

-6

Sp lh

erzo

lite

Cpx

53

.8

0.06

2.

50

1.07

2.

53

0.08

18

.5

22.0

0.

24

0.04

0.

05

100.

8 92

.9

Sp

0.06

0.

12

25.0

42

.7

13.1

0.

25

16.8

0.

01

0.01

0.

00

0.15

98

.1

69.8

Cpx

. clin

opyr

oxen

e; G

rt. g

arne

t; O

l. ol

ivin

e; O

px. o

rthop

yrox

ene;

Sp.

spin

el; M

g# =100

×Mg/

(Mg+

Fe).

Tabl

e 2

Maj

or e

lem

ent c

ompo

sitio

ns (w

t.%) o

f sec

onda

ry m

iner

als i

n th

e cl

osed

mel

t poc

kets

from

the

Hao

ti an

d B

aigu

an p

erid

otite

xen

olith

s in

the

wes

tern

Qin

ling

Sam

ple

Roc

k ty

peA

ssem

blag

e M

iner

al

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2O

NiO

To

tal

Mg#

Ol

40.8

0.00

0.00

0.10

8.71

0.

1849

.60.

080.

010.

030.

1899

.7

91.1

Cpx

54

.00.

230.

235.

252.

47

0.12

16.3

16.4

2.61

0.04

0.00

97.7

92

.2

CM

P 1

(Ol+

Cpx

+Kfs

)

Kfs

62

.50.

1017

.30.

070.

62

0.01

0.13

0.00

0.88

15.2

0.00

96.8

Ol

41.4

0.00

0.00

0.11

8.82

0.

1849

.60.

040.

040.

010.

1710

0.3

91.0

Cpx

54

.80.

330.

214.

812.

46

0.11

16.0

17.5

2.28

0.03

0.05

98.6

92

.1

CM

P 2

(Ol+

Cpx

+Kfs

)

Kfs

64

.90.

0516

.90.

070.

61

0.00

0.21

0.01

0.82

15.1

0.01

98.6

Ol

41.2

0.00

0.00

0.07

8.38

0.

1549

.80.

030.

010.

010.

2599

.9

91.4

Cpx

52

.80.

280.

245.

412.

33

0.13

15.3

20.3

2.43

0.17

0.07

99.5

92

.2

Kfs

62

.70.

0117

.50.

000.

55

0.00

0.10

0.00

1.00

15.0

0.00

96.9

CM

P 3

(Ol+

Cpx

+

Kfs

+Am

ph)

Am

ph

55.5

1.35

0.56

0.99

1.76

0.

0621

.55.

315.

412.

550.

0194

.9

Ol

41.3

0.00

0.01

0.10

8.38

0.

1949

.50.

100.

040.

010.

2599

.8

91.4

Cpx

54

.60.

290.

244.

912.

34

0.13

16.4

16.9

2.24

0.04

0.06

98.2

92

.7

Kfs

64

.00.

0817

.30.

020.

74

0.00

0.16

0.01

0.94

15.3

0.03

98.5

CM

P 4

(Ol+

Cpx

+

Kfs

+A

mph

)

Am

ph

55.3

3.64

0.30

0.95

2.57

0.

0619

.54.

495.

732.

690.

0595

.3

Ol

41.2

0.00

0.00

0.07

8.88

0.

1748

.60.

080.

040.

010.

1899

.2

90.8

Cpx

55

.40.

450.

313.

982.

51

0.11

16.7

17.4

2.04

0.04

0.00

99.0

92

.3

CM

P 5

(Ol+

Cpx

+Kfs

)

Kfs

64

.90.

0717

.60.

010.

38

0.01

0.11

0.00

0.91

15.2

0.03

99.2

Ol

41.9

0.05

0.00

0.11

8.64

0.

1449

.30.

080.

030.

010.

1810

0.4

91.1

Cpx

55

.50.

200.

255.

892.

36

0.12

15.3

16.4

2.73

0.02

0.05

98.8

92

.1

Kfs

65

.50.

0317

.50.

060.

63

0.00

0.18

0.00

0.90

15.7

0.00

100.

5

HT0

8-2B

G

rt

lher

zolit

e

CM

P 6

(Ol+

Cpx

+

Kfs

+Am

ph)

Am

ph

57.0

1.78

0.27

0.87

1.86

0.

0321

.05.

285.

572.

470.

0396

.1

Ol

41.3

0.00

0.00

0.09

7.65

0.

1649

.20.

070.

000.

010.

1798

.6

92.0

Cpx

55

.60.

300.

154.

102.

36

0.08

16.6

18.1

1.85

0.01

0.07

99.3

92

.7

HT0

8-3

Sp

lher

zolit

e

CM

P 1

(Ol+

Cpx

+Am

ph)

Am

ph

56.2

1.96

0.28

0.79

2.68

0.

0119

.94.

825.

233.

510.

0595

.5

CM

P 2

(Ol+

Cpx

+Am

ph)

Ol

41.6

0.

01

0.00

0.

09

8.97

0.

16

48.8

0.

11

0.02

0.

00

0.23

10

0.0

90.7

Con

tinue

d

Sam

ple

Roc

k ty

peA

ssem

blag

e M

iner

al

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2O

NiO

To

tal

Mg#

Cpx

55

.50.

290.

164.

692.

40

0.11

16.2

17.8

2.20

0.01

0.00

99.4

92

.4

Am

ph

56.3

2.59

0.26

0.48

3.20

0.

0419

.74.

845.

113.

510.

0696

.1

Ol

41.7

0.01

0.01

0.11

9.24

0.

1348

.20.

070.

040.

000.

1899

.7

90.4

Cpx

55

.30.

520.

152.

372.

84

0.14

17.8

18.5

1.14

0.02

0.10

98.8

91

.9

CM

P 3

(Ol+

Cpx

+Kfs

)

Kfs

65

.20.

0017

.00.

010.

61

0.02

0.25

0.01

0.43

16.1

0.02

99.6

Ol

42.0

0.01

0.01

0.07

8.80

0.

1749

.30.

120.

010.

000.

2510

0.7

91.0

Cpx

55

.80.

190.

164.

072.

58

0.10

17.2

17.6

1.93

0.00

0.06

99.6

92

.3

CM

P 4

(Ol+

Cpx

+Am

ph)

Am

ph

56.4

1.84

0.21

1.63

2.28

0.

0520

.04.

705.

493.

290.

0295

.8

Ol

41.1

0.02

0.00

0.13

9.64

0.

1447

.10.

160.

070.

030.

1898

.6

89.8

Cpx

54

.40.

900.

901.

812.

96

0.09

17.8

19.3

0.90

0.03

0.01

99.0

91

.5

Kfs

65

.20.

0117

.00.

060.

61

0.00

0.24

0.03

0.45

16.0

0.02

99.7

HT0

8-3

Sp

lher

zolit

e

CM

P 5

(Ol+

Cpx

+

Kfs

+Am

ph)

Am

ph

55.8

2.77

0.39

0.96

1.84

0.

0319

.95.

565.

103.

070.

0395

.5

Ol

41.3

0.03

0.00

0.14

7.37

0.

1149

.10.

070.

020.

010.

1998

.3

92.3

C

MP

1 (O

l+A

mph

)

Am

ph

56.5

0.78

0.30

2.59

1.56

0.

0620

.14.

505.

633.

080.

0795

.2

Ol

41.5

0.00

0.00

0.17

7.58

0.

1949

.30.

030.

010.

000.

1899

.0

92.1

Kfs

65

.00.

0016

.60.

090.

76

0.02

0.32

0.02

0.37

16.1

0.05

99.4

CM

P 2

(Ol+

Kfs

+

Am

ph)

Am

ph

56.8

1.12

0.12

4.40

1.68

0.

0019

.12.

866.

263.

510.

0595

.9

Ol

41.3

0.00

0.02

0.07

9.15

0.

1748

.00.

100.

030.

000.

1699

.0

90.4

Cpx

55

.30.

280.

283.

292.

24

0.08

16.1

19.3

1.73

0.00

0.06

98.7

92

.8

HT0

8-4-

1 Lh

erzo

lite

CM

P 3

(Ol+

Cpx

+Am

ph)

Am

ph

56.1

2.42

0.48

0.24

3.23

0.

0319

.75.

354.

943.

750.

0696

.4

Ol

41.4

0.00

0.03

0.12

8.38

0.

1849

.60.

140.

010.

010.

2010

0.0

91.4

Cpx

55

.60.

100.

124.

452.

29

0.15

17.1

17.5

1.99

0.02

0.03

99.3

93

.1

HT0

8-5

Sp

lher

zolit

e

CM

P 1

(Ol+

Cpx

+Am

ph)

Am

ph

56.1

3.23

0.31

0.10

3.97

0.

0219

.64.

504.

824.

270.

0697

.0

CM

P 2

(Ol+

Cpx

+Am

ph)

Ol

Cpx

40.9

54.6

0.02

0.05

0.00

0.13

0.08

3.99

9.26

2.34

0.16

0.18

49.0

16.9

0.09

18.1

0.04

1.65

0.02

0.01

0.20

0.01

99.8

97.9

90.5

92.9

Con

tinue

d

Sam

ple

Roc

k ty

peA

ssem

blag

e M

iner

al

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2O

NiO

To

tal

Mg#

A

mph

54

.1

4.72

0.

40

0.17

3.

23

0.05

19

.1

5.18

4.

41

3.99

0.

01

95.4

Ol

42.4

0.

01

0.00

0.

09

8.12

0.

16

50.6

0.

07

0.00

0.

01

0.20

10

1.7

91.8

Cpx

56

.1

0.21

0.

18

4.98

2.

35

0.11

16

.4

17.7

2.

28

0.02

0.

00

100.

3 92

.6

CM

P 1

(Ol+

Cpx

+Am

ph+

Chr

)

Am

ph

56.9

0.

50

0.40

0.

16

8.68

0.

02

18.2

1.

42

6.96

4.

18

0.07

97

.4

Ol

40.6

0.

02

0.00

0.

08

8.12

0.

20

49.6

0.

09

0.04

0.

00

0.20

99

.0

91.7

Cpx

54

.8

0.26

0.

21

4.53

2.

18

0.10

17

.1

17.5

2.

21

0.06

0.

00

99.0

93

.4

CM

P 2

(Ol+

Cpx

+Am

ph)

Am

ph

57.7

0.

11

0.33

0.

69

6.03

0.

03

19.9

2.

58

6.11

4.

02

0.06

97

.6

Ol

41.7

0.

02

0.00

0.

07

7.80

0.

16

50.5

0.

04

0.01

0.

00

0.19

10

0.5

92.1

Cpx

55

.4

0.17

0.

14

5.88

2.

08

0.13

16

.0

17.3

2.

55

0.03

0.

00

99.7

93

.3

Am

ph

56.5

1.

72

0.17

2.

00

1.60

0.

04

20.8

4.

76

5.28

3.

06

0.04

95

.9

HT0

8-7-

2 Sp

lher

zolit

e

CM

P 3

(Ol+

Cpx

+

Kfs

+Am

ph)

Kfs

64

.5

0.00

16

.2

0.09

1.

00

0.00

0.

60

0.06

0.

39

16.1

0.

00

98.9

Ol

41.6

0.

02

0.00

0.

06

8.46

0.

16

49.4

0.

07

0.02

0.

00

0.24

10

0.0

91.3

Cpx

56

.2

0.18

0.

15

4.61

2.

09

0.10

15

.6

19.4

2.

14

0.02

0.

05

100.

5 93

.1

HT0

8-11

Sp

lher

zolit

e

CM

P

(Ol+

Cpx

+Kfs

+Am

ph)

Am

ph

56.8

2.

19

0.39

0.

20

3.55

0.

01

20.0

5.

01

5.02

3.

75

0.05

97

.0

Ol

41.7

0.

00

0.00

0.

09

8.67

0.

19

48.8

0.

08

0.03

0.

00

0.24

99

.8

91.0

Cpx

55

.1

0.21

0.

10

3.67

1.

88

0.03

15

.6

20.1

1.

70

0.00

0.

09

98.5

93

.7

Gla

ss

52.7

0.

35

19.3

0.

00

0.57

0.

00

1.45

4.

65

0.27

2.

47

0.03

81

.8

82.1

Ol

40.7

0.

00

0.01

0.

10

12.1

0.

18

46.3

0.

36

0.00

0.

01

0.19

10

0.0

87.3

Cpx

53

.8

2.28

0.

71

1.03

5.

41

0.10

13

.2

17.6

2.

59

1.37

0.

02

98.1

81

.5

BG

08-2

Sp

lher

zolit

e

CM

P+O

MP

(Ol+

Cpx

+Ilm

+gla

ss)

Gla

ss

52.1

0.

16

4.21

0.

08

8.53

0.

04

24.9

0.

76

0.07

0.

37

0.19

91

.4

84.0

Ol

40.5

0.

00

0.06

0.

05

12.8

0.

17

44.7

0.

49

0.00

0.

01

0.24

99

.0

86.3

C

MP

1 (O

l+C

px+I

lm)

Cpx

54

.4

0.44

0.

34

1.76

4.

61

0.08

14

.9

21.8

1.

15

0.01

0.

05

99.5

85

.4

Ol

41.5

0.

00

0.00

0.

07

7.92

0.

19

49.0

0.

15

0.03

0.

02

0.26

99

.1

91.8

BG

08-3

Sp

lher

zolit

e

CM

P 2

(Ol+

Cpx

+Ilm

+

Ca)

C

px

56.0

0.

14

0.13

3.

96

2.34

0.

13

17.3

17

.8

1.78

0.

01

0.01

99

.6

93.0

BG

08-5

Lh

erzo

lite

CM

P an

d O

MP

1 (O

l+

Cpx

+Chl

o+C

hr+P

vk+C

a)

Ol

41.

3 0

.00

0.0

1 0

.04

9.6

4 0

.15

49.4

0

.16

0.0

2 0

.02

0.2

2 1

00.9

90.

2

Con

tinue

d

Sam

ple

Roc

k ty

peA

ssem

blag

e M

iner

al

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2O

NiO

To

tal

Mg#

Cpx

54

.1

0.14

0.

12

3.81

1.

85

0.11

16

.0

19.7

1.

66

0.01

0.

09

97.5

94

.0

Chl

o 44

.0

0.09

12

.0

0.04

11

.0

0.07

19

.7

1.42

0.

03

0.41

0.

29

89.1

Ol

40.8

0.

01

0.00

0.

00

13.8

0.

24

45.6

0.

43

0.01

0.

01

0.19

10

1.1

85.6

Cpx

55

.0

0.26

0.

16

2.62

2.

45

0.05

17

.4

19.9

1.

13

0.02

0.

06

99.0

92

.8

Chr

0.

07

14.1

6.

64

25.0

46

.1

0.52

7.

16

0.05

0.

01

0.00

0.

26

100.

0

Chl

o 42

.5

0.09

12

.1

0.00

10

.7

0.08

20

.5

1.27

0.

00

0.29

0.

22

87.7

CM

P an

d O

MP

1

Pvk

0.03

56

.1

0.16

0.

28

0.86

0.

02

0.03

38

.9

0.28

0.

02

0.00

96

.7

Ol

42.1

0.

00

0.00

0.

11

9.83

0.

18

48.4

0.

23

0.01

0.

02

0.30

10

1.1

89.9

BG

08-5

Lh

erzo

lite

CM

P 2

(Ol+

Cpx

+Ba)

Cpx

55

.0

0.64

1.

46

1.72

2.

51

0.06

16

.2

20.0

1.

13

0.44

0.

07

99.2

92

.1

Ol

42.0

0.

01

0.02

0.

09

9.01

0.

16

49.0

0.

15

0.02

0.

01

0.20

10

0.7

90.7

Cpx

55

.6

0.64

0.

16

4.48

1.

96

0.07

15

.2

19.8

2.

08

0.03

0.

07

100.

2 93

.3

Ol

40.4

0.

02

0.00

0.

07

12.5

0.

21

45.7

0.

31

0.01

0.

01

0.27

99

.5

86.9

Cpx

54

.1

0.89

1.

95

0.95

3.

28

0.07

16

.3

22.4

0.

56

0.00

0.

04

100.

6 90

.0

CM

P an

d O

MP

1 (O

l+

Cpx

+Chr

)

Chr

0.

40

10.2

4.

54

42.5

30

.2

0.50

10

.5

0.12

0.

02

0.01

0.

30

99.3

Ol

41.4

0.

02

0.00

0.

35

7.77

0.

13

49.7

0.

09

0.02

0.

01

0.22

99

.8

92.0

C

MP

2 (O

l+C

px+C

a+B

a)

Cpx

56

.7

0.10

0.

14

4.46

2.

25

0.10

17

.4

17.7

1.

79

0.01

0.

06

100.

7 93

.3

Rel

ict

41.8

0.

06

0.01

0.

06

8.60

0.

16

49.2

0.

15

0.03

0.

00

0.37

10

0.4

91.1

Rel

ict r

im42

.2

0.02

0.

00

0.12

7.

43

0.10

50

.6

0.08

0.

09

0.00

0.

24

100.

9 92

.5

Ol

41.9

0.

00

0.00

0.

09

6.63

0.

15

51.1

0.

06

0.13

0.

01

0.27

10

0.4

93.3

BG

08-6

Sp

lher

zolit

e

CM

P 3

(rel

ict O

l+O

l+

Cpx

+Ilm

+Ca)

Cpx

55

.4

0.15

0.

12

5.49

1.

50

0.08

14

.5

19.0

2.

43

0.01

0.

02

98.6

94

.6

CM

P 4

(Ol+

Cpx

+Chr

+

Ca)

O

l

Cpx

Chr

41.

8

55.

8

0.0

9

0.0

0

0.2

0

1.7

6

0.0

2

0.1

0

5.5

4

0.1

4

5.1

1

58.

4

7.5

7

2.0

1

21.

2

0.1

6

0.1

0

0.4

2

50.

2

16.

9

10.

7

0.1

0

17.1

0.1

1

0.0

1

2.0

7

0.0

0

0.0

0

0.0

0

0.0

1

0.2

0

0.0

6

0.1

0

100

.2

99.

5

98.

4

92.

3

93.

8

Am

ph. A

mph

ibol

e; B

a. b

arite

; Ca.

car

bona

te; C

hlo.

chl

orite

; Chr

. chr

omite

; Ilm

. ilm

enite

; Pvk

. per

ovsk

ite.

Tabl

e 3

Maj

or e

lem

ent c

ompo

sitio

ns (w

t.%) o

f sec

onda

ry m

iner

als i

n th

e or

thop

yrox

ene

and

oliv

ine

rim

s fro

m th

e H

aoti

peri

dotit

e xe

nolit

hs in

the

wes

tern

Qin

ling

Sam

ple

Roc

k ty

peA

ssem

blag

e M

iner

alSi

O2

Ti

OA

l 2OC

r 2O

FeO

M

nM

gC

aO

Na 2

K2O

N

iO

To

tal

M

g# O

l 41

.6

0.05

0.

00

0.08

10

.7

0.15

48

.7

0.11

0.

010.

020.

21

101.

789

.1

Opx

56

.8

0.35

0.

07

0.64

6.

64

0.26

32

.8

1.61

0.

300.

010.

06

99.6

89

.9

Cpx

55

.1

0.59

0.

23

3.53

2.

58

0.14

16

.6

18.9

1.

680.

030.

07

99.5

92

.0

HT0

8-2S

G

rt

lher

zolit

e

Opx

rim

(Ol+

Opx

+Cpx

+Kfs

)

K-f

eld

64.2

0.

19

17.8

0.

03

0.37

0.

05

0.04

0.

02

0.89

15.1

0.02

98

.7

Ol

40.5

0.

01

0.00

0.

08

11.6

0.

17

47.3

0.

11

0.01

0.02

0.24

10

0.0

88.0

C

px

53.6

0.

41

0.27

2.

20

2.65

0.

11

17.0

19

.5

1.27

0.09

0.03

97

.1

92.0

H

T08-

2

B

Grt

lher

zolit

e

Ol r

im (O

l+K

fs+C

px)

Kfs

63

.5

0.07

17

.4

0.03

0.

23

0.00

0.

07

0.00

0.

8715

.20.

01

97.4

Ol

42.1

0.

03

0.00

0.

18

8.32

0.

21

49.9

0.

03

0.03

0.00

0.17

10

1.0

91.5

K

fs

65.7

0.

01

17.1

0.

05

0.64

0.

02

0.28

0.

01

0.46

16.2

0.04

10

0.4

Am

ph

56.4

4.

22

0.19

3.

09

2.17

0.

04

18.0

3.

51

6.04

3.25

0.02

96

.9

Opx

rim

(Kfs

+Am

ph+O

l+O

px)

Opx

55

.9

0.15

3.

57

0.89

5.

91

0.12

32

.2

1.09

0.

060.

000.

18

100.

190

.8

Ol

41.3

0.

02

0.00

0.

07

9.70

0.

15

48.1

0.

07

0.01

0.03

0.21

99

.7

89.9

O

px

55.8

0.

13

3.62

0.

83

5.87

0.

15

32.0

1.

12

0.06

0.00

0.11

99

.7

90.7

C

px

55.2

0.

62

0.34

2.

71

2.60

0.

12

17.0

19

.1

1.32

0.02

0.01

99

.0

92.2

K

fs

64.9

0.

13

17.1

0.

04

0.59

0.

03

0.25

0.

04

0.53

16.0

0.00

99

.6

HT0

8-3

Sp

lher

zolit

e

Opx

rim

(Ol+

Opx

+Cpx

+Kfs

+Am

ph)

Am

ph

55.8

4.

86

0.28

1.

11

2.37

0.

06

18.8

5.

24

5.27

2.87

0.00

96

.7

Rel

ict

56.6

0.

09

3.23

0.

65

5.79

0.

12

32.9

0.

85

0.07

0.01

0.07

10

0.3

91.1

O

l 41

.5

0.02

0.

00

0.06

9.

52

0.13

49

.0

0.11

0.

040.

000.

18

100.

690

.3

Cpx

56

.0

0.30

0.

15

2.69

2.

54

0.13

17

.4

19.6

1.

270.

000.

00

100.

092

.5

Am

ph

56.7

7.

21

0.20

0.

64

2.66

0.

05

17.7

4.

21

5.31

3.97

0.05

98

.7

HT0

8-5

Sp

lher

zolit

e

Opx

rim

(r

elic

t O

px+O

l+C

px+A

mph

+

glas

s)

Gla

ss

45.7

0.

16

6.06

0.

03

7.02

0.

17

21.0

1.

21

0.07

4.50

0.31

86

.1

84.3

H

T08-

11

Sp

lher

zolit

e

Opx

rim

(Ol+

Cpx

+Kfs

) O

l C

px

Kfs

42.0

55

.9

66.3

0.00

0.

37

0.03

0.00

0.

18

16.4

0.10

4.

52

0.03

8.66

2.

55

0.82

0.16

0.

12

0.00

49.6

16

.5

0.43

0.03

17

.4

0.01

0.01

2.08

0.40

0.00

0.01

16.2

0.22

0.

00

0.04

100.

899

.6

100.

7

91.2

92

.1

Tabl

e 4

Maj

or e

lem

ent c

ompo

sitio

ns (w

t.%) o

f sec

onda

ry m

iner

als i

n th

e op

en m

elt p

ocke

ts fr

om th

e H

aoti

and

Bai

guan

per

idot

ite x

enol

iths i

n th

e w

este

rn Q

inlin

g

Sam

ple

Roc

k ty

pe

Ass

embl

age

Min

eral

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2ON

iOTo

tal

Mg#

Ol

41.2

0.02

0.00

0.

07

9.89

0.

24

47.7

0.17

0.00

0.01

0.21

99.5

89

.7

Opx

52

.70.

337.

48

0.72

7.

07

0.31

27

.63.

010.

040.

000.

0099

.3

87.6

Cpx

52

.30.

085.

68

0.13

1.

94

0.07

16

.821

.10.

670.

640.

1299

.5

94.0

Sp

0.43

0.35

59.1

7.

90

9.97

0.

29

19.6

0.15

0.00

0.02

0.04

97.8

78

.0

Kfs

62

.10.

4018

.3

0.10

0.

20

0.00

0.

851.

160.

3415

.00.

0098

.4

HT0

8-1

Grt

lher

zolit

e O

MP

(Ol+

Opx

+

Cpx

+Sp+

K-

feld

+gla

ss+

Sulf)

Gla

ss

46.0

0.13

22.4

0.

04

0.07

0.

01

0.01

5.23

0.20

5.61

0.01

79.7

24

.7

Ol

41.6

0.02

0.00

0.

07

9.33

0.

10

49.4

0.09

0.04

0.00

0.21

100.

9 90

.5

Opx

55

.60.

124.

13

0.78

6.

10

0.13

31

.91.

080.

150.

010.

0810

0.0

90.4

Cpx

54

.90.

270.

23

4.35

2.

57

0.08

16

.617

.12.

110.

070.

0698

.4

92.1

HT0

8-2B

G

rt lh

erzo

lite

OM

P

(Ol+

Opx

+

Cpx

+Kfs

)

Kfs

64

.50.

0716

.9

0.02

0.

56

0.00

0.

190.

030.

9015

.10.

0198

.2

Ol

41.1

0.00

0.00

0.

07

10.1

0.

19

47.8

0.11

0.04

0.00

0.19

99.6

89

.5

Cpx

54

.90.

330.

18

3.90

2.

25

0.11

16

.118

.91.

670.

000.

0598

.4

92.8

OM

P 1

(Ol+

Cpx

+

glas

s)

Gla

ss

61.6

0.00

23.2

0.

05

0.55

0.

00

1.17

0.25

5.76

0.27

0.01

92.9

79

.1

Ol

41.2

0.00

0.00

0.

09

10.7

0.

16

47.2

0.14

0.02

0.00

0.18

99.7

88

.9

Cpx

55

.00.

550.

21

2.64

2.

75

0.10

16

.819

.81.

370.

010.

0199

.3

91.7

OM

P 2

(Ol+

Cpx

+

Am

ph+g

lass

)A

mph

53

.16.

691.

23

0.92

3.

12

0.06

17

.95.

465.

092.

940.

0596

.6

Rel

ict O

px55

.60.

143.

60

0.76

5.

99

0.13

31

.91.

070.

080.

010.

1199

.4

90.6

Ol

41.3

0.00

0.00

0.

06

8.57

0.

14

48.8

0.04

0.02

0.00

0.24

99.2

91

.1

Cpx

54

.60.

390.

22

4.13

2.

31

0.07

15

.818

.41.

800.

010.

0497

.8

92.5

Am

ph

56.7

0.35

0.24

0.

72

5.26

0.

05

19.3

2.64

6.21

3.81

0.01

95.3

HT0

8-3

Sp lh

erzo

lite

OM

P 3

(rel

ict

Opx

+Ol+

Cpx

+Am

ph+

Cr)

Cr

1.19

0.02

0.22

90

.7

0.65

0.

21

1.26

0.16

0.00

0.00

0.06

94.4

77

.7

HT0

8-4-

1 Lh

erzo

lite

OM

P O

l 41

.20.

030.

01

0.05

10

.1

0.16

47

.50.

160.

050.

010.

2399

.5

89.4

Con

tinue

d

Sam

ple

Roc

k ty

pe

Ass

embl

age

Min

eral

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2ON

iOTo

tal

Mg#

Cpx

53

.00.

901.

45

2.20

3.

14

0.10

16

.119

.71.

370.

020.

0098

.0

90.2

H

T08-

4-1

Lher

zolit

e O

MP

Am

ph

55.1

2.10

0.95

0.

56

2.86

0.

01

19.8

5.48

4.79

3.42

0.06

95.2

Ol

41.2

0.04

0.00

0.

02

11.1

0.

19

47.4

0.17

0.05

0.01

0.17

100.

3 88

.5

Cpx

53

.41.

111.

47

1.13

3.

59

0.08

15

.721

.90.

660.

010.

0699

.1

88.7

Am

ph

55.7

3.99

0.26

0.

46

5.57

0.

09

17.7

4.94

4.59

4.53

0.01

97.8

OM

P 1

(Ol+

Cpx

+

Am

ph+g

lass

)

Gla

ss

53.9

0.09

22.6

0.

00

0.41

0.

01

0.61

5.20

1.24

4.97

0.00

89.1

73

.2

Ol

40.9

0.00

0.00

0.

06

8.12

0.

14

49.9

0.09

0.01

0.01

0.21

99.4

91

.7

Cpx

53

.60.

180.

14

5.22

2.

32

0.13

17

.016

.42.

240.

000.

0797

.2

93.0

Am

ph

55.0

1.92

0.13

0.

20

2.35

0.

04

20.7

5.00

4.30

4.37

0.06

94.1

OM

P 2

(Ol+

Cpx

+

Am

ph+g

lass

)

Gla

ss

45.9

0.40

6.61

0.

01

6.71

0.

14

23.5

0.96

0.06

4.46

0.16

88.9

86

.3

Ol

40.3

0.00

0.00

0.

09

10.4

0.

18

47.7

0.13

0.00

0.00

0.21

99.0

89

.2

Cpx

55

.00.

650.

19

2.53

2.

57

0.08

16

.820

.21.

160.

030.

0699

.2

92.1

OM

P 3

(Ol+

Cpx

+

Am

ph)

Am

ph

55.4

6.89

0.44

0.

64

3.59

0.

06

17.6

5.10

4.86

3.85

0.06

98.6

Ol

41.1

0.03

0.00

0.

12

9.75

0.

16

48.0

0.08

0.02

0.00

0.08

99.4

89

.9

Cpx

55

.70.

490.

14

2.96

2.

70

0.14

17

.119

.01.

390.

000.

0099

.6

91.9

HT0

8-5

Sp lh

erzo

lite

OM

P 4

(Ol+

Cpx

+

Am

ph)

Am

ph

58.1

3.43

0.78

1.

24

1.91

0.

04

21.2

5.80

5.37

3.16

0.03

101.

1

Ol

41.2

0.03

0.00

0.

13

8.40

0.

20

49.8

0.14

0.00

0.00

0.19

100.

1 91

.4

Cpx

54

.20.

360.

19

3.87

2.

36

0.12

16

.419

.32.

240.

010.

0599

.2

92.6

Kfs

64

.80.

0016

.6

0.03

1.

16

0.00

0.

140.

020.

3716

.00.

0299

.1

HT0

8-9

Grt

lher

zolit

e O

MP

(Ol+

Cpx

+K-

feld

+gla

ss)

Gla

ss

59.5

0.00

20.9

0.

04

0.71

0.

03

2.49

0.85

4.33

0.25

0.03

89.1

86

.3

HT0

8-11

Sp

lher

zolit

e O

MP

(Ol+

Cpx

+Kfs

+A

mph

)

Ol

Cpx

41.6

54.9

0.00

1.40

0.00

0.24

0.05

4.07

9.84

2.24

0.16

0.08

48.4

15.8

0.09

18.1

0.01

2.10

0.00

0.00

0.23

0.00

100.

3

98.9

89.8

92.7

Con

tinue

d

Sam

ple

Roc

k ty

pe

Ass

embl

age

Min

eral

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2ON

iOTo

tal

Mg#

Kfs

65

.60.

1717

.4

0.01

0.

33

0.00

0.

200.

000.

4215

.90.

0510

0.1

H

T08-

11

Sp lh

erzo

lite

Am

ph54

.65.

870.

62

0.97

2.

36

0.04

18

.85.

525.

092.

890.

0496

.8

Ol

39.5

0.01

0.00

0.

07

13.5

0.

25

44.9

0.47

0.04

0.00

0.22

99.0

85

.7

Cpx

51

.21.

743.

86

0.80

4.

08

0.06

14

.623

.20.

470.

000.

0410

0.0

86.5

Kfs

43

.60.

0931

.2

0.03

1.

79

0.02

1.

620.

0713

.07.

900.

0299

.4

Ilm

0.09

18.6

0.30

13

.5

60.3

0.

56

5.68

0.04

0.00

0.03

0.28

99.3

Pvk

0.32

56.6

0.04

0.

27

0.62

0.

03

0.07

37.5

0.44

0.13

0.00

96.1

OM

P 1

(Ol+

Cpx

+K-

feld

+Ilm

e+

Pvk+

glas

s)

Gla

ss

47.0

0.54

15.7

0.

07

6.87

0.

12

12.3

2.00

0.44

7.07

0.04

92.2

76

.3

Ol

40.3

0.02

0.06

0.

25

12.6

0.

24

45.2

0.73

0.09

0.00

0.22

99.6

86

.6

Cpx

54

.80.

730.

70

1.23

3.

15

0.12

16

.721

.60.

940.

020.

0010

0.0

90.5

Ilm

0.09

20.7

0.23

8.

93

65.3

0.

68

4.23

0.09

0.00

0.00

0.22

100.

5

OM

P 2

(Ol+

Cpx

+Ilm

+

glas

s)

Gla

ss

42.3

0.17

21.8

0.

06

5.11

0.

08

8.69

4.54

0.47

4.77

0.02

88.1

75

.4

Ol

40.6

0.00

0.00

0.

06

11.0

0.

17

46.8

0.25

0.01

0.01

0.18

99.1

88

.4

Cpx

55

.10.

350.

27

1.18

3.

50

0.12

17

.220

.60.

820.

000.

0399

.3

89.9

Phl

41.9

7.35

8.29

0.

11

7.22

0.

04

18.9

0.05

0.63

9.56

0.06

94.1

OM

P 3

(Ol+

Cpx

+Phl

+

glas

s)

Gla

ss

48.3

0.10

26.2

0.

03

0.19

0.

00

0.06

8.11

0.19

5.03

0.00

88.2

34

.9

Rel

ict O

l40

.60.

000.

05

0.02

10

.1

0.09

46

.80.

110.

040.

020.

3798

.2

89.3

Ol

40.5

0.02

0.02

0.

05

11.4

0.

22

45.7

0.29

0.00

0.02

0.20

98.4

87

.8

Cpx

53

.21.

320.

50

1.07

3.

19

0.08

15

.123

.20.

800.

010.

0598

.4

89.5

Phl

41.4

6.75

8.32

0.

12

6.65

0.

02

19.0

0.12

0.67

9.93

0.07

93.1

HT0

8-12

G

rt w

ehrli

te

OM

P 4

(rel

ict

Ol+

Ol+

Cpx

+

Phl+

Ilm)

Ilm

0.02

53.0

0.02

0.

59

40.0

0.

93

4.73

0.05

0.03

0.00

0.02

99.4

OM

P 5

(rel

ict

Ol+

Ol+

Cpx

+

Sulf+

glas

s)

Rel

ict O

l

Ol

41.0

41.0

0.03

0.04

0.01

0.00

0.07

0.04

11.4

10.8

0.18

0.20

46.5

47.5

0.15

0.20

0.02

0.01

0.00

0.00

0.41

0.22

99.7

100.

0

88.0

88.7

Con

tinue

d

Sam

ple

Roc

k ty

pe

Ass

embl

age

Min

eral

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2ON

iOTo

tal

Mg#

Cpx

53

.91.

250.

96

1.19

3.

66

0.13

16

.820

.70.

660.

010.

0499

.3

89.2

glas

s 54

.10.

2122

.4

0.00

0.

15

0.00

0.

045.

220.

626.

780.

0089

.5

31.5

Ol

40.0

0.02

0.01

0.

06

15.3

0.

33

43.4

0.46

0.02

0.00

0.26

99.9

83

.6

Cpx

53

.01.

900.

41

0.75

4.

58

0.07

14

.721

.71.

440.

000.

0098

.6

85.2

Am

ph

51.3

6.19

1.53

0.

04

4.86

0.

04

17.6

5.55

4.45

4.27

0.00

95.8

Ilm

0.01

53.5

0.00

0.

47

40.2

0.

70

5.86

0.05

0.09

0.00

0.06

101.

0

HT0

8-12

G

rt w

ehrli

te

OM

P 6

(Ol+

Cpx

+

Am

ph+

Ilm+g

lass

)

glas

s 46

.00.

3622

.1

0.19

2.

88

0.02

6.

265.

580.

415.

620.

0189

.4

79.7

Ol

41.1

0.03

0.03

0.

09

12.1

0.

18

46.7

0.27

0.02

0.01

0.29

100.

8 87

.4

Cpx

55

.70.

250.

14

2.25

3.

45

0.08

16

.819

.91.

070.

000.

0099

.7

89.8

Chr

0.

2010

.79.

59

40.9

26

.3

0.40

11

.30.

090.

050.

080.

2710

0.0

OM

P 1

(Ol+

Cpx

+

Chr

+gla

ss)

Gla

ss

48.5

0.45

18.2

0.

06

0.47

0.

00

0.07

4.78

0.27

2.37

0.00

75.1

20

.3

Ol

42.0

0.10

0.03

0.

12

8.90

0.

13

49.2

0.18

0.02

0.01

0.25

100.

9 90

.9

Cpx

56

.30.

230.

12

2.93

2.

26

0.08

17

.519

.21.

290.

020.

0399

.9

93.3

OM

P 2

(Ol+

Cpx

+

Ca+

glas

s)

Gla

ss

49.7

0.46

17.7

0.

03

0.31

0.

00

0.04

4.06

0.20

1.88

0.01

74.4

16

.7

Ol

41.2

0.06

0.01

0.

06

9.75

0.

17

47.8

0.23

0.01

0.01

0.27

99.5

89

.8

Cpx

54

.20.

971.

58

2.31

3.

19

0.07

17

.418

.41.

120.

000.

0499

.2

90.7

BG

08-2

Sp

lher

zolit

e

OM

P 3

(Ol+

Cpx

+

Ca+

glas

s)

Gla

ss

49.9

0.42

19.2

0.

00

0.20

0.

02

0.07

5.19

0.21

1.52

0.00

76.7

36

.6

Ol

38.4

0.02

0.02

0.

21

11.3

0.

18

44.2

0.34

0.02

0.00

0.25

94.8

87

.6

Cpx

50

.32.

062.

73

0.41

4.

60

0.08

14

.623

.60.

200.

000.

0898

.7

85.1

Ilm

0.19

26.5

0.31

17

.7

47.1

0.

50

3.84

0.07

0.47

0.02

0.25

96.9

BG

08-3

Sp

lher

zolit

e O

MP

1

(Ol+

Cpx

+

Ilm+C

hlo)

Chl

o 44

.60.

0711

.1

0.00

7.

67

0.00

23

.50.

950.

040.

270.

4688

.6

OM

P 2

(Ol+

Cpx

+

Ilm)

Ol

Cpx

40.7

52.0

0.02

1.04

0.01

2.45

0.10

1.38

12.1

3.48

0.16

0.07

46.1

15.3

0.29

22.7

0.01

0.53

0.02

0.01

0.21

0.02

99.7

98.9

87.3

88.8

C

ontin

ued

Sam

ple

Roc

k ty

pe

Ass

embl

age

Min

eral

SiO

2Ti

O2

Al 2O

3C

r 2O

3Fe

O

MnO

MgO

CaO

Na 2

OK

2ON

iOTo

tal

Mg#

BG

08-3

Sp

lher

zolit

e

Ilm

0.47

57

.50

0.18

1.

54

31.3

0.

37

5.21

0.

14

0.03

0.

02

0.21

96

.9

Ol

40.5

0.

02

0.02

0.

05

12.4

0.

19

45.2

0.

50

0.02

0.

00

0.26

99

.2

86.8

Ilm

0.04

20

.5

0.50

19

.4

55.2

0.

64

4.00

0.

05

0.06

0.

00

0.17

10

0.5

OM

P 1

(Ol+

Ilm+

Ca+

glas

s)

glas

s 41

.8

3.66

12

.5

0.10

14

.4

0.05

12

.4

1.83

0.

10

0.90

0.

22

88.0

60

.7

Ol

40.9

0.

04

0.02

0.

03

11.3

0.

14

46.5

0.

44

0.03

0.

02

0.25

99

.6

88.1

Cpx

52

.0

1.20

2.

38

1.04

3.

52

0.04

15

.3

23.1

0.

43

0.00

0.

03

99.0

88

.6

Chr

0.

05

3.24

10

.5

40.0

38

.3

0.41

6.

81

0.05

0.

01

0.00

0.

14

99.5

OM

P 2

(Ol+

Cpx

+

Chr

+Chl

o+

Ca)

C

hlo

45.1

0.

01

12.1

0.

04

11.2

0.

00

17.6

1.

52

0.07

0.

42

0.44

88

.5

Ol

40.9

0.

07

0.02

0.

06

12.2

0.

17

46.6

0.

38

0.03

0.

00

0.24

10

0.6

87.3

Cpx

53

.0

1.71

1.

10

0.55

5.

20

0.10

14

.7

22.4

0.

75

0.01

0.

02

99.6

83

.5

OM

P 3

(Ol+

Cpx

+

Chr

+Ca)

C

hr

0.04

12

.4

9.15

32

.2

37.5

0.

42

7.43

0.

22

0.01

0.

01

0.15

99

.6

Ol

41.6

0.

03

0.03

0.

13

10.9

0.

14

47.3

0.

22

0.02

0.

00

0.24

10

0.6

88.7

Cpx

53

.8

0.73

1.

24

1.66

3.

12

0.07

16

.5

21.1

0.

95

0.02

0.

00

99.2

90

.5

Chr

0.

08

2.43

4.

51

53.9

32

.1

0.51

5.

78

0.14

0.

00

0.00

0.

07

99.5

BG

08-4

Sp

lher

zolit

e

OM

P 4

(Ol+

Cpx

+

Chr

+Chl

o+

Ca)

C

hlo

43.4

0.

06

13.2

0.

05

8.87

0.

02

18.8

1.

50

0.06

0.

36

0.51

86

.7

Ol

40.6

0.

02

0.01

0.

13

10.3

0.

14

47.3

0.

20

0.00

0.

00

0.34

99

.1

89.2

Cpx

54

.9

0.44

0.

19

1.68

2.

56

0.04

16

.3

22.3

0.

82

0.01

0.

05

99.3

92

.0

BG

08-5

Lh

erzo

lite

OM

P

(Ol+

Cpx

+

Chr

+Ca)

C

hr

0.07

9.

04

3.77

47

.6

26.7

0.

42

11.3

0.

06

0.01

0.

03

0.23

99

.1

BG

08-6

Sp

lher

zolit

e O

MP

(Ol+

Cpx

+

Chr

+Chl

o+

Ca)

Ol

Cpx

Chr

Chl

o

41.9

55.7

0.24

57.5

0.01

0.18

1.74

1.86

0.00

0.10

2.91

0.32

0.04

4.28

63.0

1.18

8.73

2.18

19.8

1.04

0.11

0.06

0.47

0.02

49.8

16.7

9.11

20.7

0.11

18.7

0.09

5.42

0.03

1.83

0.01

5.00

0.01

0.01

0.00

4.04

0.22

0.08

0.07

0.03

100.

9

99.8

97.4

97.1

91.1

93.2

Phl.

phlo

gopi

te; S

ulf.

sulfi

de.

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 662

Figure 7. Plots of clinopyroxene compositions including primary clinopyroxenes and secondary clinopy-roxenes in closed and open melt pockets from the Haoti and Baiguan peridotite xenoliths. those in the typical CMPs, and thus are described to-gether as follows. Most olivines in the CMPs have Fo contents between 90.0 and 92.5, apparently lower NiO of 0.16 wt.%–0.25 wt.% and CaO less than 0.10 wt.%, covering the corresponding ranges of primary olivines (Tables 2, 3; Fig. 6). Clinopyroxenes in the melt pock-

ets are mostly lower in Al2O3 (<0.30 wt.%), CaO (16.4 wt.%–20.0 wt.%), MgO (15.2 wt.%–17.5 wt.%) and FeO (1.85 wt.%–2.84 wt.%), higher in Cr2O3 (1.50 wt.%–6.00 wt.%), SiO2 (53.5 wt.%–56.2 wt.%), Na2O (0.90 wt.%–2.73 wt.%) and Mg# (91.7–93.1), with TiO2 (<0.5 wt.%) contents similar to the primary ones

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China 663

(Tables 2, 3; Fig. 7). K-feldspars have SiO2 ranging from 62.5 wt.% to 66.3 wt.%, Al2O3 from 16.2 wt.% to 17.8 wt.%, and K2O from 15.1 wt.% to 16.2 wt.%. Amphiboles are enriched in SiO2, Na2O and K2O, and show large variations in TiO2 and CaO (Tables 2, 3; Fig. 8). Minerals in Open Melt Pocket

All minerals in the OMPs exhibit large composi-tional variations. Olivines show apparently lower FeO, MgO, NiO and Mg#, higher CaO than the primary ones, and slightly higher NiO contents than those in the CMPs (Table 4; Fig. 6). Compositions of clinopy-roxenes in the OMPs display an increase in Al2O3, CaO, TiO2 and FeO, and a decrease in Cr2O3, SiO2 and Mg# with the decline of Na2O (Fig. 7). SiO2 (41.8 wt.%–61.6 wt.%) and Al2O3 (4.21 wt.%–26.2 wt.%) contents of the glasses scatter in a much larger range compared to the glasses in orthopyroxene-poor/rich xenoliths defined by Shaw (1999). The glasses from the Baiguan xenoliths have lower Na2O+K2O (0.43 wt.%–2.74 wt.%) and CaO (0.76 wt.%–5.19 wt.%) contents than those of the Haoti glasses (Na2O+K2O, 4.52 wt.%–8.00 wt.%; CaO, mostly 2.00 wt.%–8.11 wt.%) (Table 4; Fig. 8). K-feldspar and amphibole show very similar compositions to those in CMPs.

Figure 8. Plots of SiO2 versus Al2O3 of K-feldspar, amphibole and glass in the closed and open melt pockets in the Haoti and Baiguan peridotite xeno-liths. Glasses in worldwide orthopyroxene-poor xenolith and worldwide orthopyroxene-rich xeno-lith fields are from Shaw (1999) and references therein.

One anorthoclase grain occurs in a garnet wehrlite with abundant Ti-rich minerals including perovskite, Ti-phlogopite and ilmenite. DISCUSSION Origin of Closed Melt Pocket

The CMP and OMP in the western Qinling peri-dotite xenoliths display contrasting features in style, mineral assemblage and mineral chemistry, suggesting different genesis. The modal variations of K-feldspar and clinopyroxene, together with the presence of composite melt pockets in the Baiguan xenoliths, re-veal that the CMPs were formed prior to the OMPs.

The CMPs in the western Qinling xenoliths demonstrate closed system characteristics and inherit some features, such as shapes and mineral assem-blages, from their precursor minerals and well defined boundaries with neighboring minerals. These features suggest that these melt pools were likely to be origi-nated from in-situ melting of pre-existing mineral phases. The origin of melt pockets in mantle xenoliths has been widely attributed to the breakdown/ dissolution of primary mantle minerals, mainly am-phibole, phlogopite, clinopyroxene and orthopyroxene, although by different inducing mechanisms (Bali et al., 2008, 2007, 2002; Ban et al., 2005; Laurora et al., 2001; Embey-Isztin and Scharbert, 2000; Litasov et al., 1999; Shaw, 1999; Shaw et al., 1998; Chazot et al., 1996; Szabo et al., 1996; Xu et al., 1996; Ionov et al., 1994, 1993; Francis, 1987; Dawson, 1984; Stosch and Seck, 1980; Tracy, 1980). Orthopyroxenes in the Haoti xenoliths display similar textures (Fig. 3) to those produced in the experimental study at 0.4–2.0 GPa by Shaw (1999), who suggested that the dissolution of orthopyroxene was the mechanism responsible for the formation of the melt pockets. The identical mineral assemblage and compositions of typical CMPs and orthopyroxene rims (Figs. 2, 3; Tables 1, 2) suggest a genetic affinity of the partially molten orthopyroxene with the melt pocket. The variable widths of orthopy-roxene rims and sizes of relict cores (Figs. 3a–3f) in-dicate different extents of melting, and therefore rep-resent an evolved process from incipient melting to melt pocket. The zoned olivines and their surrounding materials (secondary olivine and sulfide) (Figs. 3g, 3h) indicate an injection of a minor amount of melt/fluid.

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 664

The forming of the melting agent in orthopyroxenes probably takes contributions from K-rich melt/fluid implied by the presence of K-feldspar and K-rich am-phibole (K2O, 2.47 wt.%–4.27 wt.%) (Table 3; Figs. 3a, 3b, 3e, and 3f). The Baiguan CMPs are character-ized by high modal abundance of clinopyroxene, the presence of ilmenite and carbonate, together with the absence of K-feldspar and amphibole, indicating a contribution of Ca- and Ti-rich melts/fluids to their parental melts.

Partial melting in the upper mantle is generally induced by heating, decompression and melt/fluid in-filtration (e.g., Shaw et al., 2005; Zhang et al., 2004; Laurora et al., 2001; Sawyer, 1999; Franz and Wirth, 1997; Tsuchiyama, 1986). Asthenosphere upwelling beneath the western Qinling lithospheric mantle has been suggested by Yu et al. (2004, 2003) on the basis of geochemical studies of the Cenozoic volcanic rocks. This suggests that heating from asthenosphere up-welling may be a possible factor for melting. A recent study on spongy-textured clinopyroxenes in the west-ern Qinling xenoliths indicates that decompression melting was responsible for the formation of the spongy texture (Su et al., 2010c). The compositional similarities between the secondary clinopyroxenes in the orthopyroxene rims and the spongy rims of pri-mary clinopyroxenes (Table 3; Su et al., 2010c) imply that decompression could have played a significant role in the melting of orthopyroxene, and conse-quently the formation of melt pocket. The petro-graphical features suggest that the spongy-textured clinopyroxenes were formed prior to the melt pockets (Figs. 2d, 3e). Minor melts migrating from the molten clinopyroxene might induce the partial melting of or-thopyroxene. Deformation is also considered to pro-mote melting as suggested by the experimental results of Kloe et al. (2000). The deformation textures are well developed in the western Qinling xenoliths (for detailed description in Su et al., 2010a, 2009) and could favor further melting. Therefore, the CMPs in the western Qinling xenoliths were probably origi-nated from in-situ melting of orthopyroxene and oli-vine, induced mainly by decompression and melt/fluid infiltration, with subordinate heating and deformation.

Formation of Open Melt Pocket The OMPs were probably developed on the basis

of the CMPs as evidenced by the presence of compos-ite pockets (Fig. 5) and the systematic compositional variations of minerals in both types of melt pockets (Figs. 6, 7, 8). The occurrence of the OMPs and glasses in both channel and melt pocket in the western Qinling xenoliths (Figs. 2, 3) indicate that the OMP is an open system invaded by abundant external melt/fluid. The involved melt/fluid might have sig-nificantly changed the occurrence and modal abun-dance of pre-existing minerals such as olivine, clino-pyroxene, K-feldspar and amphibole in the Haoti CMPs (Fig. 3), but just slightly changed the mineral compositions of the Baiguan CMPs. This inference is also supported by the fact that olivines are enriched in Ca and Fe, and depleted in Mg (Fig. 6), whereas the clinopyroxenes have enrichments in Al, Ca, Ti and Fe, and depletion in Cr, Si and slightly in Mg (Fig. 7). Glasses in the Haoti OMPs have high alkali and Ca contents, and low Si contents, which is consistent with the presence of phlogopite in the OMPs of a garnet wehrlite (Table 4). Glasses in the Baiguan OMPs are much volatile inferred from their low total contents (Table 4), in accordance with the presence of chlorite and empty vesicles that are likely to be the alteration products of clinopyroxenes (Fig. 5). These character-istics suggest that the external melts/fluids were ex-tremely hydrous with Al-, Ca-, Ti-, Fe-rich contents.

Sulfides in the melt pockets (Figs. 4a, 4b) have been interpreted to be formed from metasomatic processes in the mantle rather than from in-situ partial melting (Shaw, 1997). A metasomatic event in the li-thospheric mantle beneath the western Qinling was inferred from the major and trace elements studies of primary clinopyroxenes (Su et al., 2010a). These OMPs were possibly formed during the metasomatic process. The incomplete reaction between external melt/fluid and CMP, together with the quenched glasses, suggests that the duration of formation of the OMPs could be very short.

As discussed above, the majority of melts form-ing CMP are generated from orthopyroxene. The in-ducing K-rich melts responsible for dissolution/ breakdown of orthopyroxenes in the Haoti xenoliths are possibly derived from melting of pre-existing

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China 665

phlogopite which was observed in the wehrlite (Su et al., 2010a), and from decompression melting of spongy-textured clinopyroxenes (Su et al., 2010c). The melts from initial melting of the Baiguan primary minerals are extremely rich in Ca and Ti, which are probably related to the breakdown of clinopyroxenes (Su et al., 2010c).

The glasses in the OMPs show large composi-tional variations (Table 4; Fig. 8), indicating that they are relict melts after reaction and recrystallization, ra-ther than primary melts. However, the mineral com-positions in the OMPs indicate that the external melts involved in the formation of the OMPs are hydrous, depleted in Si, and enriched in Al, Ca, Ti and Fe. These features of the melts are very similar to the mixture of host magmas plus coexisting carbonatitic magmas, hereby referred to as Ca-rich silicate melts (Dong et al., 2008; Yu et al., 2004, 2003). The pres-ence of abundant quenched glasses and incomplete reaction features in the Baiguan composite melt pock-ets reveal that the formation of the OMPs was closely related to the latest metasomatic event from the exter-nal melts with similar compositions to the host mag-mas. Thereafter, the mantle peridotites with melt pockets were trapped and brought to the surface by the host magmas.

Crystallizing Sequence and Elemental Distribu-tions in Melt Pocket

The CMPs in the western Qinling xenoliths may have experienced long duration of crystallization at depth where secondary minerals were formed from melts. Crystallization sequence of minerals and ele-mental distributions can significantly reflect the evolving path of melts in the upper mantle. Olivines in the pockets are generally anhedral and isolated (Fig. 2), indicating an earlier crystallized phase from the melts. Clinopyroxenes probably crystallized at the same time or slightly later than the olivines since they occur as inclusions or among olivine grains (Figs. 2b, 2d, 2e). This was followed by crystallization of K-feldspars, which are usually anhedral and interstitial (Figs. 2e, 3b, 3f). Disseminated amphiboles dominate the final phase of crystallization and often enclose earlier crystallized minerals. Globular carbonate in the Baiguan CMPs appears to predate the clinopyroxenes

because it occurs as inclusions in the latter (Figs. 2g, 2h).

Olivine has the highest modal abundance in all the melt pockets and also hosts most Fe and Mg, and some Ni contents. The low Ni parental orthopyroxenes of the pockets and the presence of the Ni-rich sulfides could indicate the much lower Ni in secondary olivine than the primary ones (Fig. 6c). The contents of Ti, Si and alkali elements are mainly controlled by amphi-boles in the Haoti melt pockets, and by ilmenites in the Baiguan melt pockets (Tables 2, 3). Al and K are mainly hosted in K-feldspar and the glasses. Carbon-ates act as a reservoir for Ca in the Baiguan melt pockets (Figs. 2g, 2h, 5e, 5f), whereas clinopyroxenes contain lower Ca and extremely lower Al (Figs. 7a, 7c). Na is sparsely distributed in clinopyroxene, am-phibole and glasses (Tables 2, 3, 4; Fig. 7).

Implications for the Lithospheric Mantle Me-tasomatism beneath the Western Qinling

In-situ trace element data of clinopyroxenes, phlogopites and amphiboles in the western Qinling xenoliths indicate that at least two episodes of me-tasomatism occurred, and that carbonatite metasoma-tism was predominant in the Baiguan xenoliths but less dominant in Haoti samples (Su et al., 2010a, c). The metasomatism agents could be further supported by the mineral assemblages and chemical variations of melt pockets. Si- and Ti-rich minerals dominant in the Haoti melt pockets are attributed to silicate metasoma-tism, whereas globular carbonates and Ca-rich miner-als present in the Baiguan melt pockets are attributed to carbonatite metasomatism. The melts involved in the first-stage metasomatism are not only induced by asthenosphere upwelling or Cenozoic magmatism but also by decompression melting since most primary clinopyroxenes display spongy textures and orthopy-roxenes show reactive textures, both of which are closely related to decompression event (Su et al., 2010a, c, 2007). Particularly, the final products of the reactive orthopyroxenes were the CMPs. The visible features and distinct mineral compositions of OMPs indicate that the second-stage metasomatism was in-duced by external melts. Therefore, these CMPs and OMPs are good records of metasomatism agents in the lithospheric mantle.

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 666

CONCLUSION The western Qinling peridotite xenoliths contain

two types of melt pockets. CMP, the earlier formed melt pocket, is characteristically closed in its appear-ance and composed mainly of olivine and clinopy-roxene, with amphibole and K-feldspar as its acces-sory minerals in the Haoti xenoliths, and ilmenite and carbonate in the Baiguan samples. The OMP shows complex mineral assemblage and is characterized by the presence of glasses, Ca- and Ti-rich minerals, and also incomplete reaction texture with the CMP. Sys-tematic petrographical studies and mineral chemistry suggest that the Haoti and Baiguan CMPs were gener-ated by in-situ decompression melting of orthopyrox-ene, olivine and clinopyroxene, and addition of minor external K- and Ca-rich melts/fluids, while the OMPs could have been formed during the latest metasomatic event in the lithospheric mantle beneath the western Qinling.

ACKNOWLEDGMENTS

The authors appreciate the constructive com-ments given by Prof. Yongsheng Liu, Safonov Oleg, and Dr. Yanru Song.

REFERENCES CITED

Bali, E., Falus, G., Szabo, C., et al., 2007. Remnants of Bonin-

itic Melts in the Upper Mantle beneath the Central Panno-

nian Basin? Mineralogy and Petrology, 90(1–2): 51–72

Bali, E., Szabo, C., Vaselli, O., et al., 2002. Significance of Si-

licate Melt Pockets in Upper Mantle Xenoliths from the

Bakony-Balaton Highland Volcanic Field, Western Hun-

gary. Lithos, 61(1–2): 79–102

Bali, E., Zanetti, A., Szabo, C., et al., 2008. A Micro-scale In-

vestigation of Melt Production and Extraction in the Up-

per Mantle Based on Silicate Melt Pockets in Ultramafic

Xenoliths from the Bakony-Balaton Highland Volcanic

Field (Western Hungary). Contributions to Mineralogy

and Petrology, 155(2): 165–179

Ban, M., Witt-Eickschen, G., Klein, M., et al., 2005. The Origin

of Glasses in Hydrous Mantle Xenoliths from the West

Eifel, Germany: Incongrunet Break down of Amphibole.

Contributions to Mineralogy and Petrology, 148(5):

511–523

Bonadiman, C., Coltorti, M., Beccaluva, L., et al., 2008. Mantle

Metasomatism vs. Host Magma Interaction: The Ongoing

Controversy. Geochimica et Cosmochimica Acta, 72(12S):

A95

Carpenter, R. L., 1997. Petrology of Mantle Xenoliths Hosted

in Tertiary Magmas of the Hessian Depression, Germany:

A Comparison to Xenoliths from Quaternary Magmas of

the West Eifel: [Dissertation]. The University of Western

Ontario, Ontario

Chazot, G., Menzies, M., Harte, B., 1996. Silicate Glasses in

Spinel Lherzolites from Yemen: Origin and Chemical

Composition. Chemical Geology, 134(1–3): 159–179

Dawson, J. B., 1984. Contrasting Types of Upper-Mantle Me-

tasomatism? In: Kornprobst, J., ed., Kimberlites II: The

Mantle and Crust-Mantle Relationships. Elsevier Sci.

Publ., Amsterdam. 289–294

Dong, X., Zhao, Z. D., Mo, X. X., et al., 2008. Geochemistry of

the Cenozoic Kamafugites from West Qinling and Its

Constraint for the Nature of Magma Source Region. Acta

Petrologica Sinica, 24(2): 238–248 (in Chinese with Eng-

lish Abstract)

Embey-Isztin, A., Scharbert, H. G., 2000. Glasses in Peridotite

Xenoliths from the Western Pannonian Basin. Annales

Historico-Naturales Musei Nationalis Hungarici, 92: 5–20

Francis, D., 1987. Mantle-Melt Interaction Recorded in Spinel

Lherzolite Xenoliths from the Alligator Lake Volcanic

Complex, Yukon, Canada. Journal of Petrology, 28(3):

569–597

Franz, L., Wirth, R., 1997. Thin Intergranular Melt Films and

Melt Pockets in Spinel Peridotite Xenoliths from the Rhon

Area (Germany): Early Stage of Melt Generation by Grain

Boundary Melting. Contributions to Mineralogy and Pe-

trology, 129(4): 268–283

Gao, S., Zhang, B. R., Wang, D. P., et al., 1996. Geochemical

Evidence for the Proterozoic Tectonic Evolution of the

Qinling Orogenic Belt and Its Adjacent Margins of the

North China and Yangtze Cratons. Precambrian Research,

80(1–2): 23–48

Hibbard, M. J., Sjoberg, J. J., 1994. Signs of Incongruent Melt-

ing of Clinopyroxene in Limbergite, Thetford Hill, Ver-

mont. The Canadian Mineralogist, 32: 307–317

Ionov, D. A., Dupuy, C., O’Reilly, S. Y., et al., 1993. Carbon-

ated Peridotite Xenoliths from Spitsbergen: Implications

for Trace Element Signature of Mantle Carbonate Me-

tasomatism. Earth and Planetary Science Letters, 119(3):

283–297

Ionov, D. A., Hofmann, A. W., Shimizu, N., 1994. Metasoma-

tism-Induced Melting in Mantle Xenoliths from Mongolia.

Formation of Melt Pocket in Mantle Peridotite Xenolith from Western Qinling, Central China 667

Journal of Petrology, 35(3): 753–785

Kloe, R., Drury, M. R., Van Roermund, H. L. M., 2000. Evi-

dence for Stable Grain Boundary Melt Films in Experi-

mentally Deformed Olivine-Orthopyroxene Rocks.

Physical and Chemical Minerals, 27(7): 480–494

Kuo, L. C., Essene, E. J., 1986. Petrology of Spinel Harzburgite

Xenoliths from the Kishb Plateau, Saudi Arabia. Contri-

butions to Mineralogy and Petrology, 93(3): 335–346

Laurora, A., Mazzucchelli, M., Rivalenti, G., et al., 2001. Me-

tasomatism and Melting in Carbonated Peridotite Xeno-

liths from the Mantle Wedge: The Gobernador Gregores

Case (Southern Patagonia). Journal of Petrology, 42(1):

69–87

Liang, Y., Elthon, D., 1990. Geochemistry and Petrology of

Spinel Lherzolite Xenoliths from Xalapasco de La Joya,

San Luis Potosi, Mexico: Partial Melting and Mantle Me-

tasomatism. Journal of Geophysical Research, 95(B10):

15859–15877

Litasov, K. D., Sharygin, V. V., Litasov, Y. D., et al., 1999. Melt

Pockets in Mantle Xenoliths from Alkali Basalts of Vitim

and Udokan Volcanic Fields, East Siberia. LPI Contribu-

tion, 173: 7099

Morgan, J. P., Morgan, W. J., 1999. Two-Stage Melting and the

Geochemical Evolution of the Mantle: A Recipe for Man-

tle Plum-Pudding. Earth and Planetary Science Letters,

170(3): 215–239

Sawyer, E. W., 1999. Criteria for the Recognition of Partial

Melting. Physics and Chemistry of the Earth (A), 24(3):

269–279

Schiano, P., Bourdon, B., 1999. On the Preservation of Mantle

Information in Ultramafic Nodules, Glass Inclusions

within Minerals versus Interstitial Glasses. Earth and

Planetary Science Letters, 169(1–2): 173–188

Shaw, C. S. J., 1997. Origin of Sulfide Blebs in Variably Me-

tasomatized Mantle Xenoliths, Quaternary West Eifel Vol-

canic Field, Germany. The Canadian Mineralogist, 35:

1453–1463

Shaw, C. S. J., 1999. Dissolution of Orthopyroxene in Basanitic

Magma between 0.4 and 2 GPa: Further Implications for

the Origin of Si-Rich Alkaline Glass Inclusions in Mantle

Xenoliths. Contributions to Mineralogy and Petrology,

135(2–3): 114–132

Shaw, C. S. J., Eyzaguirre, J., Fryer, B., et al., 2005. Regional

Variations in the Mineralogy of Metasomatic Assemblages

in Mantle Xenoliths from the West Eifel Volcanic Field,

Germany. Journal of Petrology, 46(5): 945–972

Shaw, C. S. J., Klügel, A., 2002. The Pressure and Temperature

Conditions and Timing of Glass Formation in Mantle-

Derived Xenoliths from Baarley, West Eifel, Germany:

The Case for Amphibole Breakdown, Lava Infiltration and

Mineral-Melt Reaction. Mineralogy and Petrology,

74(2–4): 163–187

Shaw, C. S. J., Thibault, Y., Edgar, A. D., et al., 1998. Mecha-

nisms of Orthopyroxene Dissolution in Silica-

Undersaturated Melts at 1 Atmosphere and Implications

for the Origin of Silica-Rich Glass in Mantle Xenoliths.

Contributions to Mineralogy and Petrology, 132(4):

354–370

Shi, L. B., Lin, C. Y., Chen, X. D., 2003. Composition, Thermal

Structures and Rheology of the Upper Mantle Inferred

from Mantle Xenoliths from Haoti, Dangchang, Gansu

Province, Western China. Seismology and Geology, 25(4):

525–542 (in Chinese with English Abstract)

Stosch, H. G., Seck, H. A., 1980. Geochemistry and Mineralogy

of Two Spinel Peridotite Suites from Dreiser Weiher, West

Germany. Geochimica et Cosmochimica Acta, 44(3):

457–470

Su, B. X., Zhang, H. F., Sakyi, P. A., et al., 2010a. Composi-

tionally Stratified Lithosphere and Carbonatite Metasoma-

tism Recorded in Mantle Xenoliths from the Western

Qinling (Central China). Lithos, 116(1–2): 111–128

Su, B. X., Zhang, H. F., Tang, Y. J., et al., 2010b. Geochemical

Syntheses among the Cratonic, Off-Cratonic and Orogenic

Garnet Peridotites and Their Tectonic Implications. Inter-

national Journal of Earth Sciences,

doi:10.1007/s00531-010-0527-0

Su, B. X., Zhang, H. F., Sakyi, P. A., et al., 2010c. The Origin

of Spongy Texture of Mantle Xenolith Minerals from the

Western Qinling, Central China. Contributions to Miner-

alogy and Petrology, doi:10.1007/s00410-010-0543-x

Su, B. X., Zhang, H. F., Wang, Q. Y., et al., 2007. Spinel-Garnet

Phase Transition Zone of Cenozoic Lithospheric Mantle

beneath the Eastern China and Western Qinling and its T-P

Conditions. Acta Petrologica Sinica, 23(6): 1313–1320 (in

Chinese with English Abstract)

Su, B. X., Zhang, H. F., Xiao, Y., et al., 2006. Characteristics

and Geological Significance of Olivine Xenocrysts in Ce-

nozoic Volcanic Rocks from Western Qinling. Progress in

Natural Science, 16(12): 1300–1306

Su, B. X., Zhang, H. F., Ying, J. F., et al., 2009. Nature and

Processes of the Lithospheric Mantle beneath the Western

Qinling: Evidence from Deformed Peridotitic Xenoliths in

Su Benxun, Zhang Hongfu, Patrick Asamoah Sakyi, Qin Kezhang, Liu Pingping, Ying Jifeng and et al. 668

Cenozoic Kamafugite from Haoti, Gansu Province, China.

Journal of Asian Earth Sciences, 34(3): 258–274

Szabo, C., Bodnar, R. J., Sobolev, A. V., 1996. Metasomatism

Associated with Subduction-Related, Volatile-Rich Sili-

cate Melt in the Upper Mantle beneath the Nograd-Gomor

Volcanic Field, Northern Hungary/Southern Slovakia:

Evidence for Silicate Melt Inclusions. European Journal

of Mineralogy, 8: 881–899

Tang, Y. J., Zhang, H. F., Ying, J. F., et al., 2008. Refertilization

of Ancient Lithospheric Mantle beneath the Central North

China Craton: Evidence from Petrology and Geochemistry

of Peridotite Xenoliths. Lithos, 101(3–4): 435–452

Tracy, R. J., 1980. Petrology and Genetic Significance of an

Ultramafic Xenoliths Suite from Tahiti. Earth and Plane-

tary Science Letters, 48(1): 80–96

Tsuchiyama, A., 1986. Melting and Dissolution Kinetics: Ap-

plication to Partial Melting and Dissolution of Xenoliths.

Journal of Geophysical Research, 91(B9): 9395–9406

Xu, J. F., Castillo, P. R., Li, X. H., et al., 2002. MORB-Type

Rocks from the Paleo-Tethyan Mian-Lueyang Northern

Ophiolite in the Qinling Mountains, Central China: Impli-

cations for the Source of the Low 206Pb/204Pb and High 143Nd/144Nd Mantle Component in the Indian Ocean.

Earth and Planetary Science Letters, 198(3–4): 323–337

Xu, Y. G., Mercier, J. C. C., Menzies, M. A., et al., 1996.

K-Rich Glass-Bearing Wehrlite Xenoliths from Yitong,

Northeastern China: Petrological and Chemical Evidence

for Mantle Metasomatism. Contributions to Mineralogy

and Petrology, 125(4): 406–420

Ying, J. F., Zhang, H. F., Kita, N., et al., 2006. Nature and

Evolution of Late Cretaceous Lithospheric Mantle beneath

the Eastern North China Craton: Constraints from Petrol-

ogy and Geochemistry of Peridotitic Xenoliths from Junan,

Shandong Province, China. Earth and Planetary Science

Letters, 244(3–4): 622–638

Yu, X. H., Mo, X. X., Liao, Z. L., et al., 2001. Temperature and

Pressure Condition of Garnet Lherzolite and Websterite

from West Qinling, China. Science in China (Ser. D),

31(Suppl.): 128–133 (in Chinese)

Yu, X. H., Mo, X. X., Su, S. G., et al., 2003. Discovery and

Significance of Cenozoic Volcanic Carbonatite in Lixian,

Gansu Province. Acta Petrologica Sinica, 19(1): 105–112

(in Chinese with English Abstract)

Yu, X. H., Zhao, Z. D., Mo, X. X., et al., 2004. Trace Elements,

REE and Sr, Nd, Pb Isotopic Geochemistry of Cenozoic

Kamafugite and Carbonatite from West Qinling, Gansu

Province: Implication of Plume-Lithosphere Interaction.

Acta Petrologica Sinica, 20(3): 483–494 (in Chinese with

English Abstract)

Zhang, G. W., Dong, Y. P., Yao, A. P., 2002. Some Thoughts on

Study of Continental Dynamics and Orogenic Belt. Geol-

ogy in China, 29(1): 7–13 (in Chinese with English Ab-

stract)

Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling

Orogenic Belt and Continental Dynamics. Science Press,

Beijing. 1–855 (in Chinese)

Zhang, H. F., 2005. Transformation of Lithospheric Mantle

through Peridotite-Melt Reaction: A Case of Sino-Korean

Craton. Earth and Planetary Science Letters, 237(3–4):

768–780

Zhang, H. F., Goldstein, S. L., Zhou, X. H., et al., 2009. Com-

prehensive Refertilization of Lithospheric Mantle beneath

the North China Craton: Further Os-Sr-Nd Isotopic Con-

straints. Journal of the Geological Society, 166: 249–259

Zhang, H. F., Nakamura, E., Sun, M., et al., 2007. Transforma-

tion of Subcontinental Lithospheric Mantle through Pe-

ridotite-Melt Reaction: Evidence from a Highly Fertile

Mantle Xenolith from the North China Craton. Interna-

tional Geology Review, 49(7): 658–679

Zhang, H. F., Sun, M., Zhou, M. F., et al., 2004. Highly Het-

erogeneous Late Mesozoic Lithospheric Mantle beneath

the North China Craton: Evidence from Sr-Nd-Pb Isotopic

Systematics of Mafic Igneous Rocks. Geological Maga-

zine, 141: 55–62

Zheng, J. P., Zhang, R. Y., Griffin, W. L., et al., 2005. Hetero-

geneous and Metasomatized Mantle Recorded by Trace

Elements in Minerals of the Donghai Garnet Peridotites,

Sulu UHP Terrane, China. Chemical Geology, 221(3–4):

243–259