356
Home intravenous antibiotics in children: determining the population, efficacy, safety and costeffectiveness using cellulitis as a paradigm Laila Farah Binti Ibrahim Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy January 2019 Department of Paediatrics Melbourne Medical School Faculty of Medicine, Dentistry and Health Sciences The University of Melbourne

Home intravenous antibiotics in children - Minerva Access

Embed Size (px)

Citation preview

Home  intravenous  antibiotics  in  children:  

determining  the  population,  efficacy,  safety  and  

cost-­‐effectiveness  using  cellulitis  as  a  paradigm  

Laila  Farah  Binti  Ibrahim  

Submitted  in  total  fulfillment  of  the  requirements  of  the  degree  of  

Doctor  of  Philosophy  

January  2019  

Department  of  Paediatrics  Melbourne  Medical  School  

Faculty  of  Medicine,  Dentistry  and  Health  Sciences  

The  University  of  Melbourne  

i  

Abstract  

Admission  to  hospital  has  a  negative  impact  on  quality  of  life  in  children,  carries  

the  risk  of  hospital-­‐acquired  infections  and  is  associated  with  higher  costs.  The  

alternative  to  hospital  admission  for  intravenous  antibiotics  is  outpatient  

parenteral  antimicrobial  therapy  (OPAT).  There  has  been  increasing  use  of  OPAT  

in  children  but  evidence  supporting  its  use  remains  scarce.  Although  OPAT  is  

usually  used  for  children  who  are  deemed  stable  after  a  period  of  hospitalisation,  

there  has  been  increasing  interest  in  avoiding  admission  completely  by  using  

OPAT  for  acute  infections  directly  from  the  Emergency  Department  (ED).  In  this  

thesis,  cellulitis,  a  common  infection  in  children,  is  used  as  a  paradigm  to  

determine  the  efficacy  and  safety  of  home  treatment.  The  main  aim  of  this  thesis  

was  to  investigate  the  clinical  and  non-­‐clinical  outcomes  of  intravenous  

antibiotic  treatment  at  home  compared  to  hospital,  for  children  presenting  to  the  

ED  with  moderate/severe  cellulitis.  

A  series  of  studies  were  planned  and  undertaken  to  accomplish  this  aim.  The  first  

phase  aimed  to  better  understand  current  practice,  through  a  baseline  

observational  study  of  treatment  at  home  directly  from  the  ED  and  a  clinician  

survey  about  broader  cellulitis  management.  This  was  followed  by  two  

foundation  studies  that  aimed  to  increase  current  knowledge  and  inform  a  

planned  randomised  controlled  trial  (RCT).  The  first  foundation  study  was  a  non-­‐

randomised  cohort  study  of  home  versus  hospital  treatment  and  the  second  

foundation  study  investigated  the  impact  of  antibiotics  on  nasal  colonisation  

with  Staphylococcus  aureus.  The  subsequent  study  aimed  to  determine  which  

patients  with  cellulitis  need  intravenous  antibiotics.  Finally,  the  first  ever  RCT  in  

children  that  aimed  to  determine  the  efficacy  and  safety  of  home  versus  hospital  

treatment  for  cellulitis,  was  undertaken,  accompanied  by  a  comprehensive  cost-­‐

effectiveness  analysis.    

The  baseline  study  showed  that  treatment  of  cellulitis  with  once  daily  

ceftriaxone  under  Hospital-­‐in-­‐the-­‐Home  care  appeared  to  have  low  risks  of  

ii  

treatment  failure,  complications  and  adverse  events  although  numbers  were  

small  and  predominantly  included  older  children  with  limb  cellulitis  without  

systemic  symptoms.  The  clinician  survey  identified  barriers  for  OPAT,  which  

included  the  perceived  high  risk  of  bacteraemia  and  concern  of  children  

deteriorating  at  home,  particularly  younger  children  and  those  with  periorbital  

cellulitis.  The  foundation  studies  found  that  treatment  failure  and  complication  

rates  for  children  treated  at  home  were  no  different  to  those  treated  in  hospital,  

despite  including  a  wider  population.  The  RCT  was  informed  by  the  foundation  

studies  in  several  ways.  These  included  a  clinically  relevant  primary  outcome  of  

treatment  failure,  and  the  need  for  a  cost-­‐effectiveness  analysis.  The  nasal  

colonisation  study  showed  low  prevalence  of  methicillin  resistant  Staphylococcus  

aureus  (MRSA)  in  this  population,  and  that  the  administration  of  ceftriaxone  at  

home  was  not  associated  with  the  development  of  MRSA.  It  confirmed  the  

importance,  due  to  the  broad  spectrum  of  ceftriaxone,  of  investigating  resistant  

bacterial  acquisition  as  an  outcome  of  the  RCT.  To  determine  which  children  

need  intravenous  antibiotics  for  this  common  infection,  a  score  using  clinical  

features  of  patients  presenting  with  cellulitis  was  derived  and  validated:  the  

Melbourne  ASSET  score.  The  crux  of  the  thesis  was  the  RCT,  which  showed  that  

treatment  at  home  was  non-­‐inferior  to  treatment  in  hospital,  in  children  with  

uncomplicated  moderate/severe  cellulitis.  In  the  per-­‐protocol  analysis,  

treatment  failure  was  significantly  lower  with  home  treatment  and  there  were  

fewer  adverse  events.  There  was  no  difference  in  acquisition  of  resistant  nasal  or  

stool  bacteria.  The  health  economic  analysis  showed  that  home  intravenous  

antibiotic  treatment  for  children  with  moderate/severe  cellulitis  was  

emphatically  more  cost-­‐effective  with  significantly  higher  quality  of  life  than  

hospital  admission,  and  costs  to  families  were  significantly  lower.    

This  thesis  provides  novel  evidence  for  policy,  practice  and  future  research  for  

the  use  of  intravenous  antibiotics  at  home  to  avoid  hospital  admission.    

iii  

Declaration  

The  material  presented  in  this  thesis  is  principally  my  original  work,  although  

many  people  contributed  to  the  conception,  design  and  final  published  

manuscripts  included  in  Chapters  2,  3,  4,  5  and  6.  All  manuscript  co-­‐authors  

provided  advice  and  suggestions  in  the  initial  stage  of  the  study  design  and  on  

the  manuscript.  All  co-­‐authors  have  authorised  the  inclusion  of  these  

publications  within  this  thesis.  Professional  editor  Minn  Stewart  provided  

document  formatting  guidance  according  to  standards  D  and  E  of  the  Australian  

Standards  for  Editing  Practice  and  the  Guidelines  for  Editing  Research  Theses  

from  the  Institute  of  Professional  Editors.  

Study  1:  a  baseline  observational  study  that  describes  the  current  OPAT  practice  

in  treating  cellulitis  at  a  tertiary  paediatric  hospital  after  the  initial  introduction  

of  a  direct-­‐from-­‐ED  pathway.  This  study  has  been  published.  

I  was  the  project  coordinator  for  this  study.  I  prepared  a  protocol  and  ethics  

submission  to  the  Royal  Children’s  Hospital  Human  Research  and  Ethics  

Committee  (RCH  HREC)  for  this  project.  Patients  for  this  study  were  

predominately  recruited  by  myself  with  assistance  from  Emergency  Research  

staff.  I  also  conducted  the  statistical  analyses,  interpretation  of  data  and  

produced  the  final  tables  and  figures  as  presented  in  this  chapter.  I  wrote  the  

initial  draft  of  the  published  manuscript  and  performed  the  subsequent  editing.  

Study  2:  a  survey  of  clinicians’  practice  in  hospital  with  regards  to  the  

management  of  cellulitis.  This  study  has  been  submitted  and  is  under  review.  

I  was  the  project  coordinator  for  this  study.  I  prepared  a  protocol  and  ethics  

submission  to  the  RCH  HREC  for  this  project.  Participants  for  this  study  were  

predominately  recruited  by  myself  with  assistance  from  the  Emergency  

Research  staff.  I  also  conducted  the  statistical  analyses,  interpretation  of  data  

iv  

and  produced  the  final  tables  and  figures  as  presented  in  this  chapter.  I  wrote  the  

initial  draft  of  the  published  manuscript  and  performed  the  subsequent  editing.  

Study  3:  a  prospective  cohort  study  comparing  the  outcomes  of  children  treated  

at  home  versus  hospital,  and  assessing  the  feasibility  and  informing  the  

methodology  of  the  RCT.  This  study  has  been  published.  

I  was  the  project  coordinator  for  this  study.  I  prepared  a  protocol  and  ethics  

submission  to  the  RCH  HREC  for  this  project.  Patients  for  this  study  were  

predominately  recruited  by  myself,  with  assistance  from  Emergency  Research  

staff.  I  also  conducted  the  statistical  analyses,  with  guidance  from  A/Prof  

Penelope  Bryant,  interpretation  of  data  and  produced  the  final  tables  and  figures  

as  presented  in  this  chapter.  I  wrote  the  initial  draft  of  the  published  manuscript  

and  performed  the  subsequent  editing.  

Study  4:  a  longitudinal  study  on  the  same  cohort  of  children  comparing  

acquisition  of  nasal  carriage  of  Staphylococcus  aureus.  This  study  has  been  

submitted  and  is  under  review.  

I  was  the  project  coordinator  for  this  study.  Patients  for  this  study  were  

predominately  recruited  by  myself;  while  Dr.  Alex  Scrivener  performed  the  

majority  of  the  1  year  follow  up  nasal  swabs.  I  also  conducted  the  statistical  

analyses,  interpretation  of  data  and  produced  the  final  tables  and  figures  as  

presented  in  this  chapter.  I  wrote  the  initial  draft  of  the  submitted  manuscript  

and  performed  the  subsequent  editing.  

Study  5:  the  development  and  validation  of  a  clinical  scoring  system  to  determine  

whether  intravenous  or  oral  antibiotics  are  needed  to  treat  cellulitis.  This  study  

has  been  published.  

I  was  the  project  coordinator  for  this  study.  Patients  for  this  study  were  

predominately  recruited  by  myself,  with  assistance  from  the  Emergency  

v  

Research  group  research  nurses.  I  also  conducted  the  statistical  analyses,  with  

guidance  from  A/Prof  Susan  Donath,  interpretation  of  data  and  produced  the  

final  tables  and  figures  as  presented  in  this  chapter.  I  wrote  the  initial  draft  of  the  

published  manuscript  and  performed  the  subsequent  editing.  

Study  6:  RCT  of  home  versus  hospital  intravenous  antibiotics  for  children  with  

uncomplicated  moderate/severe  cellulitis.  This  study  has  been  accepted  and  is  in  

press.  

I  was  the  project  coordinator  for  this  study.  I  prepared  the  protocol  and  full  

ethics  submission  to  the  RCH  HREC  for  this  project.  Patients  for  this  study  were  

predominately  recruited  by  myself,  with  assistance  from  the  Emergency  

Research  group  research  nurses.  I  collected  all  the  microbiology  samples  which  

were  processed  by  the  RCH  microbiology  laboratory.  I  also  conducted  the  

statistical  analyses,  with  guidance  from  Ms.  Francesca  Orsini,  the  initial  

interpretation  of  data  and  produced  the  final  tables  and  figures  as  presented  in  

this  chapter.  I  wrote  the  initial  draft  of  the  published  manuscript  and  performed  

the  subsequent  editing.  

Study  7:  a  health  economic  analysis  of  home  versus  hospital  intravenous  

antibiotics  for  children  with  uncomplicated  moderate/severe  cellulitis.  This  

study  has  been  submitted  and  is  under  review.  

The  institutional  costs  were  obtained  from  the  Clinical  Decision  Support  Unit  at  

RCH.  I  performed  the  statistical  analyses,  with  guidance  from  Dr.  Li  Huang,  

interpretation  of  data  and  produced  the  final  tables  and  figures  as  presented  in  

this  chapter.  I  wrote  the  initial  draft  of  the  published  manuscript  and  performed  

the  subsequent  editing.  

This  work  has  not  been  submitted  for  any  other  qualification.  

vi  

Acknowledgement  

The  work  described  in  this  PhD  was  done  over  nearly  3  and  a  half  years,  with  2  

of  my  3  children  born  during  this  time.  I  could  not  have  made  it  to  this  stage  

without  the  practical  and  moral  support  of  a  great  number  of  people.  

I  would  like  to  express  my  sincere  gratitude  to  my  primary  supervisor,  A/Prof  

Penelope  Bryant,  who  has  not  been  just  a  supervisor  but  a  mentor,  a  friend  and  

life  coach.  I  can  never  thank  you  enough  for  all  that  you  have  done  for  me.  I  am  so  

lucky  to  have  you  as  my  supervisor  and  am  finally  now  ready  to  share  you  with  

others.  I  hope  the  rest  of  our  research  journey  together  will  be  just  as  fun!    

My  gratitude  to  Prof  Franz  Babl,  for  planting  the  seed  that  I  could  complete  a  

higher  degree,  followed  by  persistent  reminders  for  me  to  enrol  with  the  

University  of  Melbourne  and  the  rest  is  history.  Although  a  giant  in  the  research  

world,  you  have  always  made  time  for  me.  Thank  you  for  your  guidance,  your  

wisdom,  for  fighting  my  corner,  for  making  me  a  priority  to  the  very  end.  You  

inspire  me  to  be  a  better  researcher!  

Thank  you  Prof  Nigel  Curtis,  without  your  support  I  wouldn’t  have  been  able  to  

start  this  PhD,  I  am  immensely  grateful.  Throughout  this  journey  you  have  

provided  constant  guidance  and  as  always,  a  wealth  of  knowledge.    

My  advisory  committee  members,  Dr  Tom  Connell  and  A/Prof  Andrew  Davidson,  

thank  you  for  teaching  me,  for  your  words  of  encouragement  and  support.  I  am  

indebted  to  all  my  co-­‐authors  –  especially  the  CHOICE  team,  A/Prof  Sandy  

Hopper,  Ms  Francesca  Orsini,  Dr  Andrew  Daley,  and  others  A/Prof  Susan  Donath,  

Dr  Alex  Scrivener,  Dr  Bennett  Salvin,  A/Prof  Kim  Dalziel  and  Dr  Li  Huang.  

I  am  especially  thankful  to  the  staff  of  the  Emergency  Department  and  the  

Emergency  Research  group  (MCRI),  Hospital-­‐In-­‐The-­‐Home,  Dolphin  ward  and  

Microbiology  at  The  Royal  Children’s  Hospital,  Melbourne.  Without  your  support,  

  vii  

this  thesis  would  not  have  been  possible.  Thank  you  for  taking  the  time  to  

identify  appropriate  patients  for  the  study  and  liaise  with  the  study  team,  despite  

your  busy  workload.    

Thank  you  to  the  patients  and  families  of  The  Royal  Children’s  Hospital.  It  is  

always  a  stressful  time  in  the  life  of  a  family  when  a  child  is  admitted  to  hospital.  

Agreeing  to  be  part  of  research  at  this  time  is  truly  altruistic,  thank  you  for  your  

generosity.    

To  my  friends  in  Melbourne,  Nisa  and  Rahman,  Michelle  and  Gerald,  Cathy  and  

Nigel,  being  far  from  family  in  Malaysia  meant  I  got  to  find  new  family  here  in  

Melbourne,  couldn’t  have  done  it  without  your  support.  Thank  you  to  my  coffee  

and  research  buddy,  Barry,  without  whom  this  journey  would  have  been  quite  

lonely.  My  sincere  gratitude  to  the  educators  at  the  RCH  crèche  (Bouchra,  Manjot,  

Harshee,  Shamalie,  Angela,  Daryl,  Hetal,  Hayley)  without  whom  the  last  3  years  

would  not  have  been  possible,  seeing  you  every  morning  made  everything  better.  

Thank  you  for  showering  my  babies  with  love  while  I  had  to  work  on  this  PhD,  I  

will  always  remember  your  warmth  and  kindness.    

 To  my  family  in  Malaysia,  especially  my  parents,  thank  you  for  raising  me  to  be  a  

strong  and  determined  person,  for  your  unwavering  support  and  love,  for  always  

being  there  and  for  the  many  travels  to  help  care  for  your  daughter  and  

grandchildren.  My  parents-­‐in-­‐law,  thank  you  for  your  prayers,  understanding  

and  support  to  start  this  journey.  My  brothers  and  sisters,  thank  you  for  your  

encouragement  and  always  having  my  back.  I  can  always  count  on  you  and  hope  

to  spend  more  time  with  you  with  the  completion  of  this  work.  

To  my  husband  Andy,  thank  you  for  giving  me  the  opportunity  to  develop  my  

career  and  passion  (and  depleting  all  of  our  savings  over  the  past  3  years),  for  

supporting  me  through  the  best  and  worst  parts  of  these  last  few  years.  Knowing  

you  were  there  for  our  family,  no  matter  what,  made  this  work  possible.  To  my  

gorgeous  boys,  you  are  my  source  of  resilience.  When  things  got  tough,  all  I  had  

to  do  was  think  of  you  and  I  would  find  my  strength  again.    

viii  

ix  

Preface  

This  is  to  certify  that:  

(i) the  thesis  comprises  only  my  original  work  towards  the  PhD  degree  except

where  indicated  in  the  preface

(ii) due  acknowledgement  has  been  made  in  the  text  to  all  other  material  used

(iii) the  thesis  is  fewer  than  100,000  words  in  length,  exclusive  of  tables,

bibliography  and  appendices.

Laila  Ibrahim   11/1/19  

x  

Table  of  Contents  

Abstract  ......................................................................................................................................................................................  i  Declaration  .............................................................................................................................................................................  iii  Acknowledgement  ...............................................................................................................................................................  vi  Preface  ......................................................................................................................................................................................  ix  Abbreviations  ......................................................................................................................................................................  xiv  

Chapter  1   Outpatient  parenteral  antimicrobial  therapy,  cellulitis  and  antibiotic  resistance  in  children  ...................................  1  1.1   Introduction  ......................................................................................................................  1  1.2   Background  .......................................................................................................................  2  1.3   Out-­‐of-­‐hospital  settings  ................................................................................................  3  1.4   Benefits  of  out-­‐of-­‐hospital  treatment  ......................................................................  3  1.4.1   Hospital-­‐acquired  infections  .................................................................................................  3  1.4.2   Parental  satisfaction  and  preference  .................................................................................  5  1.4.3   Quality  of  life  ................................................................................................................................  6  1.4.4   Cost-­‐effectiveness  ......................................................................................................................  8  1.4.5   Disadvantages  of  out-­‐of-­‐hospital  settings  ....................................................................  10  

1.5   Infections  suitable  for  ambulatory  treatment  ....................................................  11  1.5.1   Observational  OPAT  studies  ...............................................................................................  12  1.5.2   Home  versus  hospital  studies  ............................................................................................  14  

1.6   Cellulitis  and  treatment  ..............................................................................................  16  1.7   Cellulitis  treatment:  who  needs  intravenous  antibiotics?  ..............................  18  1.8   Cellulitis  treatment:  what  is  a  suitable  antibiotic  for  OPAT?  .........................  19  1.9   Acquisition  of  resistant  bacteria  and  other  pathogens  ....................................  21  1.9.1   Extended  spectrum  beta  lactamase  (ESBL)-­‐producing  Enterobacteriaceae  22  

1.10   Vancomycin-­‐resistant  enterococci  (VRE)  ..........................................................  24  1.11   Clostridium  difficile  ....................................................................................................  26  1.12   Staphylococcus  aureus  ..............................................................................................  27  1.13   Conclusion  and  research  questions  .....................................................................  29  1.14   Aims  of  the  project  .....................................................................................................  30  1.15   Thesis  structure  ..........................................................................................................  30  

Chapter  2   Current  practice  in  home  intravenous  antibiotic  management  of  cellulitis  .........................................................................  33  2.1   Introduction  to  current  practice  ..............................................................................  33  2.2   Management  of  cellulitis  –  how  and  why?  ............................................................  34  

xi  

2.3   Study  1:  Clinician  practice  and  opinions  about  antibiotic  management  of  cellulitis  in  children  ..................................................................................................  35  

2.4   Current  practice  of  home  treatment  of  cellulitis  with  intravenous  antibiotics  –  a  baseline  study  ................................................................................  56  

2.5   Study  2:  Management  of  children  with  cellulitis  with  intravenous  antibiotics  at  home  ...................................................................................................  58  

2.5.1   Additional  data  .........................................................................................................................  65  2.6   Implications  of  studies  on  current  practice  .........................................................  66  

Chapter  3   Foundation  studies  ............................................................  69  3.1   Introduction  to  foundation  studies  .........................................................................  69  3.2   Home  versus  hospital  cohort  ....................................................................................  70  3.3   Study  3:  Home  versus  hospital  cohort  ...................................................................  73  3.4   Nasal  colonisation  in  cellulitis  ..................................................................................  81  3.5   Study  4:  Nasal  colonisation  ........................................................................................  83  3.6   Implication  of  foundation  studies  ........................................................................  113  

Chapter  4   Determining  who  needs  intravenous  antibiotics  in  cellulitis  –  a  clinical  scoring  system  ..................................................  117  4.1   Introduction  to  the  clinical  scoring  system  .......................................................  117  4.2   Study  5:  Clinical  scoring  system  ............................................................................  119  4.3   Implications  of  the  Melbourne  ASSET  score  .....................................................  131  

Chapter  5   Randomised  controlled  trial  ........................................  134  5.1   Introduction  to  the  randomised  controlled  trial  of  home  versus  hospital

 ......................................................................................................................................  134  5.2   Study  6a:  RCT  protocol  .............................................................................................  136  5.3   Study  6b:  RCT  ..............................................................................................................  145  5.3.1   Additional  data  ......................................................................................................................  191  

5.4   Implications  of  the  RCT  ............................................................................................  192  

Chapter  6   Health  economic  analysis  ..............................................  195  6.1   Economic  evaluation  –  comparison  of  alternative  courses  of  actions  .....  195  6.2   Cost-­‐effectiveness  analysis  .....................................................................................  195  6.3   Study  7:  Cost-­‐effectiveness  of  home  versus  hospital  treatment  of  children  

with  moderate/severe  cellulitis  ........................................................................  199  6.4   Implications  of  the  cost-­‐effectiveness  analysis  ................................................  235  

Chapter  7   Discussion  ...........................................................................  238  7.1   Introduction  to  key  findings  ...................................................................................  238  7.2   Home  versus  hospital  for  intravenous  antibiotics  .........................................  239  

xii  

7.3   Is  home  treatment  as  efficacious  as  in  hospital?  .............................................  239  7.4   Is  home  treatment  as  safe  as  in  hospital?  ..........................................................  241  7.5   Do  home  intravenous  antibiotics  have  different  implications  on  

acquisition  of  bacterial  resistance  than  in  hospital?  .................................  244  7.6   What  is  the  impact  of  home  treatment  on  satisfaction  and  quality  of  life?

 ......................................................................................................................................  247  7.7   Which  patients  with  cellulitis  need  intravenous  antibiotics?  ....................  250  7.8   Cost-­‐effectiveness  of  home  versus  hospital  ......................................................  252  7.9   Future  directions  .......................................................................................................  254  7.9.1   Management  of  cellulitis  –  impact  analysis  of  the  Melbourne  ASSET  score254  7.9.2   Microbiology  –  OPAT,  resistant  and  colonising  bacteria,  and  the  microbiome

 255  7.9.3   Hospital-­‐In-­‐The-­‐Home  –  future  RCTs  of  home  versus  hospital  using  the  same  

platform  ....................................................................................................................................  256  7.9.4   Translating  evidence  into  practice  ...............................................................................  258  

7.10   Conclusions  ................................................................................................................  259  

Bibliography  .............................................................................................  268  

Appendix  1  RCT  Protocol  ......................................................................  291  

Appendix  2  Blood  Cultures  in  Cellulitis  are  not  cost  effective  and  should  prompt  investigation  for  an  alternative  focus  ................  335  

Appendix  3  Clinician  survey  questionnaire  ...................................  337  

xiii  

List  of  Figures  

Figure  1.2  Lower  limb  cellulitis  (photo  by  author)  ...........................................................  16  Figure  1.3  Extended  spectrum  beta  lactamase  (ESBL)  -­‐    producing  

Enterobacteriaceae  ...................................................................................................  22  Figure  1.4    Vancomycin-­‐resistant  enterococci  (VRE)  .......................................................  24  

Figure  1.5  Clostridium  diificile  .....................................................................................................  26  

Figure  1.6  Staphylococcus  aureus  ..............................................................................................  27  Figure  6.1  Cost-­‐effectiveness  plane  .......................................................................................  198  

List  of  Tables  

Table  2.1   Details  of  patients  whose  empirical  antibiotics  were  changed  .............  65  

  xiv  

Abbreviations  

CDI   Clostridium  difficile  infection  CHOICE   Cellulitis  at  Home  Or  Inpatient  in  Children  from  the  Emergency    

ED   Emergency  Department  ESBL   extended  spectrum  beta  lactamase    

HAI   hospital-­‐acquired  infections    

HITH   Hospital-­‐In-­‐The-­‐Home  ICER   incremental  cost-­‐effectiveness  ratio  

MRSA   methicillin  resistant  Staphylococcus  aureus  

MSSA   methicillin  sensitive  Staphylococcus  aureus  OPAT   outpatient  parenteral  antimicrobial  therapy  

PPI   proton  pump  inhibitor  QOL   quality  of  life  

RCT   randomised  controlled  trial  

RSV   respiratory  syncytial  virus    UK   United  Kingdom  

UTI   urinary  tract  infections  VAS   visual  analogue  scale  

VRE   vancomycin  resistant  enterococci    

     

  1  

Chapter  1 Outpatient  parenteral  antimicrobial  therapy,  cellulitis  and  antibiotic  resistance  in  children  

1.1 Introduction  

In  the  last  decade,  the  treatment  of  children  in  an  out-­‐of-­‐hospital  setting  as  an  

alternative  to  hospitalisation  has  become  increasingly  popular.1-­‐4  This  practice  

initially  began  as  an  option  for  prolonged  courses  of  intravenous  antibiotics  

administration,  for  the  cystic  fibrosis  population  in  the  1970s.5  Several  different  

types  of  hospital  alternative  settings  have  been  described  such  as  ambulatory  

centres,1  daily  visits  to  the  emergency  department  (ED)6  and  medical  care  in  the  

patients’  home.4  The  terminology  in  the  literature  also  varies  according  to  the  

setting  such  as  ‘ambulatory  care’,  ‘Hospital-­‐At-­‐Home’,  ‘Hospital-­‐In-­‐The-­‐Home’  or  

outpatient  parenteral  antimicrobial  therapy  (OPAT).  Regardless  of  the  setting,  

the  studies  show  benefits  such  as  increased  quality  of  life  (QOL),7,8  higher  

parental  satisfaction9  and  avoidance  of  hospital-­‐acquired  infections10.  With  this  

awareness,  this  practice  has  extended  to  acute  conditions  such  as  cellulitis  and  

urinary  tract  infections  (UTI).  It  is  this  area  of  short-­‐term  home  management  of  

acute  conditions  that  triggered  the  clinical  interest  and  research  questions  for  

this  thesis.  

Despite  its  increasing  popularity,  the  evidence  for  treatment  of  acute  conditions  

is  lacking.  There  are  no  randomised  trials  of  the  efficacy  of  home  versus  hospital  

management  in  infections  in  children.  As  such,  this  home/ambulatory  pathway  is  

still  not  widely  adopted  as  standard  practice.  Without  the  gold  standard  

randomised  evidence,  it  is  often  hard  to  implement  change.  The  initial  plan  for  

this  thesis  was  therefore  to  conduct  a  randomised  controlled  trial  (RCT)  of  home  

versus  hospital  intravenous  antibiotics  in  children,  the  first  to  compare  the  

efficacy  of  home  versus  standard  hospital  treatment  for  an  acute  infection.  

Cellulitis  was  chosen  as  a  paradigm  being  one  of  the  most  common  acute  

infections  treated  on  OPAT.3,11,12  During  the  literature  review  it  became  apparent  

that  there  were  large  gaps  in  knowledge  and  that  some  of  these  needed  to  be  

addressed  prior  to  undertaking  the  RCT.  The  review  of  the  literature  described  

herein,  provides  the  background  to  the  thesis  of  what  was  known,  and  not  

  2  

known,  at  the  start  of  the  project.  It  provides  the  context  both  for  the  first  half  of  

this  thesis  which  was  focused  on  obtaining  a  clearer  understanding  of  current  

management  of  cellulitis,  and  the  second  half  of  this  thesis  which  was  an  RCT  to  

answer  questions  about  efficacy,  safety,  acquisition  of  bacterial  resistance,  QOL  

and  cost-­‐effectiveness  of  home  versus  hospital  intravenous  antibiotics  in  

cellulitis.  

1.2 Background  

In  1974,  Rucker  et  al  first  described  a  cohort  of  127  patients  with  cystic  fibrosis,  

aged  between  7  and  27  who  completed  their  course  of  intravenous  antibiotics  

for  infective  pulmonary  exacerbation  at  home.5  Even  then,  it  was  recognised  that  

hospital  avoidance  resulted  in  ‘savings  in  medical  costs,  lack  of  disruption  to  

family  routine,  as  well  as  in  some  cases  continuation  in  school  or  employment’  

which  were  all  deemed  important  considerations  by  the  author.  Fast  forward  to  

nearly  half  a  century  later,  and  medical  treatment  in  a  home/ambulatory  setting  

has  not  progressed  rapidly.  The  standard  treatment  for  infections  requiring  

antibiotics  is  still  hospitalisation  rather  than  home  treatment.    

To  better  understand  the  context  in  which  the  background  research  for  this  

thesis  was  conducted,  several  areas  of  the  published  literature  were  reviewed  as  

detailed  below:    

• The  different  types  of  out-­‐of-­‐hospital  settings  that  exist.    

• The  advantages  and  disadvantages  of  treatment  in  these  settings    

• The  management  of  cellulitis  and  the  criteria  for  using  intravenous  antibiotics  

• The  effect  of  antibiotics  on  the  acquisition  of  resistant  bacteria,  which  is  the  

concern  with  using  broad-­‐spectrum  intravenous  antibiotics,  a  frequent  choice  

for  home  antibiotic  therapy.  

 

  3  

1.3 Out-­‐of-­‐hospital  settings  

A  few  types  of  alternative  settings  to  hospitalisation  are  described  in  the  

literature.  The  term  used  most  widely  and  frequently  is  OPAT.3,12,13  However  

OPAT  services  vary  in  the  way  the  care  is  delivered,  specifically  in  the  location  

where  the  antibiotic  is  administered.  OPAT  can  occur  in  an  outpatient  centre  1,  in  

the  ED  11  or  in  patients’  homes  12.  The  service  at  home  can  be  delivered  by  

visiting  nurses  or  by  patients  and  families  who  are  taught  how  to  administer  the  

antibiotics  themselves.  With  such  a  variation  in  practice  it  is  not  surprising  that  

outcomes  have  differed,  with  some  studies  documenting  higher  complication  and  

readmission  rates  compared  to  others.  Although  there  is  a  wide  variation  in  

practice,  all  these  models  of  care  serve  the  purpose  of  avoiding  hospital  

admission.    

1.4 Benefits  of  out-­‐of-­‐hospital  treatment  

1.4.1 Hospital-­‐acquired  infections    

The  hospital  environment  is  known  to  be  a  reservoir  for  transmission  of  

infections  or  asymptomatic  carriage  of  potential  pathogens.  The  literature  on  

hospital-­‐acquired  infections  (HAI)  largely  consists  of  studies  on  patient  

populations  who  would  not  be  treated  on  OPAT  anyway,  for  example  paediatric  

and  neonatal  intensive  care  units.14-­‐16    

However,  general  medical  wards  are  not  exempted  from  HAI,  and  since  patients  

on  these  wards  are  more  likely  to  be  amenable  to  an  out-­‐of-­‐hospital  pathway,  the  

focus  of  this  review  is  for  patients  on  general  wards.  It  is  not  uncommon  for  

general  medical  wards  to  have  patients  with  a  variety  of  conditions,  such  as  

those  with  respiratory,  gastrointestinal  and  skin  and  soft  tissue  infections.  One  of  

the  most  common  diagnoses  found  on  the  general  wards  are  infants  with  

respiratory  syncytial  virus  (RSV)  bronchiolitis  who  are  admitted  for  

supplementary  oxygen,  rehydration  or  simply  for  monitoring  in  those  at  high  

risk  of  deterioration.  One  study  in  the  United  Kingdom  (UK)  found  that  the  air  

(measured  up  to  5  metres  from  the  index  case)  surrounding  infants  with  RSV    

  4  

bronchiolitis  contained  high  numbers  of  particles  containing  the  infectious  

virus.17  In  addition,  RSV  particles  continued  to  be  measured  up  to  two  hours  

after  the  patients  were  discharged,  potentially  putting  the  next  occupant  at  risk  

of  contracting  this  virus.  Hospital-­‐acquired  diarrhea  is  also  a  common  

occurrence.  In  thirty-­‐one  French  paediatric  wards,  the  incidence  of  hospital-­‐

acquired  diarrhoea  was  as  high  as  3.6%.18  Of  these  episodes,  2.5%  were  

rotavirus-­‐related  infections.  This  French  study  aimed  to  investigate  which  

hygienic  measures  reduced  the  incidence  of  hospital-­‐acquired  diarrhoea,  based  

on  ward  self-­‐reported  surveys.  Worryingly,  the  authors  found  that  standard  

hospital  precautions  such  as  isolating  patients,  gowning,  and  emphasis  on  hand  

washing  did  not  demonstrate  significant  prevention.  In  a  separate  UK  study,  

69/157  (44%)  of  hospital-­‐acquired  diarrhoea  occurred  on  general  acute  medical  

and  surgical  wards.10  This  study  identified  five  different  viral  pathogens,  with  

rotavirus  and  norovirus  being  the  two  most  common.  These  highly  contagious  

gastrointestinal  infections  have  significant  morbidity.19    

Staphylococcus  aureus  (S.  aureus)  is  also  implicated  as  a  HAI,  most  commonly  

causing  skin  and  soft  tissue  infections  and  bacteraemia.  This  was  shown  in  a  

study  of  242  patients  in  a  childrens’  hospital  in  Texas,  USA.  Although  the  

majority  of  patients  in  this  study  had  a  chronic  underlying  medical  condition,  9%  

had  no  underlying  diagnoses,  suggesting  healthy  children  with  no  previous  

diagnoses  are  also  at  risk.20  In  this  study,  42%  of  patients  had  a  hospital  stay  of  

equal  to  or  less  than  10  days,  before  the  hospital-­‐acquired  S.  aureus  infection.  In  

addition  to  HAI,  there  is  also  evidence  of  colonisation  of  potential  pathogens  

occurring  on  hospital  wards.  For  instance  current  hospitalisation  or  

hospitalisation  of  a  family  member  is  known  to  be  a  risk  factor  for  S.  aureus  

colonisation.21    

The  literature  on  HAI  on  medical  wards  highlights  a  risk  of  contracting  many  

types  of  infections  such  as  a  respiratory  tract  infection,  gastroenteritis  or  even  

bacteraemia.  Therefore  clinicians  should  consider  an  alternate  setting  if  feasible  

and  safe.  However,  it  is  unknown  whether  these  risks  extend  to  children  who  are  

admitted  for  a  short  period,  for  instance  up  to  48  hours  on  a  short  stay  ward.  It  is  

  5  

likely  that  these  risks  remain  although  there  are  no  studies  specifically  

investigating  the  risk  of  HAI  in  children  with  acute  infections  who  are  admitted  

for  a  short  period.  

1.4.2 Parental  satisfaction  and  preference  

In  studies  of  home/ambulatory  treatment  that  have  attempted  to  assess  the  

experience  from  the  child  or  family’s  point  of  view,  the  majority  have  used  

simple  measures  of  patient/parent  preference  or  satisfaction  with  the  treatment  

location  rather  than  using  validated  QOL  tools.1,6  There  are  multiple  studies  

where  patients  and/or  parents  have  expressed  satisfaction  with  a  home  

pathway,  but  without  any  comparison  with  hospital  treatment.1,6  It  is  perhaps  

reassuring  that  there  has  never  been  a  study  showing  participant  dissatisfaction  

with  home/ambulatory  treatment.  In  a  study  of  families  of  children  with  cancer  

who  were  offered  hypothetical  home  and  hospital  treatment  strategies  for  febrile  

neutropenia,  most  families  stated  they  would  prefer  total  inpatient  antibiotic  

therapy.22  However,  this  may  not  reflect  what  families  would  prefer  when  

actually  faced  with  this  situation.  This  finding  was  confounded  by  the  fact  that  

these  families  had  never  experienced  any  other  treatment  pathway  other  than  

inpatient  care  and  50%  of  the  children  in  the  study  had  never  experienced  an  

episode  of  febrile  neutropenia.    

In  contrast  to  the  above,  in  a  study  of  14  patients  who  received  nurse-­‐

administered  chemotherapy  infusions  and  parent-­‐administered  antibiotics  at  

home  for  one  course  of  chemotherapy,  preference  for  treatment  location  was  

obtained.  Only  1  of  the  14  patients  who  had  received  home  care,  preferred  future  

care  in  hospital.23  The  1  patient  who  preferred  future  care  in  hospital  had  doubts  

about  his  mother’s  competence  although  the  authors  did  not  give  further  details.  

The  authors  did  not  measure  satisfaction  with  care.  Another  study  of  36  children  

who  received  ambulatory  ceftriaxone  in  an  ED  for  various  acute  infections  such  

as  cellulitis,  lymphadenitis  and  UTI  surveyed  parental  preference  for  treatment  

location.  Of  the  32  sets  of  parents  who  participated  in  the  survey,  30/32  (94%)  

would  choose  ambulatory  treatment  if  faced  with  similar  circumstances.6  One  

  6  

parent  who  preferred  hospitalisation  had  a  child  who  was  subsequently  

admitted  to  hospital  for  worsening  lymphadenitis  and  the  other  felt  that  

ambulatory  treatment  was  an  ‘overly  stressful  experience’.    

There  are  two  randomised  trials  of  home  versus  hospital  care  in  children  that  

included  an  outcome  of  satisfaction  and  only  one  assessed  parental  preference.  

In  the  RCT  on  children  with  febrile  neutropenia,  satisfaction  level  for  the  hospital  

group  compared  to  the  home  group  were  no  different.7  In  this  trial  families  were  

not  asked  for  preference  of  treatment  location  for  subsequent  episodes.  In  the  

second  RCT,  which  compared  home  versus  hospital  care  for  acute  medical  

conditions  that  require  nursing  observations  or  would  require  at  least  24  hours  

of  ward  observations,  such  as  asthma,  croup  and  gastroenteritis,  a  subset  of  40  

patients  participated  in  a  semi-­‐structured  interview  to  assess  satisfaction  and  

preference.24  The  findings  were  that  90%  of  families  in  both  the  home  and  

hospital  groups  would  prefer  home  treatment  for  subsequent  similar  illnesses.  

There  was  high  satisfaction  and  no  difference  between  treatment  groups.  The  

only  significant  difference  between  the  two  groups  was  in  disruption  to  family  

life:  55%  of  the  hospital  group  reported  great  disruption  compared  to  5%  of  the  

home  group  (p<0.001).  

In  summary,  although  there  is  some  evidence  for  parental  preference  for  

treatment  at  home/ambulatory  pathway,  there  is  only  one  RCT,  which  

investigated  this  as  an  outcome  and  in  this  study,  antibiotics  were  not  

administered.  Findings  may  have  been  different  in  a  randomised  study  where  

patients  required  antibiotics.  

1.4.3 Quality  of  life  

Specific  evaluations  of  QOL  in  the  literature  that  compare  home  to  hospital  

treatment  is  limited  to  the  oncology  7,23,25  and  cystic  fibrosis  populations.26  One  

reason  for  this  may  be  a  lack  of  validated  QOL  tool  specifically  designed  to  

compare  home  versus  hospital  care.7,23  To  overcome  this  problem,  a  QOL  tool  

was  designed  specifically  in  the  study  investigating  the  QOL  in  children  receiving  

  7  

chemotherapy  infusions  at  home  compared  to  hospital.23  The  outcomes  

measured  seven  domains  for  a  child’s  QOL  including  schoolwork,  mood  and  

appetite,  and  four  domains  of  parents’  QOL  including  time  spent  with  spouse  and  

other  children.  Each  of  these  domains  were  rated  on  a  Likert  scale  from  0  to  6.  In  

this  study,  QOL  was  significantly  better  at  home  compared  to  hospital  care  for  

both  children  and  parents  in  the  majority  of  domains  measured.  However  there  

was  no  difference  between  the  two  treatment  locations  for  the  amount  of  time  

out  of  bed  or  duration  of  sleep.  This  scale  was  then  replicated  in  another  RCT  

investigating  children  with  cancer  diagnosed  with  febrile  neutropenia  where  the  

primary  outcome  was  QOL.7  The  results  from  this  trial  showed  a  higher  QOL  was  

reported  for  the  home  group  on  parental  questionnaire  in  terms  of  time  spent  

with  partner,  other  children  and  keeping  up  with  household  tasks.  In  the  patient  

questionnaire,  children  in  the  home  group  had  better  appetite  and  sleep  

compared  to  the  hospital  group.  Cheng  et  al  investigated  the  anticipated  QOL  for  

the  treatment  of  children  with  febrile  neutropenia  utilizing  a  visual  analogue  

scale  (VAS)  if  given  4  different  treatment  options  which  were:  1)  total  inpatient  

antibiotic  therapy,  2)  inpatient  antibiotic  therapy  followed  by  early  discharge  

with  outpatient  oral  antibiotics,  3)  total  outpatient  intravenous  antibiotics  and  4)  

total  outpatient  oral  antibiotics.  The  VAS  scores  were  measured  out  of  a  

maximum  of  10  points  (0  worst,  10  perfect).  From  a  parental  perspective,  

outpatient  oral  antibiotic  management  had  the  lowest  median  VAS  score  

(4.7/10)  while  median  VAS  scores  for  early  discharge  and  outpatient  

intravenous  antibiotics  (5.9/10  each)  had  the  highest  score.  However,  the  

limitation  of  this  study,  which  likely  had  a  large  impact  on  the  finding,  was  that  

the  participants  and  parents  were  not  actually  receiving  treatment  or  care  at  the  

time  of  the  interview.  Instead,  they  were  asked  to  imagine  hypothetical  scenarios  

which  the  study  authors  noted  may  or  may  not  be  applicable  to  the  participants.  

Although  VAS  scores  are  a  quick  and  simple  way  to  measure  QOL,  they  are  prone  

to  bias  and  therefore  have  a  limited  role  in  measuring  QOL.27  

In  a  prospective  non-­‐randomised  study  where  parents  of  children  with  cystic  

fibrosis  were  given  the  option  to  complete  antibiotic  treatment  at  home  or  

hospital  ,  a  validated  QOL  tool  for  children  called  the  DISABKIDS  questionnaire  

  8  

for  chronic  illness  was  utilised,  which  contains  37  questions  on  seven  different  

domains  including  independence,  physical  and  emotional  well-­‐being.26  This  

study  found  that  for  the  home  group,  there  were  significant  improvements  in  all  

of  the  seven  measured  QOL  domains  after  treatment.  This  is  in  contrast  to  the  

hospital  group  where  an  improvement  was  only  seen  in  two  of  the  seven  

parameters.  Whether  QOL  for  children  with  acute  infections  and  their  families  is  

better  with  home  or  hospital  treatment  remains  unanswered.    

1.4.4 Cost-­‐effectiveness  

Although  there  are  several  comparative  studies  of  home  versus  hospital  care  

comparing  costs,  very  few  have  actually  performed  a  comprehensive  economic  

evaluation.23,28  There  is  only  one  study  whereby  a  cost  analysis  using  a  cost-­‐

utility  modeling  method  was  performed,  using  clinical  and  cost  data  from  

previous  randomised  trials.  Home  intravenous  treatment  was  found  to  be  the  

most  cost-­‐effective  strategy  for  managing  low  risk  febrile  neutropenia.29  In  this  

study,  a  home  intravenous  treatment  strategy  was  compared  to  three  others:  

hospital  intravenous  treatment,  outpatient  oral  antibiotic  treatment  and  hospital  

intravenous  treatment  with  early  discharge  (48  hours  hospital  intravenous  

treatment  followed  by  oral  antibiotics  at  home).  Hospital  intravenous  treatment  

was  found  to  be  the  least  cost-­‐effective  strategy.  However,  there  were  several  

limitations  to  this  study  such  as  the  use  of  secondary  data,  costs  being  based  on  

an  analytical  model  and  not  actual  patients,  as  well  as  the  use  of  hypothetical  

scenarios  to  obtain  utility  scores  to  measure  QOL.  The  authors  concluded  that  

prospective  randomised  trials  are  needed  to  establish  reliability  and  validity  of  

their  findings.22  In  a  randomised  trial  of  home  versus  hospital  care,  in  children  

who  required  nursing  observations,  a  cost  minimization  approach  was  taken  

rather  than  a  cost-­‐effectiveness  analysis.30  In  order  to  justify  this  type  of  

economic  evaluation,  the  authors  surmised  that  there  would  be  no  significant  

difference  in  terms  of  clinical  effectiveness  between  home  and  hospital  care.  

Therefore  there  were  no  measurements  of  QOL  for  patients  in  this  study.  With  

regards  to  cost,  the  total  National  Health  Service  costs  per  patient  in  the  study  

was  documented  as  £130/AUD230  greater  for  the  home  group  compared  to  the  

  9  

hospital  group  (£870/AUD1542  versus  £741/AUD1313),  with  staffing  salaries  

being  the  main  driver  of  costs.  The  interpretation  of  this  finding  must  be  taken  

with  caution  though  because  at  the  time  of  the  study,  the  Hospital-­‐At-­‐Home  

service  had  been  very  recently  established  and  was  therefore,  not  at  full  capacity,  

increasing  the  cost  per  patient.  Additionally,  the  patients  in  the  home  group  were  

not  directly  discharged  home  from  the  ED,  but  had  a  period  of  hospitalisation,  

thereby  increasing  ‘home  group’  costs.  This  study  is  the  only  study  in  children  to  

compare  home  with  hospital  costs  from  the  patient/family  perspective.  Direct  

costs  (travel,  food,  childcare)  borne  by  families  were  reduced  by  41%  for  home  

patients  (£23/AUD40  versus  £14/AUD25,  p=0.001).  There  were  no  differences  

in  the  proportion  of  families  who  needed  absence  from  work  (and  therefore  

income  lost)  between  the  groups  (76%  versus  73%,  p=0.84).  However,  in  this  

study,  randomisation  occurred  at  two  time  points,  either  early  randomisation  

(within  6  hours  of  presentation)  or  late  randomisation  (after  24  hours  of  

admission).  For  the  subgroup  of  patients  who  were  randomised  to  home  

treatment  early,  there  were  fewer  absences  than  those  who  went  home  later  

(43%  versus  90%,  p<0.001),  and  parents  appeared  to  take  fewer  days  off  work  

(0.98  versus  2.32  days,  p=0.09).  A  comparison  of  demographics  and  clinical  

features  between  the  group  who  went  home  early  and  the  hospital  group  would  

have  been  informative  but  was  not  provided.  In  a  study  of  patients  with  cystic  

fibrosis,  a  simple  cost  comparison  was  performed  which  resulted  in  the  finding  

that  the  home  intervention  was  less  costly,  EUR2100/AUD3363  versus  EUR  

3360/AUD5381,  p<0.001.26  However,  this  study  did  not  document  a  breakdown  

of  these  costs  or  how  these  costs  were  estimated  making  it  unclear  to  the  reader  

how  these  figures  were  derived.  Additionally,  only  healthcare  institutional  costs  

were  considered.  A  few  other  studies  on  the  oncology  population  with  febrile  

neutropenia  reported  a  limited  economic  evaluation.23,28  In  one  study,  a  simple  

cost  comparison  was  performed  and  the  results  showed  that  that  home  

treatment  was  cheaper  by  USD500/AUD695.  However,  the  authors  

acknowledged  that  without  investigating  costs  to  families  one  could  not  be  

certain  whether  there  was  a  transfer  of  burden  of  costs  from  the  healthcare  

provider  to  families.28  A  cost  analysis  was  also  performed  in  a  study  on  children  

who  received  one  course  of  nurse-­‐administered  chemotherapy  infusions  and  

  10  

parent-­‐administered  antibiotics  at  home,  with  the  conclusion  that  home  was  less  

costly.23  However,  in  this  pre  and  post  home  intervention  study,  absence  from  

work  was  not  documented  because  the  authors  believed  this  to  be  similar  for  

treatment  at  home  or  hospital.  

Most  of  the  published  literature  comparing  the  costs  of  home  to  hospital  

treatment  have  gaps  in  data  such  as  lack  of  transparency  of  sources  of  data,  use  

of  hypothetical  cohorts,  lack  of  a  utility  tool  to  measure  effectiveness  or  do  not  

consider  costs  incurred  by  patients  and  their  families.  Overall,  studies  have  

reported  that  home/ambulatory  pathways  are  less  costly,  but  a  comprehensive  

cost-­‐effectiveness  analysis  has  never  before  been  conducted  for  home  versus  

hospital  in  children.  

1.4.5 Disadvantages  of  out-­‐of-­‐hospital  settings  

For  patients  and  families  who  are  suitable  for  treatment  outside  the  hospital  

setting,  there  are  potential  disadvantages  to  consider.  Firstly,  there  are  several  

comparative  home  versus  hospital  studies  that  report  a  longer  duration  under  

medical  care  for  the  OPAT  group.4,31  For  example,  in  63  children  treated  for  

febrile  neutropenia,  the  home  group  were  treated  for  7.6  days  while  the  hospital  

group  were  treated  for  6.3  days,  p=0.008.31  This  may  be  due  to  a  more  cautious  

approach  by  physicians  for  those  patients  who  are  not  physically  in  the  hospital,  

resulting  in  a  prolonged  duration  of  care.  Another  reason  may  be  a  result  of  

selection  bias:  that  those  who  are  selected  by  physicians  to  receive  OPAT  

treatment  are  those  who  require  a  longer  course  of  antibiotics  or  medical  care  

anyway,  which  is  a  limitation  of  non-­‐randomised  studies.  However,  it  is  possible  

that  this  is  due  to  an  artifactual  reason.  For  instance,  in  some  healthcare  settings  

nurses  who  travel  to  administer  treatments  at  several  locations  are  not  able  to  

‘discharge’  patients  until  they  physically  return  to  hospital,  which  leads  to  a  

falsely  increased  duration  of  care.  These  studies  do  not  report  precisely  how  the  

duration  of  medical  care  or  length  of  stay  was  calculated  for  those  on  OPAT.  

  11  

Another  disadvantage  for  the  outpatient  pathway  is  the  small  percentage  of  

families  who  would  still  prefer  hospital  treatment.1,7  Orme  et  al  reported  that  

families  were  anxious  about  caring  for  their  children  with  febrile  neutropenia  in  

the  home.7  For  some  parents,  being  in  hospital  may  offer  a  physical  ‘burden-­‐

sharing’  option,  especially  for  those  with  complex  and  chronic  illnesses  such  as  

the  oncology  population.  The  constant  presence  of  medical  staff  may  be  a  source  

of  comfort  for  some  families,  particularly  those  who  are  very  sick  or  frequently  

in  hospital.  Another  reason  why  families  may  prefer  hospital  admission  is  if  they  

are  required  to  travel  for  OPAT  care.1,6  In  a  study  of  cellulitis  treatment  at  a  ‘day  

treatment  centre’,  approximately  30%  of  families  reported  preference  for  

hospital  admission  should  their  child  have  the  same  condition  again.  Although  

reasons  were  not  specifically  documented,  the  authors  mentioned  travel  time  

and  care  of  other  siblings  as  possible  reasons.  However,  most  families  still  prefer  

to  commute  rather  than  have  their  child  hospitalised.  

Lastly,  one  of  the  biggest  downsides  for  those  treated  on  OPAT  is  the  risk  of  

readmission  due  to  complications  or  treatment  failure.  Although  most  

comparative  studies  report  a  similar  complication  rate32,33,  having  a  

complication  for  those  outside  the  hospital  requires  the  onerous  process  of  re-­‐

presenting  to  hospital  and  waiting  for  a  hospital  bed.  Only  those  who  have  

infections  where  there  is  a  reasonable  chance  of  OPAT  being  successful  should  be  

treated  via  this  pathway.  What  constitutes  ‘a  reasonable  chance  of  success’  is  

likely  to  differ  between  infections  and  even  individuals.  

1.5 Infections  suitable  for  ambulatory  treatment  

Studies  of  infections  treated  via  a  home/ambulatory  pathway  can  be  broadly  

divided  into  two  types:  1)  observational  or  descriptive  studies;  and  2)  

comparative  studies  of  home  versus  hospital.  Infections  treated  by  

home/ambulatory  services  can  also  be  classed  into  prolonged  and  short-­‐course  

antibiotic  therapy.  As  defined  by  the  Infectious  Diseases  Society  of  America  

(IDSA)  guidelines  on  OPAT,  short-­‐course  antibiotics  are  defined  as  antibiotic  

therapy  of  less  than  one  week  duration.34  Prolonged  antibiotics  are  given  for  

  12  

infections  such  as  osteomyelitis,  septic  arthritis,  meningitis  and  cystic  fibrosis  

respiratory  exacerbations.3,35  Shorter  course  antibiotics  are  given  for  cellulitis1  

and  UTI36,37.  In  addition,  febrile  neutropenia  7  and  post-­‐operative  complicated  

appendicitis  have  also  been  reported  to  be  amenable  to  home  treatment  32,33,38,  

although  these  conditions  may  be  either  short-­‐course  or  prolonged  antibiotic  

therapy.  The  majority  of  these  studies  are  descriptive,  observational  studies  

where  a  selected  group  of  patients  deemed  to  be  less  unwell  are  treated  at  home  

or  ambulatory  pathway.  

1.5.1 Observational  OPAT  studies    

Observational  studies  of  OPAT  all  comprise  single  centre  studies  describing  their  

management  of  a  range  of  infections  3,35  or  focusing  on  a  single  infection.1  

Patients  are  pre-­‐selected  and  high  rates  of  success  and  low  rates  of  

complications  are  usually  reported.  The  issue  with  these  non-­‐comparative  

studies  is  the  lack  of  benchmarking  to  allow  readers  to  judge  whether  or  not  

patients  treated  via  the  ambulatory  pathway  are  disadvantaged  compared  to  

standard  care.  Most  OPAT  studies  include  children  that  have  had  at  least  a  brief  

hospital  admission  during  the  worst  of  their  infection,  but  often  much  longer  

with  many  inpatient  bed  days  before  a  final  period  of  OPAT  to  finish  a  long  

course  of  intravenous  antibiotics.  There  are,  however  a  handful  of  studies  where  

OPAT  is  commenced  from  the  ED,  so  that  the  patient  is  never  admitted  to  an  

inpatient  bed  and  avoids  hospital  altogether.  A  prospective  Canadian  study  

investigated  the  outcomes  of  children  with  cellulitis  requiring  intravenous  

antibiotics  treated  at  a  day  treatment  centre.  1  In  this  study,  224  children  aged  3  

months  to  18  years  presented  to  the  ED  with  moderate/severe  cellulitis,  defined  

in  this  study  as  those  requiring  intravenous  antibiotics,  over  a  2  year  period.  Of  

224  children,  92  (41%)  were  treated  at  a  day  treatment  centre  with  once  daily  

intravenous  ceftriaxone,  while  the  remaining  59%  of  patients  received  standard  

care  in  hospital.  Referral  to  the  day  treatment  centre  was  offered  as  an  

alternative  to  conventional  hospitalisation,  according  to  the  judgement  of  the  ED  

physicians.  However  this  study  did  not  clarify  of  those  offered  this  treatment  

option,  how  many  patients  had  declined.  Exclusion  criteria  for  treatment  were  

  13  

complicated  cellulitis  such  as  those  associated  with  toxicity  (lethargy,  

cardiovascular  instability),  immunosuppression  and  presence  of  significant  

comorbidity.  These  patients  received  a  single  dose  of  ceftriaxone  in  the  ED  

administered  through  a  peripheral  intravenous  access  that  was  heparinised  daily  

throughout  treatment  duration.  This  day  treatment  centre  was  opened  7  days  a  

week  and  was  staffed  by  paediatricians.  Ceftriaxone  was  continued  until  the  

fever  disappeared  and  the  cellulitis  improved  by  75%.  Subsequently,  the  patient  

was  prescribed  oral  cephalexin.  The  success  rate  was  reported  as  79%,  defined  

as  those  not  readmitted  to  hospital  during  treatment.  However,  the  remainder  

required  hospitalization  for  concerns  regarding  emerging  complications.  The  

mean  duration  of  antibiotics  was  2.5  days.  The  authors  did  not  report  the  

duration  of  antibiotics  or  rate  of  complications  for  the  hospital  group,  therefore  

the  interpretation  of  the  purported  success  of  this  home  pathway  is  unclear.  If,  

for  example,  the  proportion  of  those  in  the  hospital  group  who  developed  

complications  was  also  around  20%,  then  clearly,  those  that  had  ambulatory  

treatment  did  not  suffer  a  disadvantage.    

In  another  observational  study,  the  use  of  ambulatory  ceftriaxone  in  the  ED  

setting  to  treat  a  variety  of  infections  such  as  cellulitis,  lymphadenitis,  UTI  and  

tonsillitis  in  36  children  was  described  prospectively,  without  a  comparison  to  

standard  of  care.6  Only  one  child  with  a  diagnosis  of  lymphadenitis  was  

considered  as  having  failed  treatment  which  led  to  hospitalisation.  The  criteria  

for  treatment  failure  was  not  reported,  therefore  it  was  possible  that  this  child  

just  required  a  longer  duration  of  antibiotics  as  commonly  seen  in  lymphadenitis.    

Other  studies  retrospectively  report  their  experiences  as  an  OPAT  service  with  a  

focus  on  the  appropriateness  of  antibiotics  prescribed.3,35  Although  these  studies  

contribute  to  the  growing  body  of  literature  on  ambulatory  care,  they  may  give  

the  inaccurate  impression  to  those  not  familiar  with  OPAT,  of  a  generally  high  

rate  of  readmission  and  complications.  This  impression  may  have  come  about  as  

many  of  the  patients  commonly  treated  via  OPAT  were  those  requiring  

prolonged  antibiotics,  as  shown  in  two  studies  from  the  United  States  reporting      

a  median  treatment  length  of  11  and  12  days  respectively.3,35  As  a  result,  this  

  14  

patient  population  is  at  risk  for  not  only  complications  of  the  disease  they  are  

being  treated  for,  but  also  the  side  effects  of  prolonged  antibiotics  such  as  

abnormal  biochemistry  and  haematological  status  and  the  complications  

associated  with  central  venous  catheter.  In  the  two  US  studies,  antibiotic  or  

catheter  related  complication  rates  of  24%  and  29%,  were  reported.3,35  In  both  

studies,  the  most  commonly  used  antibiotic  was  ceftriaxone  at  18%  and  25%  

respectively.  Despite  the  high  rate  of  complications,  when  prolonged  antibiotics  

are  required,  ambulatory  treatment  is  attractive  in  order  to  avoid  prolonged  

hospitalisation.  

1.5.2 Home  versus  hospital  studies  

Comparative  studies  of  home  versus  hospital  care  are  more  informative  than  

descriptions  of  a  home  service  alone.  When  key  outcomes  such  as  duration  of  

antibiotics  and  length  of  stay  are  reported  for  both  ambulatory  and  hospital  

cohorts,  readers  are  able  to  better  discern  the  benefits  and  risks  of  ambulatory  

treatment.  One  of  the  earliest  comparative  studies  was  reporting  on  post-­‐

operative  complicated  appendicitis  in  a  small  study  of  16  children.32  Eight  

children  were  treated  at  home  with  insertion  of  a  peripherally  inserted  central  

catheter  while  the  remaining  eight  were  treated  in  hospital.  The  number  of  total  

care  days  was  no  different  between  the  groups.  However,  the  authors  did  not  

report  how  treatment  location  was  assigned,  whether  by  self-­‐selection  or  

physician  selection,  an  important  factor  in  deciding  which  patients  would  be  

suitable  for  this  pathway  based  on  this  study.  Additionally,  although  the  authors  

stated  that  families  had  no  difficulties  accepting  the  insertion  of  a  peripherally  

inserted  central  catheter,  this  appears  to  have  been  inserted  at  the  same  time  as  

surgery  for  appendectomy.  It  is  difficult  to  imagine  families  accepting  additional  

anaesthetic  or  sedation  for  their  child  for  a  shorter  antibiotic  duration,  which  is  

likely  to  be  necessary  for  many  children  requiring  central  catheters  or  cannulas.  

Another  study  also  comparing  home  versus  hospital  in  post-­‐operative  

complicated  appendicitis,  also  found  no  difference  in  key  outcomes  or  rate  of  

complications.38  This  study  reported  a  list  of  selection  criteria  for  home  

treatment  suitability,  divided  into  medical  and  social  criteria.  Medical  criteria  

  15  

included  being  afebrile  >24  hours,  normal  gastrointestinal  function  and  

tolerating  oral  analgesics.  Social  criteria  included  having  a  functioning  home  

telephone,  insurance  coverage  for  home  care  and  continuous  caretaker  

availability.  By  having  a  list  of  criteria  both  medical  and  social,  other  services  are  

able  to  use  this  information  to  establish  their  own  service  or  for  those  with  

existing  pathways,  these  criteria  can  be  compared  with  their  own  protocol.  There  

is  one  retrospective  study  comparing  the  outcomes  of  42  children  with  

periorbital  cellulitis  who  received  ambulatory  treatment  and  the  21  children  

treated  in  hospital.2  In  this  retrospective  chart  review,  the  criteria  that  clinicians  

used  to  decide  on  route  of  treatment,  intravenous  antibiotics  versus  oral  

antibiotics,  or  location  of  treatment,  ambulatory  versus  hospital  care,  was  not  

documented.  There  was  no  significant  difference  in  duration  of  treatment  in  days  

between  those  on  ambulatory  management  and  those  admitted  (mean  2.8  days  

in  both  groups)  and  the  rate  of  complications  were  also  similar.  

All  of  these  studies  suffer  from  selection  bias,  and  for  many,  the  source  of  bias  is  

often  unknown,  due  to  lack  of  clarity  around  patient  selection  for  OPAT.  There  is  

a  single  RCT  of  home  versus  hospital  intravenous  antibiotics  in  children  with  

febrile  neutropenia.7  In  36  children  randomised  to  treatment  at  home  or  

hospital,  the  primary  outcome  was  QOL,  not  efficacy  or  safety.  The  authors  state  

that  families  were  anxious  about  supporting  their  unwell  children  outside  of  the  

hospital  setting  despite  the  fact  that  the  literature  suggests  likely  superior  QOL  

with  outpatient  treatment.  The  main  finding  of  this  study  that  treatment  at  home  

was  associated  with  a  higher  QOL,  although  important,  is  unlikely  to  convince  

clinicians  to  change  their  practice.  There  were  a  few  complications,  but  the  study  

was  not  powered  to  investigate  efficacy,  which  is  crucial  to  change  practice.  It  is  

unclear  why  a  clinical  outcome  was  not  chosen  by  the  investigators,  for  example  

persistence  of  fever  beyond  48  hours  or  requiring  additional  antibiotics,  but  is  

potentially  related  to  the  numbers  required  for  a  trial  with  a  clinical  outcome.    

Despite  the  inertia  to  changing  practice,  it  is  important  to  note  that  even  in  

conditions  such  as  post  complicated  appendicitis  or  febrile  neutropenia,  there  

have  been  no  reported  fatalities  in  those  treated  at  home.  Serious  adverse  events  

16  

are  even  less  likely  in  other  less  serious  infections  such  as  cellulitis.  This,  

therefore,  seems  like  a  good  infection  to  use  as  a  paradigm  for  home  intravenous  

antibiotic  use,  to  develop  evidence  that  would  inform  practice.  In  the  following  

section,  the  literature  on  the  ambulatory  treatment  of  cellulitis,  as  the  focus  of  

this  thesis  is  explored  in  more  detail.    

1.6 Cellulitis  and  treatment  

In  Australia  in  2002,  the  rate  of  

hospitalisation  for  the  skin  infection  

cellulitis  was  11.5  episodes  per  10,000  

people  with  a  mean  duration  of  5.9  days.39  

In  the  United  States,  skin  and  soft  tissue  

infections  which  include  cellulitis  account  

for  over  74,000  pediatric  hospital  

admissions  per  year.40  Clinically,  cellulitis  

is  manifested  by  rapidly  spreading  areas  

of  oedema,  redness  and  heat,  sometimes  

accompanied  by  lymphangitis  and  

inflammation  of  the  regional  lymph  nodes,  

Figure  1.1  Lower  limb  cellulitis  

(image  source:  author)  

with  or  without  systemic  features.41  This  infection  when  uncomplicated,  typically  

responds  to  antibiotics  targeting  Group  A  Streptococci  and  S.  aureus.  Although  

mild  cellulitis  is  treated  with  oral  antibiotics,  parenteral  antibiotics  are  used  for  

more  severe  cellulitis  or  cases  where  oral  antibiotics  fail.42,43  In  children  and  

adults,  catastrophic  outcomes  for  cellulitis  are  very  unlikely  and  the  risk  of  

bacteraemia  is  low.44,45  Due  to  these  reasons,  it  is  an  ideal  condition  to  treat  with  

OPAT.  In  fact,  the  most  common  acute  infection  treated  with  OPAT  in  adults  is  

cellulitis,  increasingly  directly  from  the  ED.46-­‐48    

  17  

At  the  start  of  the  work  leading  to  this  thesis  there  were  only  three  home  or  

ambulatory  studies  in  children  specifically  investigating  the  treatment  of  

cellulitis.  Although  all  three  treated  children  directly  from  the  ED  with  the  goal  of  

admission  avoidance,  only  one  was  a  prospective  study  and  two  were  

retrospective  chart  reviews.1,2,43  In  the  prospective  Canadian  study1,  92  children  

with  cellulitis  were  treated  at  a  day  treatment  centre,  returning  once  daily  for  

intravenous  ceftriaxone.  In  this  study  the  treatment  failure  rate,  defined  as  

readmission  to  hospital,  was  20%.1  However,  the  authors  did  not  compare  the  

outcomes  of  these  children  to  those  treated  in  hospital.  Similarly,  in  a  UK  study,  

ambulatory  treatment  of  periorbital  cellulitis  has  also  been  shown  to  be  feasible  

in  42  children.2    

Although  these  studies  describe  the  use  of  intravenous  antibiotics  to  treat  

cellulitis,  none  of  these  studies  set  out  clear  inclusion  criteria  for  those  who  

require  intravenous  treatment.  In  the  prospective  Canadian  study,  

moderate/severe  cellulitis  was  defined  as  ‘cellulitis  that  would  have  traditionally  

required  intravenous  antibiotics  according  to  the  physician’s  judgement  and  

would  then  have  required  inpatient  admission’.  Similarly  in  an  adult  RCT  of  

home  versus  hospital  treatment  for  moderate/severe  cellulitis,  the  decision  to  

commence  intravenous  antibiotics  was  ‘left  to  the  attending  doctors  in  the  

emergency.’46  However  one  study  did  compare  severity  of  symptoms  and  found  

that  those  who  were  commenced  on  intravenous  antibiotics  were  more  likely  to  

have  systemic  symptoms.43  

With  regards  to  treatment,  the  recommended  intravenous  antibiotics  are  

dicloxacillin,  flucloxacillin  or  nafcillin  6-­‐hourly,  cefazolin  8-­‐hourly  or  cephalothin  

6-­‐hourly.49  However,  the  frequency  of  these  antibiotics,  makes  administration  

incompatible  with  OPAT  unless  the  patient  or  family  were  to  self-­‐administer.  

However,  there  are  several  problems  with  this  option.  Firstly,  not  all  families  are  

comfortable  with  administering  medication.  Secondly,  assuming  some  families  

are  keen,  the  time  it  would  take  to  train  the  family  to  administer  medication  

would  probably  equate  to  the  whole  duration  of  the  hospital  admission.  Thirdly,  

  18  

extra  resources  would  be  required  to  fund  a  training  program  for  families,  which  

is  unlikely  to  be  cost-­‐effective  for  a  once  off  episode  of  cellulitis.  

During  review  of  the  literature  on  the  ambulatory  treatment  of  cellulitis,  it  

became  apparent  there  were  two  questions  to  address:  1)  Which  children  

presenting  with  cellulitis  need  intravenous  antibiotics?  2)  Which  intravenous  

antibiotic  is  suitable  for  an  ambulatory  or  OPAT  pathway?  

1.7 Cellulitis  treatment:  who  needs  intravenous  antibiotics?  

The  Infectious  Diseases  Society  of  America  (IDSA)  guideline  for  the  diagnosis  and  

management  of  skin  and  soft  tissue  infection  recommends  intravenous  

antibiotics  for  cellulitis  with  systemic  signs  of  infection.34  However,  children  with  

systemic  signs  such  as  pyrexia,  are  commonly  treated  at  home  with  oral  

antibiotics.43,50,51  The  IDSA  guideline  is  intended  for  both  adults  and  children  but  

is  not  necessarily  applicable  to  children.  The  Clinical  Resource  Efficiency  Support  

Team  (CREST)  guidelines  for  the  management  of  cellulitis  recommend  

intravenous  antibiotics  for  those  with  underlying  co-­‐morbidities  such  as  varicose  

veins  or  peripheral  vascular  disease,  again  clearly  not  applicable  to  children.52  

Even  our  institutional  guidelines  are  unclear,  recommending  intravenous  

treatment  for  those  with  ‘severe/extensive,  systemically  unwell  or  not  

responding  to  oral  treatment’,  without  any  specific  clinical  details  to  guide  these  

definitions.  In  this  situation  intravenous  antibiotics  are  recommended  and  

potentially  investigations.53  

Although  the  majority  of  patients  with  cellulitis  will  respond  to  oral  antibiotics,  a  

proportion  of  children  require  intravenous  antibiotics.1,6  A  study  from  over  three  

decades  ago  showed  that  clinicians  have  tried  to  stratify  children  with  cellulitis  

according  to  severity.54  However  guidelines  for  the  recommendation  of  when  to  

start  intravenous  antibiotics  for  cellulitis  in  children  do  not  exist.  None  of  the  

previous  studies  on  children  with  cellulitis  requiring  antibiotics  have  described  

clear  criteria  for  commencing  intravenous  treatment.1,2,43  There  are  studies  

providing  evidence  to  support  guidelines  for  cellulitis  affecting  the  periorbital  

  19  

region.51,55,56  However,  the  purpose  of  the  resulting  guidelines  is  to  differentiate  

orbital  from  periorbital  cellulitis,  to  guide  which  investigations  and  specialists  

should  be  involved,  but  they  do  not  aid  the  primary  care  or  emergency  clinician  

to  determine  whether  to  commence  oral  or  intravenous  treatment.57    

The  absence  of  clear  guidelines  for  the  management  of  cellulitis  in  children  is  not  

unique  to  this  condition.  Other  common  childhood  infections  also  lack  clear  

evidence-­‐based  recommendations  on  when  intravenous  treatment  is  necessary,  

such  as  UTI  and  pneumonia.  Several  clinical  prediction  rules  have  been  

established  for  common  childhood  illnesses  and  trauma  such  as  the  Westley  

croup  score58,  the  Pediatric  Respiratory  Assessment  Measure  (PRAM)  for  

asthma59,  the  Paediatric  Appendicitis  Score  (PAS)  for  acute  appendicitis60  and  

the  Children's  Head  Injury  Algorithm  for  the  prediction  of  Important  Clinical  

Events  (CHALICE)  for  head  injuries61.  Although  clinical  scores  still  require  a  

clinician’s  judgment  and  cannot  be  used  on  their  own  to  determine  the  best  

course  of  action  for  patients62,  they  provide  an  aid  for  clinicians,  particularly  

more  junior  clinicians,  when  making  decisions  and  are  valuable  tools  in  clinical  

research.  It  is  clear  from  the  literature  that  there  is  a  gap  for  a  clinical  scoring  

system  or  a  clinical  prediction  rule  for  cellulitis  in  children.    

1.8 Cellulitis  treatment:  what  is  a  suitable  antibiotic  for  OPAT?    

In  order  for  an  antibiotic  to  be  used  in  OPAT,  it  needs  to  be  one  with  a  long  half-­‐

life,  only  requiring  ideally  once  or  at  most  twice  daily  administration.  This  would  

mean  that  patients  would  only  be  required  to  travel  to  a  treatment  centre  once  

or  twice  daily  or  a  home  visiting  nurse  would  be  required  to  visit  patients  once  

or  twice  a  day.  One  way  around  this  is  to  insert  a  central  venous  catheter  to  allow  

the  administration  of  a  continuous  infusion  over  24  hours.  This  would  mean  

many  types  of  antibiotics  could  be  given,  including  intravenous  flucloxacillin,  the  

antibiotic  used  in  our  centre  to  treat  moderate/severe  cellulitis.  However  the  

risks  of  inserting  and  maintaining  a  central  catheter  which  would  usually  require  

a  general  anaesthetic  or  sedation  in  children,  is  not  justified  for  infections  in  

children  where  the  antibiotic  duration  is  usually  less  than  5  days.1  Another  

  20  

alternative  is  to  administer  cefazolin  with  oral  probenecid  to  increase  its  half-­‐

life.  This  alternative  has  been  shown  to  be  a  viable  option  in  adults  with  

cellulitis.47,63  Only  one  study  in  paediatrics  has  investigated  the  use  of  cefazolin  

with  probenecid  for  the  outpatient  treatment  of  cellulitis.43  This  study  was  a  

retrospective  chart  review  investigating  the  outpatient  treatment  of  patients  

with  cellulitis,  by  dividing  patients  into  three  groups,  those  treated  with  oral  

antibiotics,  those  treated  with  cefazolin  8  hourly  and  those  treated  with  cefazolin  

twice  a  day  with  oral  probenicid.  There  were  39  patients  who  had  to  return  to  

ED  every  8  hours  for  a  dose  of  cefazolin  compared  to  another  group  of  85  

patients,  who  returned  to  ED  twice  a  day  for  cefazolin  while  taking  oral  

probenecid.  The  treatment  failure  rate  for  the  cefazolin  only  group  was  31%  

compared  to  the  cefazolin  with  probenecid  group  which  was  8%.  They  attributed  

this  difference  to  potentially  a  clinically  more  severe  patient  cohort  in  the  

cefazolin  only  group  and  lack  of  compliance  with  frequency  of  dosing  due  to  the  

need  to  return  to  hospital  three  times  a  day.  The  study  documented  5/85  (6%)  

patients  with  side  effects  secondary  to  probenecid  which  were  nausea,  vomiting,  

abdominal  pain,  difficulty  swallowing,  and  refusal  of  the  child  to  take  probenecid.  

However,  given  that  this  was  retrospective,  the  proportion  of  patients  who  

actually  had  side  effects  was  likely  higher.  One  of  the  most  commonly  used  

antibiotics  on  OPAT  is  the  broad  spectrum  cephalosporin,  ceftriaxone.1,2,13,34,35  

Bradley  et  al  first  described  ceftriaxone  as  a  once  daily  antibiotic  suitable  for  

outpatient  treatment  of  serious  infections.64  This  antibiotic  is  administered  once  

daily,  compatible  with  OPAT  services.1,2  It  can  be  administered  over  a  five  minute  

short  intravenous  infusion.  However,  the  association  of  ceftriaxone  with  

resistant  organisms  in  predominantly  adult  literature  causes  concern  for  

widespread  OPAT  use.65  An  RCT  in  adults  comparing  once  daily  ceftriaxone  to  

once  daily  cefazolin  with  probenecid  found  that  although  equivalent  in  terms  of  

effectiveness,  nausea  was  significantly  more  common  in  the  cefazolin  with  

probenecid  group.46  The  other  two  paediatric  studies  of  OPAT  for  cellulitis  both  

used  ceftriaxone  without  comparison.  Although  the  evidence  is  therefore  not  

strong,  ceftriaxone  can  reasonably  be  considered  the  best  clinical  option  for  

OPAT  management  of  cellulitis.  This  leads  to  the  next  question:  how  strong  is  the  

  21  

association  of  ceftriaxone  with  the  acquisition  or  colonisation  of  resistant  

organisms  and  other  potential  pathogens?    

1.9 Acquisition  of  resistant  bacteria  and  other  pathogens  

The  association  between  third  generation  cephalosporins,  including  ceftriaxone,  

and  resistance  arose  initially  from  its  use  in  adults.  Although  all  antibiotic  use  

has  the  potential  to  drive  resistance,  third-­‐generation  cephalosporins  raise  

particular  concern  because  of  their  broad  spectrum  nature.  These  resistant  

bacteria  not  only  have  the  ability  to  colonise  the  human  body  but  more  

concerning  is  their  potential  to  become  pathogenic  and  cause  infections,  

resistant  to  multiple  antibiotics.  

This  had  led  to  a  warning  for  cautious  use  of  ceftriaxone  aimed  at  adult  OPAT  

services66  despite  the  difficulty  in  establishing  specific  evidence  for  the  

association  of  commensal  overgrowth  with  ceftriaxone  alone  due  to  the  many  

confounding  factors  in  studies.  Resistant  bacteria  that  have  published  evidence  

suggesting  an  association  with  third-­‐generation  cephalosporin  use  include  

cephalosporin-­‐resistant  extended  spectrum  beta  lactamase  (ESBL)-­‐producing  

Enterobacteriaceae,  vancomycin  resistant  enterococci  (VRE),  and  methicillin  

resistant  S.  aureus  (MRSA).67-­‐69  In  addition  to  colonisation  with  resistant  

bacteria,  the  use  of  ceftriaxone  is  often  associated  with  Clostridium  difficile  

infections.70  The  focus  of  my  review  of  the  literature  in  this  area  is  evidence  of  

the  association  of  ceftriaxone  with  these  organisms  specifically  in  children.  

 

 

   

22  

1.9.1 Extended  spectrum  beta  lactamase  (ESBL)-­‐producing  

Enterobacteriaceae  

Figure  1.2  Extended  spectrum  beta  lactamase  (ESBL)  -­‐    producing  Enterobacteriaceae    

(image  source:  downloaded  from  http://media3.picsearch.com/is  IbbANfZSzo,  in  June  2018)  

Enterobacteriaceae  are  Gram  negative  bacteria  that  colonise  the  gastrointestinal  

tract  and  include  potential  pathogens  such  as  Escherichia  coli  and  Klebsiella  

pneumoniae.  The  Enterobacteriaceae  can  cause  multiple  types  of  infections,  for  

instance,  E.  coli  is  a  common  pathogen  in  UTI,  while  Klebsiella  spp  are  known  to  

cause  pneumonia.  All  of  the  Enterobacteriaceae  have  been  implicated  in  

bloodstream  infections  and  intra-­‐abdominal  infections  such  as  peritonitis  and  

cholangitis.  Resistance  to  third-­‐generation  cephalosporins  in  this  family  is  

commonly  associated  with  the  expression  of  extended  spectrum  beta  lactamases  

(ESBLs),  a  family  of  enzymes  that  are  able  to  inactivate  beta  lactam  antibiotics,  

including  ceftriaxone.  These  enzymes  are  mostly  produced  by  the  bacteria  E.  coli  

and  K.  pneumoniae.71  They  are  of  particular  concern  due  to  their  increased  

activity  against  the  third  generation  cephalosporins,  which  includes  cefotaxime,  

ceftriaxone  and  ceftazidime  in  addition  to  resistance  against  penicillins  and  first  

and  second  generation  cephalosporins.  Another  mechanism  of  antibiotic  

resistance  for  this  group  of  bacteria  is  the  ability  to  pass  on  the  plasmid  encoding  

resistance  between  bacterial  strains  and  species  which  poses  challenges  in  terms  

of  infection  control.72  Infections  caused  by  ESBL  producing  bacteria  have  a  

higher  mortality  and  morbidity  in  adults  than  those  not  producing  ESBL.73  Most  

of  the  paediatric  literature  on  ESBL-­‐producing  bacteria  involve  hospitalised  

children  but  more  recent  literature  suggest  these  organisms  are  rising  in  the  

community.74  A  Swedish  study  investigating  the  prevalence  of  ESBL-­‐producing  

  23  

bacteria  in  313  healthy  children  aged  1-­‐5  years  in  the  community  documented  a  

stool  carriage  rate  of  2.9%.75  However,  a  Spanish  study  documented  a  much  

higher  carriage  rate  of  24%  in  healthy  toddlers  aged  between  8  to  16  months.76  

This  difference  may  have  been  attributed  to  the  difference  in  geographical  region  

between  these  studies  although  the  author  of  the  latter  study  noted  their  finding  

was  the  highest  found  in  Europe.  In  a  study  that  compared  children  with  UTI  

caused  by  ESBL-­‐producing  bacteria  to  those  whose  UTI  were  caused  by  non  

ESBL-­‐producing  bacteria,  risk  factors  for  the  former  were  identified  as  previous  

hospitalisation  and  previous  antibiotic  use.77  There  are  several  studies  that  

specifically  associate  third-­‐generation  cephalosporin  use  with  ESBL-­‐producing  

bacteria  although  most  of  these  studies  are  in  the  neonatal  population,  known  to  

be  high  risk  with  multiple  confounding  risk  factors.  For  instance,  in  a  neonatal  

intensive  care  unit  in  Taiwan  where  47/1106  (4%)  episodes  of  bacteremia  were  

due  to  ESBL-­‐producing  organisms,  exposure  to  cefotaxime  was  significantly  

associated  with  acquisition  of  multi-­‐drug  resistant  bacteremia  (odds  ratio  [OR]    

6.0,  95%  confidence  interval  [CI]:  2.4–15.1;  p<0.001).78  The  most  common  

mechanism  of  resistance  was  ESBL  production,  mostly  by  K.  pneumoniae.  

However,  in  this  non-­‐randomised  prospective  cohort  study,  the  group  with  

multi-­‐drug  resistant  bacteremia  had  higher  overall  antibiotic  exposure  

suggesting  other  contributing  factors.  The  most  convincing  study  of  third  

generation  cephalosporin  use  and  its  association  with  resistance  was  a  

prospective  cross-­‐over  interventional  study  of  a  change  in  antibiotic  neonatal  

unit  policy  by  De  Man  et  al.79  This  study  showed  that  an  antibiotic  policy  

including  cefotaxime  was  associated  with  colonisation  with  cefotaxime-­‐resistant  

Enterobacteriaceae  (although  it  did  not  specifically  address  ESBL  bacteria)  

which  reduced  when  the  policy  changed  to  one  that  did  not  include  cefotaxime.  

There  is  a  single  case  control  study  showing  an  association  between  cefotaxime  

use  and  cefotaxime  resistance  in  older  children  with  cancer,  although  patients  

had  also  received  more  aminoglycosides  reflecting  an  increase  in  overall  

antibiotic  exposure.80  There  are  no  studies  addressing  the  association  between  

third  generation  cephalosporin  use  and  ESBL  in  healthy  children  and  no  studies  

in  those  treated  with  home/ambulatory  antibiotics  in  the  existing  literature.    

24  

1.10 Vancomycin-­‐resistant  enterococci  (VRE)  

Figure  1.3    Vancomycin-­‐resistant  enterococci  (VRE)  

(image  source:  downloaded  from

https://www.publichealthontario.ca/en/BrowseByTopic/InfectiousDiseases/PublishingImages/VRE.png,  

in  June  2018)

Enterococci  are  Gram  positive  bacteria  which  colonise  the  gastrointestinal  tract.  

The  two  most  important  species  which  can  cause  infections  of  the  urinary  tract,  

endocardium,  meninges  or  in  the  bloodstream  are  Enterococcus  faecalis  (E.  

faecalis)  and  Enterococcus  faecium  (E.  faecium).  These  bacteria  were  first  

reported  as  important  pathogens  in  both  the  hospital  and  community  in  the  

1980s.81  This  was  followed  by  the  detection  of  vancomycin  resistance,  primarily  

in  E.  faecium.  VRE  have  been  reported  primarily  as  a  nosocomial  pathogen  in  

adults  and  children,  commonly  in  the  context  of  an  outbreak.82-­‐84  VRE  

bloodstream  infections  are  a  major  cause  of  morbidity  and  mortality  for  

hospitalized  patients.82  

Enterococci  are  inherently  resistant  to  cephalosporins  and  are  able  to  colonise  

gastrointestinal  sites  previously  populated  by  cephalosporin-­‐susceptible  

organisms.85  The  association  between  VRE  and  cephalosporin  use  has  been  

reported  in  the  context  of  a  reduction  in  VRE  with  limiting  use  of  cephalosporins.  

However,  outbreaks  of  VRE  are  not  restricted  to  units  where  third  generation  

cephalosporins  are  used.  For  example,  a  study  investigating  risk  factors  for  VRE  

colonisation  in  a  neonatal  intensive  care  unit  found  that  antimicrobial  therapy  

use  for  second  line  empiric  treatment  of  late  onset  neonatal  sepsis  

  25  

(glycopeptides,  ciprofloxacin,  azithromycin,  meropenem  and  cefepime)  was  a  

significant  risk  factor  for  VRE  colonisation.84  In  a  paediatric  oncology  unit  where  

a  VRE  outbreak  occurred,  successful  control  of  the  incident  was  attributed  to  an  

overall  restriction  in  the  use  of  cephalosporins  (ceftazidime)  and  

glycopeptides.83  The  authors  found  risk  factors  for  VRE  colonisation  to  include  

previous  antibiotic  use,  amikacin  exposure  and  ceftazidime  exposure  with  a  

prevalence  of  14/73  (19%)  amongst  inpatients  in  the  oncology  unit.  However,  

the  successful  eradication  of  VRE  was  attributed  to  several  factors  which  were  

institution  of  infection  control  measures,  coupled  with  a  comprehensive  

educational  program  in  addition  to  modification  of  antibiotic  policy.  The  same  

group  of  authors  later  conducted  a  study  to  investigate  the  prevalence  of  VRE  

colonisation  in  children  of  hospital  staff  members  as  a  ‘community  cohort’.  In  

116  children  who  had  a  faecal  sample  tested,  none  were  colonised  with  VRE.86  

Similarly,  a  Swedish  study  that  investigated  the  prevalence  of  ESBL  in  healthy  

children  attending  preschools  used  faeces  from  the  same  cohort  to  investigate  

the  prevalence  of  VRE.  They  found  none  of  the  children  to  be  VRE  carriers.87  

There  are  no  other  studies  in  children  showing  direct  association  between  

ceftriaxone  and  VRE.  In  contrast  to  the  paediatric  population,  studies  in  adults  

have  reported  VRE  to  be  directly  associated  with  ceftriaxone  use.82  However  this  

was  a  retrospective  analysis  where  ceftriaxone  use  in  the  prior  month  was  

related  to  the  incidence  of  VRE  bloodstream  infection,  so  other  potential  risk  

factors  may  have  been  overlooked.  The  concern  for  the  association  between  

ceftriaxone  use  in  children  contributing  to  the  development  of  VRE  does  not  

appear  to  be  evidence-­‐based.  

   

26  

1.11 Clostridium  difficile  

Figure  1.4  Clostridium  difficile  

(image  source:  downloaded  from  https://si.wsj.net/public/resources/images/HEAA179_CDIFFI_P_20160129144116.jpg,  in  June  2018)  

C. difficile  is  a  Gram  positive  spore  forming  anaerobic  bacillus  that  colonises  the

gastrointestinal  tract.  They  were  first  described  as  part  of  the  intestinal  flora  in

neonates.88  C.  difficile  is  associated  with  a  range  of  clinical  diseases,  from  mild

antibiotic-­‐associated  diarrhoea  to  pseudomembranous  colitis,  bowel  perforation,

sepsis  and  death.89  Overgrowth  of  C.  difficile,  with  or  without  clinical  symptoms,

is  not  exclusively  associated  with  cephalosporins  and  has  been  reported

following  administration  of  many  other  antibiotics.90  C.  difficile  infections  (CDI)

can  be  hospital-­‐acquired  or  community-­‐acquired.91  Although  in  adults,  CDI  is

strongly  associated  with  antibiotic  use,  in  children  the  role  of  antibiotics  is  less

clear  as  CDI  can  occur  in  them  without  recent  use  of  antibiotics.92  Samady  et  al

performed  a  retrospective  case-­‐control  study  in  hospitalised  children,  they  found

cephalosporin  use  within  the  previous  90  days  as  a  risk  factor  for  CDI  but  also

found  many  other  associations  such  as  recent  hospitalisation,  immunodeficiency

and  proton  pump  inhibitor  (PPI)  use  to  be  significant  risk  factors.93  Furthermore,

they  found  that  in  8%  of  CDI  cases,  there  was  no  previous  antibiotic  use,  recent

hospitalisation  or  past  history  of  CDI  suggesting  other  factors  playing  a  role.93

Amongst  hospitalised  children  with  cancer,  one  retrospective  study  found  third

and  fourth  generation  cephalosporins  which  includes  ceftriaxone  use  in  the

previous  21  days  to  be  a  significant  risk  factor  for  CDI.  94  They  also  found  PPI  use

to  be  a  significant  risk  factor  in  this  population.  In  another  study,  also  on

hospitalised  children,  exposure  to  multiple  (three  or  more)  antibiotic  classes  to

was  associated  with  severe  CDI.95  Although  one  of  the  antibiotic  classes  was  the

27  

third  generation  cephalosporins,  the  authors  did  not  find  any  significant  

association  of  severe  CDI  with  any  one  or  two  classes  of  antibiotic  use,  

suggesting  it  may  not  be  the  type  of  antibiotic  but  the  overall  burden  of  antibiotic  

exposure  in  addition  to  the  vulnerability  of  the  patient  if  they  are  exposed  to  

multiple  antibiotics.  In  another  retrospective  study  on  patients  with  

inflammatory  bowel  disease  from  outpatient  clinics,  134  patients  were  evaluated  

and  47%  had  CDI.96  The  previously  noted  risk  factors  such  as  antibiotic  

exposure,  previous  hospitalisation  and  PPI  use  were  not  found  to  be  a  significant  

association.  The  only  risk  factors  identified  in  this  study  were  the  age  of  the  

patient  and  disease  severity.  The  other  factor  to  be  aware  of  in  children  is  the  

high  burden  of  colonisation  without  infection,  especially  in  those  under  2  years,  

at  a  rate  of  about  50%.97  This  not  only  means  that  detection  may  not  be  

associated  with  any  risk  factors,  but  also  that  they  may  act  as  a  silent  reservoir  

for  infection  in  more  vulnerable  patients.  

In  summary,  the  literature  in  C.  difficile  in  the  paediatric  population  mainly  

reports  on  vulnerable  groups  of  hospitalised  patients  using  retrospective  

methods,  where  there  may  be  an  association  with  third  generation  

cephalosporins  but  there  are  likely  a  number  of  contributing  factors.  In  addition  

in  children  who  are  not  hospitalised,  antibiotics  may  not  be  a  risk  factor  at  all.    

1.12 Staphylococcus  aureus  

Figure  1.5  Staphylococcus  aureus  

(image  source:  downloaded  from  https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcSeafrGXdR3aHwHx9W0ZrYVooOKEkT1HjdHXk5iAdSC3nvu1gPQ,  in  June  2018)  

28  

S. aureus  is  a  Gram  positive  bacteria  that  colonises  the  human  respiratory  tract

and  skin.  Nasal  colonisation  with  S.  aureus  plays  a  key  role  in  the  pathogenesis  of

invasive  infection  including  cellulitis  and  bacteremia98-­‐100  and  is  also  associated

with  non-­‐infectious  conditions  such  as  asthma101,  eczema102  and  epistaxis103.  In

1960,  MRSA  was  first  reported  in  clinical  practice  and  has  been  a  rising  global

challenge.  One  of  the  earliest  reports  of  an  association  between  third  generation

cephalosporin  use  and  MRSA  was  by  Washio  et  al  in  Japan.69  This  study

conducted  in  a  geriatric  hospital,  showed  that  the  use  of  third  generation

cephems;  cephalosporins,  monobactam  and  carbapanem  was  a  significant

association  with  MRSA  infections  in  the  elderly.  However,  in  children,  there  is

conflicting  evidence  on  the  importance  of  antibiotic  exposure  as  a  risk  factor  for

MRSA  colonisation  or  infection.  It  has  been  shown  that  MRSA-­‐colonised  children

are  24  times  more  likely  to  have  MRSA  infections  compared  to  non-­‐colonised

patients,  therefore  risk  factors  for  carriage  are  equally  important.104  Reported

risk  factors  for  colonisation  by  both  MSSA  and  MRSA  in  children  include  prior

antibiotic  use,  hospitalisation,  maternal  colonisation,  colonisation  in  other

household  members,  hospitalisation  of  a  household  member  and  older  age.21,105-­‐

107  Lo  et  al  showed  that  antibiotic  use  in  the  previous  12  months  was  a  significant

risk  factor  for  colonisation  with  MRSA  in  healthy  children  recruited  from

kindergartens  and  health  visits.  However  the  authors  found  that  there  was

variability  in  risk  factors  depending  on  age  and  gender.  For  instance,  in  girls  aged

1  to  5  year  olds,  antibiotic  use  in  the  preceding  12  months  was  not  a  significant

risk  factor,  a  finding  which  underlines  the  complex  pathophysiology  involved  in

determining  MRSA  carriage  status.  108  Another  study  that  also  demonstrated  a

significant  association  was  by  Rodriguez  et  al  where  beta-­‐lactamase  inhibitor  use

in  the  previous  six  months  was  shown  to  have  a  significant  association  with

MRSA  carriage.  105  The  biggest  limitation  for  both  these  studies  investigating  risk

factors  for  MRSA  carriage  is  having  to  rely  on  parental  recall  with  regards  to

antibiotic  use.

In  contrast  to  these  findings,  a  number  of  studies  suggest  that  antibiotics  reduce  

the  risk  of  colonisation  with  MRSA.  An  Italian  cross-­‐sectional  study  on  children  

admitted  to  the  general  paediatric  ward  found  antibiotic  use  in  the  previous  six  

29  

months  was  a  protective  factor  for  both  MRSA  colonisation.109  Similarly,  a  3-­‐year  

surveillance  study  in  children  with  congenital  heart  disease  admitted  to  the  

paediatric  intensive  care  unit  (PICU)  also  found  that  previous  antibiotic  use  

reduced  the  risk  of  being  colonised  with  S.  aureus  by  81%.110  The  conflicting  

evidence  with  regards  to  the  role  of  antibiotics  in  nasal  colonisation  most  likely  

relates  to  the  type  of  antibiotics  used  and  the  duration  of  therapy  which  most  of  

these  studies  do  not  report.  There  is  one  prospective  study  of  healthy  pre-­‐school  

children  that  showed  antibiotic  use  in  the  previous  three  months  did  not  

increase  nasal  colonisation  with  MSSA  or  MRSA.  However,  

amoxicillin/clavulanate  use  was  found  to  increase  the  proportion  of  MSSA  that  

produced  penicillinase,  a  potential  early  step  towards  resistance.111  

Overall  the  evidence  is  conflicting  about  whether  there  is  an  association  in  

children  between  antibiotic  and  specifically  ceftriaxone  use  and  either  MSSA  or  

MRSA  carriage  or  infection.  It  is  important  to  consider  the  effects  on  MSSA  

carriage  as  well  as  MRSA,  because  in  children  MSSA  causes  a  much  higher  

proportion  of  invasive  infection.  No  study  has  prospectively  compared  the  effect  

of  different  antibiotics  on  colonization  with  MSSA  or  MRSA.      

1.13 Conclusion  and  research  questions  

After  reviewing  the  literature,  the  paucity  of  good  evidence  for  the  safety  and  

efficacy  of  home/ambulatory  pathways  was  clear.  Cellulitis  was  the  condition  

chosen  as  a  model,  as  it  is  a  common  infection  in  children  and  the  most  common  

acute  infection  treated  in  adult  OPAT  services.  In  support  of  this,  there  were  a  

few  studies  suggesting  that  a  home  management  pathway  directly  from  the  ED  

may  be  a  feasible  option,  at  least  in  some  children.  The  best  way  to  answer  the  

question  of  whether  intravenous  antibiotics  at  home  was  as  good  as  those  

administered  in  hospital  for  cellulitis  would  be  through  the  gold  standard  of  a  

randomised  controlled  trial.  However,  the  review  of  the  literature  showed  

substantial  gaps  in  knowledge  and  several  issues  that  needed  addressing  before  

an  RCT  was  undertaken.    

30  

1.14 Aims  of  the  project  

1) To  better  understand  current  practice  in  the  management  of

moderate/severe  cellulitis.

2) To  develop  and  validate  a  system  for  determining  which  patients  with

cellulitis  need  intravenous  antibiotics.

3) To  investigate  clinical  and  non-­‐clinical  outcomes  of  home  versus  hospital

intravenous  treatment  in  children  presenting  to  the  emergency  department

with  uncomplicated  moderate/severe  cellulitis.

1.15 Thesis  structure  

Chapter  1  is  a  review  of  the  literature  encompassing  treatment  for  children  in  a  

home/ambulatory  setting,  management  of  cellulitis  including  who  should  be  

treated  with  intravenous  antibiotics  and  acquisition  of  resistance,  focusing  on  

children  and  home/ambulatory  management  when  a  broad  spectrum  antibiotic  

is  used.  

Chapter  2  addresses  current  practice  at  the  author’s  institution  with  regards  to  

the  management  of  cellulitis,  particularly  focusing  on  OPAT  (chapter  with  

publication  and  submitted  manuscript).    

• Study  1:  a  baseline  observational  study  that  describes  the  current

OPAT  practice  in  treating  cellulitis  at  a  tertiary  paediatric  hospital  after

the  initial  introduction  of  a  direct-­‐from-­‐ED  pathway.  This  study  has

been  published.

• Study  2:  a  survey  of  clinicians’  practice  in  hospital  with  regards  to  the

management  of  cellulitis.  This  study  has  been  submitted  and  is  under

review.

Chapter  3  details  the  preliminary  research  that  formed  the  foundation  for  the  

design  of  the  RCT  (chapter  with  publication  and  submitted  manuscript)  

  31  

• Study  3:  a  prospective  cohort  study  comparing  the  outcomes  of  

children  treated  at  home  versus  hospital,  and  assessing  the  feasibility  

and  informing  the  methodology  of  the  RCT.  This  study  has  been  

published.  

• Study  4:  a  longitudinal  study  on  the  same  cohort  of  children  comparing  

acquisition  of  nasal  carriage  of  Staphylococcus  aureus.  This  study  has  

been  published.  

 

Chapter  4  describes  the  preliminary  research  to  determine  the  criteria  for  using  

intravenous  antibiotics  to  treat  cellulitis  in  children  (chapter  with  accepted  

manuscript).  

• Study  5:  the  development  and  validation  of  a  clinical  scoring  system  to  

determine  whether  intravenous  or  oral  antibiotics  are  needed  to  treat  

cellulitis.  This  study  has  been  published.  

 

Chapter  5  describes  the  RCT  that  is  the  focus  of  this  thesis  comparing  home  and  

hospital  intravenous  antibiotics.  It  includes  two  manuscripts,  the  first  is  the  RCT  

protocol  which  has  been  published  and  secondly  the  RCT  paper  which  has  been  

accepted  (chapter  with  submitted  manuscript).    

• Study  6:  RCT  of  home  versus  hospital  intravenous  antibiotics  for  

children  with  uncomplicated  moderate/severe  cellulitis.  This  study  has  

been  accepted  and  is  in  press.  

 

Chapter  6  provides  details  of  a  secondary  outcome  from  the  main  RCT,  a  detailed  

report  on  a  quality  of  life  assessment  during  the  RCT  and  a  cost-­‐effectiveness  

analysis  (chapter  with  submitted  manuscript)  

• Study  7:  a  heath  economic  analysis  of  home  versus  hospital  

intravenous  antibiotics  for  children  with  uncomplicated  

moderate/severe  cellulitis.  This  study  has  been  submitted  and  under  

review.  

  32  

 

Chapter  7  contains  a  discussion  on  the  overall  findings  within  the  context  of  the  

previously  published  literature  and  subsequent  developments.  I  present  my  

conclusions  with  an  outline  on  future  directions  for  the  treatment  of  acute  

infections  in  children  at  home

  33  

 

Chapter  2 Current  practice  in  home  intravenous  antibiotic  management  of  cellulitis  

2.1 Introduction  to  current  practice  

Cellulitis  is  a  common  skin  infection  in  children  presenting  to  the  ED.112  Despite  

the  common  nature  of  the  infection,  there  appears  to  be  wide  variation  in  

management  including  which,  if  any,  investigations  are  needed,  via  which  route  

antibiotics  should  be  administered,  whether  the  patient  should  be  treated  in  

hospital  or  at  home.  Therefore,  the  first  step  was  to  better  understand  current  

management  at  our  institution  by  surveying  paediatricians’  opinions  on  their  

beliefs  and  practices  around  cellulitis,  specifically  with  regards  to  1)  indications  

for  the  use  of  intravenous  antibiotics  in  cellulitis,  2)  the  use  of  investigations  and  

3)  barriers  to  treating  children  at  home  via  OPAT.    

The  practice  of  treating  children  who  require  prolonged  intravenous  antibiotics  

in  the  home,  such  as  patients  with  acute  exacerbations  of  cystic  fibrosis,  has  been  

described  for  decades.5,28  The  OPAT  pathway  has  been  available  at  the  RCH  since  

2001,  to  provide  for  these  patients.  Recently  there  has  been  increasing  interest  

in  using  this  pathway  directly  from  the  ED.1,6  By  transferring  patients  directly  

from  the  ED,  patients  are  more  likely  to  avoid  the  risks  associated  with  hospital  

admissions  such  as  nosocomial  infections  and  psychological  effects.7,25  At  the  

first  stage  of  this  PhD,  in  addition  to  understanding  clinician’s  opinions,  it  was  

necessary  to  understand  actual  current  practice  specifically  in  regard  to  patients  

with  cellulitis  who  have  used  this  pathway  from  the  ED  and  their  outcomes.    

This  chapter  contains  two  manuscripts,  the  clinician  survey  which  investigates  

clinicians’  beliefs  and  practice  in  the  management  of  cellulitis  and  a  published  

baseline  study  describing  the  current  practice  of  an  OPAT  pathway  for  the  

intravenous  antibiotic  management  of  cellulitis.  

  34  

2.2 Management  of  cellulitis  –  how  and  why?  

Although  the  general  clinical  approach  to  cellulitis  is  widely  available  in  

textbooks42,  the  literature113  and  local  guidelines53,  the  subjective  features  of  this  

pathology  such  as  erythema,  warmth  and  tenderness,  coupled  with  the  

variability  in  presentation,  renders  it  difficult  to  standardise  management.  For  

instance,  to  investigate  cellulitis,  the  guideline  at  RCH  recommends  a  full  blood  

count  (FBC)  and  blood  culture  if  systemic  symptoms  are  present,  although  these  

investigations  are  acknowledged  in  the  literature  to  be  of  low  yield.45  

Additionally,  a  swab  for  Gram  stain  and  culture  is  advised  if  pus  discharge  is  

present.  For  treatment,  oral  flucloxacillin  or  cephalexin  are  recommended  for  

mild  cellulitis  but  ‘if  severe  or  systemically  unwell’,  intravenous  flucloxacillin  is  

recommended.53  The  definition  of  severe  is  not  defined  in  the  guideline,  allowing  

subjective  interpretation  according  to  clinicians’  knowledge  and  beliefs.    

With  these  guidelines  open  to  interpretation,  there  is  a  likelihood  that  variation  

exists  in  the  management  of  cellulitis,  and  some  of  this  may  be  unwarranted.  This  

led  to  the  need  to  understand  how  clinicians  manage  cellulitis  based  on  their  

knowledge  and  beliefs  about  the  infection.  Senior  and  junior  clinicians  who  treat  

children  with  cellulitis  at  our  institution  were  invited  to  participate  in  a  survey  

about  their  knowledge,  beliefs  and  practice  around  this  condition.  The  

hypothesis  was  that  clinicians  at  RCH  were  practicing  in  alignment  with  the  

recommendations  of  the  hospital  clinical  practice  guidelines.  The  survey  was  

designed  to  provide  insight  into  clinicians’  knowledge  and  beliefs  around  

cellulitis  and  how  these  guidelines  were  being  interpreted.    

In  designing  the  survey,  questions  were  carefully  designed  to  provide  

information  on  the  following  issues:  

• Differentiating  between  mild  and  moderate/severe  cellulitis  

• Investigations  performed  in  cellulitis  

• Antibiotics  (choice  and  route)  used  to  treat  cellulitis  

• Attitudes  towards  OPAT  for  the  treatment  of  cellulitis    

  35  

2.3 Study  1:  Clinician  practice  and  opinions  about  antibiotic  management  of  cellulitis  in  children  

Ibrahim  LF,  Hopper  SM,  Babl  FE,  Bryant  PA.  Cellulitis  Management:  Clinicians  

Opinions  and  Practice.  Under  review  Archives  of  Disease  in  Childhood    

(The  following  manuscript  is  a  Word  version  of  the  submitted  work  instead  of  

the  PDF  version  from  Archives  of  Disease  in  Childhood  due  to  a  large  

watermark.)  

Management  of  cellulitis  in  children:  how  do  beliefs  impact  on  practice?      

Laila  F  Ibrahim1,2,3,  Franz  E  Babl1,4,5,  Sandy  M  Hopper1,4,5,  Penelope  A  Bryant1,2,3,6  

Affiliations:    

1  Department  of  Pediatrics,  University  of  Melbourne,  Melbourne,  Australia  

2  Hospital-­‐-­‐-­‐In-­‐-­‐-­‐The-­‐-­‐-­‐Home  Department    

3  Clinical  Pediatrics  Group,  Murdoch  Children’s  Research  Institute  

4  Emergency  Department    

5  Emergency  Research  Group,  Murdoch  Children’s  Research  Institute  

6  Infectious  Diseases  Unit,  Department  of  General  Medicine    

The  Royal  Children’s  Hospital,  50  Flemington  Road,  Parkville,  Victoria  3052,  

Australia    

Key  words:    

Cellulitis,  antibiotics,  intravenous,  hospital-­‐-­‐-­‐in-­‐-­‐-­‐the-­‐-­‐-­‐home,  OPAT    

Abbreviated title: Cellulitis:  beliefs  and  practice    

Running  head  title:  Management  of  cellulitis  

Correspondence:    

A/Prof.  Franz  Babl    

Emergency  Department,  The  Royal  Children’s  Hospital  Melbourne  

50  Flemington  Road,  Parkville,  VIC  3052,  Australia    

Email:  [email protected]    

Tel:  +613  93455522  Fax:  +613  9345  6667    

Disclosure:      

The  authors  listed  above  certify  that  they  have  no  affiliations  with  any  organization  or  

36

entity  with  any  financial  or  non  financial  interest  on  the  materials  discussed  in  this  

manuscript.  The  authors  declare  there  are  no  competing  interests  of  note.  

37

 Abstract  

Background  

There  are  no  evidence-­‐-­‐-­‐based  guidelines  for  the  management  of  cellulitis  and  use  of  

outpatient  parenteral  antimicrobial  therapy  (OPAT)  in  particular,  in  children.  This  can  lead  

to  variation  in  practice  with  implications  on  resources  and  patient  care.  An  important  

component  to  reducing  variation  is  to  understand  physicians’  beliefs  and  practice.  The  aim  

of  this  study  was  to  determine  pediatricians’  opinions  about  the  management  of  cellulitis.  

   Methods    This  survey  was  undertaken  in  a  tertiary  teaching  hospital.  Participants  were  trainee  and  

senior  pediatricians  who  manage  cellulitis.  The  survey  was  based  on  two  case  vignettes  

relating  to  investigations  and  management  as  well  as  their  underlying  beliefs  around  

cellulitis.  

   Results    The  response  rate  was  106/138  (77%),  of  whom  61%  were  senior  physicians.  There  was  

variability  of  which  clinical  features  were  used  to  decide  when  to  use  intravenous  

antibiotics,  the  most  common  being  lymphangitis  (90%),  functional  impairment  (82%)  and  

systemic  features  (78%).  Trainee  physicians  were  more  likely  to  organise  investigations  in  

moderate/severe  cellulitis  (92%  versus  71%,  p=0.02).  60%  physicians  would  take  a  blood  

culture,  although  there  was  a  wide  variation  in  the  perceived  risk  of  bacteremia,  with  46%  

believing  it  to  be  <=5%  and  15%  believing  it  to  be  >50%.  In  moderate/severe  cellulitis,  

52%  would  use  OPAT  although  93%  believed  it  was  psychologically  better.  

38

Conclusion  

Although  physicians  agree  on  what  constitutes  mild  or  moderate/severe  cellulitis,  this  

survey  highlights  the  variation  in  how  physicians  use  investigations  and  antibiotics  in  

cellulitis  –  amenable  to  education,  guidelines  and  a  clinical  score.  Barriers  for  using  OPAT  

in  cellulitis  were  identified.  

39

Introduction    There  are  a  lack  of  evidence-­‐-­‐-­‐based  guidelines  for  the  management  of  cellulitis  in  children.  

The  Practice  Guidelines  For  The  Diagnosis  And  Management  Of  Skin  And  Soft  Tissue  

Infection  by  the  Infectious  Diseases  Society  of  America  (IDSA),  the  only  published  

guidelines  for  skin  and  soft  tissue  infections,  are  aimed  at  adults  and  some  of  the  outlined  

recommendations  are  not  applicable  to  children.1    For  example,  the  IDSA  guidelines  

recommend  intravenous  (IV)  antibiotics  for  those  with  any  systemic  symptoms,  but  

children  often  present  with  fever  and  can  still  be  safely  treated  with  oral  antibiotics.  Lack  

of  standardized  guidelines  for  children  can  result  in  variation  in  pediatricians’  practice,  

which  has  implications  on  resources  and  patient  care.  

   The  institutional  guidelines  at  the  Australian  study  hospital  state  that  cellulitis  should  be  

treated  with  oral  antibiotics  unless  ‘severe/extensive,  systemically  unwell  or  not  

responding  to  oral  treatment’,  without  any  specific  clinical  details  to  guide  these  

definitions.2    In  this  situation  IV  antibiotics  are  recommended  and  potentially  

investigations.  For  those  deemed  to  require  IV  antibiotics,  an  outpatient  parenteral  

antibiotic  therapy  (OPAT)  pathway  exists  at  our  institution.3    To  avoid  hospitalization,  

patients  who  require  IV  antibiotics  can  receive  treatment  at  home  directly  from  the  

Emergency  Department  (ED)  under  the  care  of  the  Hospital-­‐-­‐-­‐in-­‐-­‐-­‐the-­‐-­‐-­‐Home  (HITH)  program,  

using  daily  ceftriaxone  through  a  peripheral  cannula.  However,  there  was  no  clarity  about  

the  decisions  for  IV  versus  oral  antibiotics,  or  hospital  versus  home  treatment,  with  most  

children  still  being  admitted  to  hospital  if  they  needed  IV  antibiotics.3  4  

   An  important  component  to  reducing  variation  in  care  is  to  determine  the  clinical  

reasoning  in  the  management  of  cellulitis  –  the  way  in  which  beliefs  impact  on  practice.  

40

The  aim  of  this  study  was  to  ascertain  hospital  pediatricians’  opinions  on  the  management  

of  cellulitis,  specifically  with  regards  to  1)  indications  for  the  use  of  IV  antibiotics  in  

cellulitis,  2)  use  of  investigations  and  3)  barriers  to  treating  children  at  home  via  HITH.  

   Methods    Study  setting  and  participants      This  survey  was  undertaken  over  a  period  of  4  weeks,  at  a  tertiary  children’s  hospital  (Royal  

Children’s  Hospital  (RCH)),  with  an  annual  ED  census  of  90,000  attendances.  In  the  ED,  1-­‐-­‐-­‐2  

children  with  cellulitis  are  managed  every  day.5    Acute  care  pediatricians  who  would  be  

expected  to  diagnose  and  manage  cellulitis  in  their  regular  practice  were  identified  as  those  

in  the  following  departments:  ED,  General  Medicine,  Infectious  Diseases,  Adolescent  

Medicine  and  Developmental  Medicine.  All  doctors  in  these  departments  were  initially  

contacted  through  their  hospital-­‐-­‐-­‐based  email  address  and  every  participant  was  given  a  link  

to  the  survey  online  via  Research  Electronic  Data  Capture  (REDCap)  hosted  at  the  Murdoch  

Children’s  Research  Institute  6.  Each  participant  was  informed  of  an  investigator’s  contact  

email  should  they  prefer  to  complete  a  paper-­‐-­‐-­‐based  survey,  and  if  requested,  this  was  

provided.  Neither  mode  of  survey  compelled  participants  to  answer  every  question.  This  

survey  was  anonymous  to  obtain  the  most  candid  answers  from  physicians.  Data  entered  by  

accessing  the  electronic  link  to  the  survey  were  autopopulated  onto  REDCap,  and  paper-­‐

-­‐-­‐based  surveys  were  entered  onto  the  same  database  by  a  research  assistant.  

   Study  questions  and  analyses      The  first  section  of  the  survey  focused  on  the  management  of  cellulitis  in  the  form  of  two  

clinical  scenarios,  with  questions  relating  to  clinical  symptoms,  investigations  and  

41

antibiotic  management.  The  second  section  related  to  treating  children  with  

moderate/severe  cellulitis  on  HITH.  The  final  section  related  to  beliefs  of  physicians  that  

serve  to  underpin  and  explain  their  practice.  Data  analyses  was  performed  using  Stata/IC  

version  15.0  (StataCorp,  College  Station,  TX).  The  analysis  was  primarily  descriptive  with  

chi-­‐-­‐-­‐square  testing  of  comparisons  where  appropriate.  Denominators  presented  differ  due  

to  different  numbers  of  participants  answering  some  of  the  questions.  

This  study  received  approval  from  the  RCH  Human  Research  Ethics  Committee  no.  32291A.        Box  1    Scenario  1      A  12-­‐-­‐-­‐year-­‐-­‐-­‐old  previously  well  boy,  presents  to  the  Emergency  Department  with  a  1  day  history  

of  localized  redness  on  his  leg  after  grazing  his  leg  in  the  playground.  On  examination  he  is  

alert,  interactive  and  afebrile  with  an  area  of  localised  erythema,  mild  swelling  and  

tenderness  measuring  7  x  4  cm  on  his  lower  left  shin.  He  does  not  have  a  limp.  

   Scenario  2      A  3-­‐-­‐-­‐year-­‐-­‐-­‐old  previously  well  girl  presents  to  the  Emergency  Department  with  swelling  and  

tenderness  on  her  left  shin  after  grazing  her  leg  in  the  park  when  she  fell.  On  examination,  she  

has  a  temperature  of  38.5C  but  is  systemically  well,  with  an  area  of  erythema,  swelling  and  

tenderness  measuring  20  x  10  cm  on  her  lower  left  shin.  She  has  tracking  lymphangitis  going  

up  10cm  to  above  knee  level.  She  can  weight  bear  but  has  a  limp.  

       Results  

42

The  survey  was  sent  to  138  hospital  physicians  who  would  be  expected  to  manage  children  

with  cellulitis  and  106  (77%)  participated.  Of  these,  65  (61%)  were  senior  physicians  

(consultant  or  fellow)  and  41  (39%)  were  trainee  trainees  (registrar  or  resident).  The  

majority  of  physicians  worked  in  either  the  General  Medicine  Department  (54  respondents,  

45%),  or  ED  (53,  44%).  There  was  no  difference  between  specialty  in  responses.  

   With  regards  to  the  severity  of  cellulitis,  103/104  (99%)  classified  the  episode  in  scenario  

1  as  mild,  and  98/98,  (100%)  classified  the  episode  in  scenario  2  as  moderate/severe.  

Regarding  investigations  in  the  two  scenarios,  only  10/103  (10%)  would  perform  any  in  

mild  cellulitis,  while  76/96  (79%)  would  do  further  investigations  in  moderate/severe  

cellulitis  (OR  35,  95%  CI  16-­‐-­‐-­‐80,  p<0.001).  Trainee  physicians  were  more  likely  than  senior  

physicians  to  do  any  investigations  in  moderate/severe  cellulitis  (92%  versus  71%,  OR  4.6  

95%  CI  (1.3-­‐-­‐-­‐15.8),  p=0.02)(table  1).  For  moderate/severe  cellulitis,  all  participants  were  

asked  about  risk  of  bacteremia  and  methicillin-­‐-­‐-­‐resistant  Staphylococcus  aureus  (MRSA),  and  

if  specific  investigations  were  selected,  they  were  asked  how  an  abnormal  result  would  

affect  management  (table  2).  76/95  (83%)  responded  that  the  risk  of  bacteremia  was  

moderate  or  high  or  at  the  very  least  important  to  exclude.  When  asked  to  quantify  this  risk,  

64/96  (67%)  physicians  estimated  that  it  was  <=10%,  with  44  (46%)  <=5%.  However,  one  

third  (32,  33%)  estimated  the  risk  as  >10%,  with  14/96  (15%)  deemed  the  risk  as  

>50%.  Of  the  64  respondents  who  would  perform  a  blood  culture,  a  positive  result  would  

affect  antibiotic  duration  for  48  (75%).  

   When  asked  to  quantify  the  risk  of  MRSA  as  the  causative  pathogen,  69/96  (72%)  

physicians  estimated  that  it  was  <=10%,  with  49  (51%)  <=5%.  11/96  (11%)  deemed  the  

43

risk  as  >20%.  Of  the  37  respondents  who  would  perform  a  skin  swab,  a  positive  result  

would  affect  the  need  for  MRSA  eradication  for  28  (75%).  

   In  mild  cellulitis,  100/103  (97%)  would  use  oral  antibiotics,  whereas  in  moderate/severe  

cellulitis  97/98  (99%)  would  use  the  IV  route.  The  most  common  clinical  features  used  to  

determine  when  to  treat  with  IV  antibiotics  were  lymphangitis  or  ‘tracking’  for  94/104  

(90%)  physicians,  functional  impairment  of  the  affected  area  for  85  (82%)  and  systemic  

features,  including  fever,  for  81  (78%)(table  3).  When  asked  if  they  believed  a  clinical  score  

would  be  helpful  to  guide  decision-­‐-­‐-­‐making  between  oral  or  IV  antibiotics,  70  (67%)  

physicians  believed  it  would  be  useful  to  decrease  variation  in  practice,  and  32  (31%)  

neutral.  Of  just  trainee  doctors,  31/40  (78%)  responded  that  a  clinical  score  would  be  

useful.  

   For  moderate/severe  cellulitis,  the  first  line  IV  choice  was  flucloxacillin  for  78/95  (82%),  

ceftriaxone  for  14  (15%),  and  cephazolin  for  3  (3%).  No  respondent  selected  an  anti-­‐-­‐-­‐MRSA  

antibiotic  first  line,  despite  11%  deeming  the  risk  of  MRSA  to  be  >20%.  When  asked  for  

how  many  days  they  would  prescribe  antibiotics,  any  number  of  days  could  be  chosen,  but  

respondents  only  selected  three  durations:  7  days:  43/71  (61%),  5  days:  23  (32%)  or  10  

days:  4  (6%).        Regarding  the  location  of  treatment  with  IV  antibiotics,  proportions  were  similar  between  

choosing  hospital  admission  (46/98,  47%)  and  home  with  OPAT  (51,  52%).  The  reasons  

for  choosing  hospitalization  in  preference  to  OPAT  were  frequently  the  same  as  those  for  

using  IV  antibiotics  in  preference  to  oral  (table  3).  Of  those  that  were  different,   features  

that  were  used  in  deciding  between  IV  and  oral  antibiotics  were  fever,  

44

lymphangitis/tracking  and  having  already  received  oral  antibiotics  for  24  hours.  The  

feature  used  in  deciding  between  hospitalization  versus  OPAT  was  family  preference.  

   Potential  barriers  to  OPAT  were  investigated  further  regarding  age,  clinical  features  and  

complications  (table  4).  The  most  likely  reasons  to  make  physicians  hesitate  to  use  OPAT  

were:  age  under  <6m  (92/96,  96%),  periorbital  cellulitis  (57,  60%)  and  sunburn-­‐-­‐-­‐like  rash  

(52,  54%).  When  specifically  asked  if  they  would  use  the  ED-­‐-­‐-­‐to-­‐-­‐-­‐OPAT  pathway  for  

periorbital  cellulitis,  60  (60%)  physicians  responded  ‘never’  or  ‘unlikely’,  with  37  (39%)  

believing  that  at  least  1  in  10  of  these  children  actually  have  orbital  cellulitis  either  due  to  

progression  of  disease  and/or  incorrect  initial  diagnosis.  When  compared  to  the  narrower  

antibiotic  flucloxacillin,  74  (77%)  responded  that  ceftriaxone  is  more  likely  to  cause  

anaphylaxis  than  flucloxacillin,  although  60  (63%)  thought  less  likely  to  cause  other  short-­‐-­‐-­‐  

term  side  effects  (e.g.  gastrointestinal  symptoms).  With  regards  to  the  association  between  

ceftriaxone  with  potential  long-­‐-­‐-­‐term  side  effects  of  acquisition  of  resistance,  40  (42%)  

believed  there  was  a  stronger  association  than  with  flucloxacillin,  25  (26%)  thought  a  

weaker  association  and  31  (32%)  did  not  know.  Regarding  safety  of  OPAT,  24  (25%)  

responded  that  the  risk  of  a  child  deteriorating  unnoticed  was  high/very  high  (table  4).  

However,  89/96  (93%)  also  believed  it  was  beneficial  for  the  child’s  psychology,  95  (99%)  

for  family  functioning  and  79  (83%)  believed  it  would  reduce  the  cost  to  the  family.  The  

majority  of  physicians  (81,  84%)  believed  that  more  than  60%  parents  would  prefer  

treatment  at  home,  although  a  sizeable  minority  (15,  16%)  thought  that  this  was  only  true  

for  50%  or  fewer  parents.  Participants  were  asked  if  their  patients  were  treated  using  

OPAT  directly  from  ED,  what  percentage  they  would  accept  re-­‐-­‐-­‐presenting  to  hospital  and  

still  consider  this  a  useful  pathway  for  patients.  Although  responses  ranged  from  0-­‐-­‐-­‐100%,  

45

66/92  (72%)  of  responses  fell  in  the  10-­‐-­‐-­‐30%  range,  with  the  median  20%  of  patients  re-­‐-­‐-­‐  

presenting  still  considered  acceptable.  

   Engagement  with  families  in  decision-­‐-­‐-­‐making  was  variable.  When  asked  whether  a  child  

should  complete  a  course  of  antibiotics  as  prescribed,  54/104  (52%)  advise  always  to  

complete  the  course,  28  (27%)  advise  to  attend  their  general  practitioner  for  clinical  

review  and  a  final  decision  on  antibiotic  duration  and  12  (12%)  had  no  specific  advice.  A  

further  10  (10%)  physicians  advise  to  stop  the  antibiotics  earlier  if  the  cellulitis  resolves,  

but  when  asked  if  parents  can  be  trusted  to  make  the  decision,  only  5/59  (9%)  stated  yes,  

14  (24%)  stated  no,  while  40  (68%)  stated  it  depended  on  the  parents.  Only  23/97  (24%)  

physicians  would  ‘frequently’  involve  the  parents  in  deciding  between  hospital  and  home  

with  OPAT  and  only  2  (2%)  in  the  decision  between  IV  and  oral  antibiotics.  

   Discussion    The  survey  shows  that  physicians  agree  about  the  severity  of  cellulitis  from  the  clinical  

vignettes.  The  scenarios  were  deliberately  designed  to  reflect  less  and  more  severe  clinical  

cases  as  institutional  and  other  guidelines  make  this  distinction,  although  often  in  non-­‐-­‐-­‐  

specific  terms.  Physicians,  especially  those  with  less  experience,  were  positive  about  the  

concept  of  a  clinical  score  for  cellulitis  that  incorporates  various  clinical  features  they  

usually  use  to  improve  the  determination  of  severity  and  guide  the  route  of  antibiotics.  

   It  is  not  surprising  that  more  physicians  would  undertake  investigations  in  

moderate/severe  than  mild  cellulitis,  due  to  the  higher  risk  of  complications.  It  is  perhaps  

surprising  that  any  blood  investigations  were  suggested  at  all  in  mild  cellulitis  given  the  

invasiveness  and  lack  of  utility  of  blood  tests.  That  two-­‐-­‐-­‐thirds  would  do  a  blood  culture  in  

46

moderate/severe  cellulitis  reflects  that  over  half  of  physicians  perceive  the  risk  of  

bacteremia  as  over  5%,  and  one-­‐-­‐-­‐third  over  10%,  although  studies  have  consistently  shown  

this  risk  to  be  less  than  1%.7  8    Taking  a  blood  culture  in  patients  with  cellulitis  has  

conversely  been  associated  with  an  increased  length  of  stay  related  to  spurious  results.9    A  

raised  CRP  has  previously  been  found  to  correlate  with  severity  of  symptoms  and  more  

severe  sonographic  findings.10    However,  of  those  who  would  request  a  CRP,  only  one-­‐-­‐-­‐third  

of  physicians  would  use  it  to  decide  on  the  route  of  treatment.  The  majority  stated  they  

would  use  CRP  to  monitor  clinical  improvement,  which  is  surprising  since  a  clinical  

response  in  this  condition  is  clearly  observable.  One  previous  study  of  soft  tissue  infections  

in  children  found  a  correlation  between  raised  CRP  and  prolonged  duration  of  stay.11  

Although  the  authors  argued  the  raised  CRP  was  a  sign  of  more  serious  infection,  it  is  

possible  that  the  raised  CRP  led  to  the  decision  to  prolong  admission.  This  practice  may  

therefore  have  implications  on  resources,  while  providing  minimal  benefit.12  

   There  was  high  consistency  in  responses  for  antibiotic  first-­‐-­‐-­‐line  choice  (flucloxacillin)  and  

duration  (5-­‐-­‐-­‐7  days),  both  recommended  in  the  local  institutional  guideline.  This  guideline  

reflects  the  low  prevalence  of  MRSA  in  children  in  our  region  at  approximately  6%,  of  

which  most  physicians  appeared  to  be  aware.13    The  recommended  duration  of  antibiotics,  

aligns  with  recent  recommendations  of  a  systematic  review.14    However,  physicians’  

opinions  on  cessation  of  an  oral  antibiotic  course  were  divided.  The  lack  of  willingness  to  

involve  parents  in  deciding  on  stopping  oral  antibiotics  was  striking,  with  fewer  than  10%  

trusting  parents  to  be  involved.  This  lack  of  engagement  was  also  apparent  when  

determining  whether  a  child  with  moderate/severe  cellulitis  was  appropriate  for  OPAT  

with  only  about  a  quarter  involving  parents  in  this  decision.  This  is  despite  the  emphasis  

47

on  patient  and  family-­‐-­‐-­‐centred  care  at  our  institution,  and  the  benefits,  popularity  and  

effectiveness  of  this  approach.15

Where  IV  antibiotics  are  needed,  only  half  of  physicians  would  choose  treatment  at  home  in  

preference  to  hospitalisation  despite  the  fact  that  cellulitis  is  a  condition  with  low  

morbidity,16    there  is  a  rapidly  responsive  ED-­‐-­‐-­‐to-­‐-­‐-­‐OPAT  service  at  our  institution17    and  that  the  

majority  acknowledged  that  most  parents  would  prefer  treatment  at  home.  The  preference  

for  hospitalisation  may  be  explained  by  the  unwarranted  perception  of  the  high  risk  of  

bacteremia,  also  reflected  by  hesitancy  with  this  pathway  if  there  is  fever18,  risk  of  unnoticed  

deterioration,  and  difficulty  in  distinguishing  orbital  from  periorbital  cellulitis  despite  low  

rates  of  complications  when  ambulatory  treatment  is  used  for  periorbital  cellulitis.3  19    For  

this  reason,  in  our  published  algorithm  for  management  of  cellulitis  via  OPAT/HITH,  we  

recommended  that  a  child  with  periorbital  cellulitis  should  be  reviewed  by  a  senior  

physician  prior  to  being  sent  home.3    In  developing  an  OPAT/HITH  service,  it  is  important  to  

understand  physician  risk  aversion  to  use  it,  so  that  real  clinical  concerns  can  be  separated  

from  perceived  concerns  about  degree  of  oversight  or  monitoring  which  are  amendable  to  

education.  It  is  also  useful  to  know  that  physicians  accept  a  rate  of  re-­‐-­‐-­‐  presentation  in  

patients  treated  with  OPAT,  and  still  consider  this  a  valuable  treatment  pathway.  

This  is  the  first  time  that  pediatricians’  attitudes  towards  the  management  of  cellulitis  have  

been  surveyed,  and  although  there  was  a  high  response  rate  there  are  several  limitations.  

Firstly,  it  was  conducted  in  a  single  tertiary  centre  and  may  not  reflect  the  opinions  of  

physicians  in  other  settings.  Secondly,  it  was  an  electronic  survey  which  does  not  provide  

the  full  opportunity  to  understand  details  of  beliefs  compared  to  interviews  with  

48

physicians,  which  may  be  valuable  in  future.  Thirdly,  it  is  possible  that  how  people  

responded  may  not  reflect  their  actual  practice,  although  we  tried  to  mitigate  this  by  having  

an  anonymous  survey.  Lastly,  our  institution  has  a  well-­‐-­‐-­‐established  HITH/OPAT  service  

which  is  not  universal,  but  the  information  obtained  from  this  survey  may  be  useful  for  

institutions  that  are  considering  establishing  a  similar  pathway.  

   This  study  provides  important  insights  into  how  beliefs  may  impact  on  management  of  

children  with  cellulitis.  The  clinical  features  used  to  decide  on  whether  to  use  IV  antibiotics  

could  fill  a  gap  in  current  guidelines  or  contribute  to  the  development  of  a  clinical  score.  

There  appears  to  be  overuse  of  investigations  and  over-­‐-­‐-­‐perception  of  risk  in  this  condition.  

A  study  on  the  variation  in  how  physicians  use  investigations  in  cellulitis  could  identify  low  

value  care  amenable  to  quality  improvement  interventions.  Barriers  for  pediatricians  using  

the  HITH/OPAT  pathway  were  identified  and  will  inform  future  studies  to  address  these.  

           Acknowledgements    We  are  grateful  to  all  the  physicians  for  their  participation  in  the  survey.        Funding    This  study  was  funded  in  part  by  grants  from  the  RCH  Foundation,  the  Murdoch  Children's  

Research  Institute  (MCRI),  the  Victorian  Department  of  Health,  Melbourne  Australia.  LFI  

was  supported  in  part  by  a  scholarship  from  AVANT  Mutual  Group  Ltd,  Melbourne,  the  

Melbourne  Children’s  Campus  Postgraduate  Health  Research  Scholarship  and  the  Doctor  

Nicholas  Collins  Fellowship.  PAB  was  in  part  supported  by  a  Melbourne  Campus  Physician  

49

Scientist  Fellowship,  Melbourne,  Australia.  FEB  was  supported  in  part  by  a  grant  from  the  

RCH  Foundation  and  a  Melbourne  Campus  Physician  Scientist  Fellowship,  Melbourne,  

Australia  and  a  National  Health  and  Medical  Research  Council  (NHMRC)  Practitioner  

Fellowship,  Canberra,  Australia.  The  emergency  research  group,  MCRI,  is  in  part  supported  

by  an  NHMRC  Centre  for  Research  Excellence  Grant  for  Pediatric  Emergency  Medicine,  

Canberra,  Australia  and  the  Victorian  government  infrastructure  support  program.  

       References    1. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and

management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014;59(2):e10-52. doi: 10.1093/cid/ciu444

2. The Royal Children's Hospital M, Australia. Cellulitis and skin infections [cited 2015 7 June]. Available from: https://wwww.rch.org.au/clinicalguide/.

3. Ibrahim LF, Hopper SM, Babl FE, et al. Who Can Safely Have Antibiotics at Home? A Prospective Observational Study in Children with Moderate/Severe Cellulitis. Pediatr Infect Dis J 2015 doi: 10.1097/INF.0000000000000992

4. Gouin S, Chevalier I, Gauthier M, et al. Prospective evaluation of the management of moderate to severe cellulitis with parenteral antibiotics at a paediatric day treatment centre. Journal of paediatrics and child health 2008;44(4):214-8. doi: 10.1111/j.1440- 1754.2007.01236.x

5. Ibrahim LF, Hopper SM, Connell TG, et al. Evaluating an admission avoidance pathway for children in the emergency department: outpatient intravenous antibiotics for moderate/severe cellulitis. Emergency medicine journal : EMJ 2017 doi: 10.1136/emermed-2017-206829

6. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42(2):377-81. doi: 10.1016/j.jbi.2008.08.010

7. Bryant PA, Babl FE, Daley AJ, et al. Blood Cultures in Cellulitis are not Cost Effective and Should Prompt Investigation for an Alternative Focus. The Paediatric Infectious Disease Journal 2016;35(1)(January 2016):118. doi: 10.1097/INF.0000000000000938

8. Trenchs V, Hernandez-Bou S, Bianchi C, et al. Blood Cultures are not Useful in the Evaluation of Children with Uncomplicated Superficial Skin and Soft Tissue Infections. Pediatr Infect Dis J 2015 doi: 10.1097/INF.0000000000000768

9. Malone JR, Durica SR, Thompson DM, et al. Blood cultures in the evaluation of uncomplicated skin and soft tissue infections. Pediatrics 2013;132(3):454-9. doi: 10.1542/peds.2013-1384

10. Chao HC, Lin SJ, Huang YC, et al. Sonographic evaluation of cellulitis in children. J Ultrasound Med 2000;19(11):743-9.

11. Tanir G, Tonbul A, Tuygun N, et al. Soft tissue infections in children: a retrospective analysis of 242 hospitalized patients. Jpn J Infect Dis 2006;59(4):258-60.

50

12. Greenberg J, Green JB. Over-testing: why more is not better. Am J Med 2014;127(5):362-3. doi: 10.1016/j.amjmed.2013.10.024

13. Wolf J, Daley AJ, Tilse MH, et al. Antibiotic susceptibility patterns of Staphylococcus aureus isolates from Australian children. Journal of paediatrics and child health 2010;46(7-8):404-11. doi: 10.1111/j.1440-1754.2010.01751.x

14. McMullan BJ, Andresen D, Blyth CC, et al. Antibiotic duration and timing of the switch from intravenous to oral route for bacterial infections in children: systematic review and guidelines. The Lancet Infectious diseases 2016;16(8):e139-52. doi: 10.1016/S1473- 3099(16)30024-X

15. Laila Ibrahim SH, Francesca Orsini, Franz Babl, Penelope Bryant. A Randomised Controlled Trial Comparing Home To Hospital In Children With Moderate/Severe Cellulitis. HITH Society Conference 2017. Melbourne, Australia, 2017.

16. Ginsberg MB. Cellulitis: analysis of 101 cases and review of the literature. South Med J 1981;74(5):530-3.

17. Hodgson KA, Huynh J, Ibrahim LF, et al. The use, appropriateness and outcomes of outpatient parenteral antimicrobial therapy. Archives of disease in childhood 2016;101(10):886-93. doi: 10.1136/archdischild-2015-309731

18. Teach SJ, Fleisher GR. Duration of fever and its relationship to bacteremia in febrile outpatients three to 36 months old. The Occult Bacteremia Study Group. Pediatric emergency care 1997;13(5):317-9.

19. Brugha RE, Abrahamson E. Ambulatory intravenous antibiotic therapy for children with preseptal cellulitis. Pediatric emergency care 2012;28(3):226-8. doi: 10.1097/PEC.0b013e318248b19b

51

Tables        Table  1.  Comparison  of  trainee  and  senior  physicians’  choice  of  investigations  in  

moderate/severe  cellulitis  

    Trainee

No. (%) n=41

Senior No. (%)

n=65

Odds ratio (95% Confidence

interval)

p value

Any investigations 34 (92) 42 (71) 4.6 (1.3-15.8) 0.02*

FBC 30 (73) 37 (57) 2.1 (0.9-4.8) 0.09

ESR and/or CRP 23 (56) 30 (46) 1.5 (0.7-3.3) 0.32

Blood culture 28 (68) 36 (55) 1.7 (0.8-3.9) 0.19

Skin swab 19 (46) 19 (29) 2.1 (0.9-4.7) 0.07

Nasal swab 0 3 (4) N/A 0.24

Radiology 7 (17) 6 (9) 2.0 (0.7-6.2) 0.23

   FBC  -­‐-­‐-­‐  full  blood  count,  ESR  -­‐-­‐-­‐  erythrocyte  sedimentation  rate,  CRP  -­‐-­‐-­‐  C-­‐-­‐-­‐reactive  protein,  N/A=  Not  available,    *denotes  statistically  significant  

52

   Table  2.  Reason  for  choosing  investigations  in  moderate/severe  cellulitis  

    Investigations

No. (%)   FBC

 n=61

CRP/ ESR n=52

Blood culture n=64

Skin swab n=37

Nasal swab n=3

Radio- logy

n=13 Affects IV vs oral 22 (36) 17 (33)  

 30 (47)

       

5 (14)

       

0 (0)

                       

10 (77)

Affects hospital vs HITH 14 (23) 14 (27)

Affects treatment duration 13 (21) 13 (25) 48 (75)

Monitor clinical improvement 36 (59) 36 (69)      

Affects antibiotic choice 47 (73) 32 (87) 3 (100)

Affects MRSA eradication 23 (62) 1 (33)

Exclude abscess

Exclude fracture 6 (46) FBC  -­‐-­‐-­‐  full  blood  count,  ESR  -­‐-­‐-­‐  erythrocyte  sedimentation  rate,  CRP  -­‐-­‐-­‐  C-­‐-­‐-­‐reactive  protein,  IV  -­‐-­‐-­‐  intravenous,  HITH  -­‐-­‐-­‐  

Hospital-­‐-­‐-­‐In-­‐-­‐-­‐The-­‐-­‐-­‐Home,  MRSA  -­‐-­‐-­‐  methicillin  resistant  Staphylococcus  aureus  

53

 Table  3.  Comparison  of  the  reasons  pediatricians’  would  usually  use  for  choosing  IV  

antibiotics  over  oral,  and  hospitalization  over  OPAT/HITH  

    IV

versus oral No. (%) n=103

Hospital versus HITH

No. (%) n=99

Odds ratio (95%

Confidence interval)

p value

Lymphangitis/tracking 94 (91) 67 (68) 5.0 (2.3-11.0) <0.01*

Functional impairment 85 (83) 73 (74) 1.7 (0.9-3.3) 0.13 of the affected area        

Fever 81 (79) 53 (54) 3.2 (1.7-5.9) <0.01*

Already received at 77 (75) 32 (32) 6.2 (3.4-11.4) <0.01* least 24 hours oral        antibiotics        

Size of the affected 60 (58) 37 (37) 0.1 (0.0-0.4) 0.03* area        

Site of the affected 57 (55) 47 (45) 2.3 (1.3-4.1) 0.24 area        

Degree of swelling 50 (49) 40 (40) 1.4 (0.8-2.4) 0.26

Degree of tenderness 50 (49) 37 (38) 1.6 (0.9-2.8) 0.07

Degree of erythema 27 (26) 21 (21) 1.3 (0.7-2.5) 0.40

Family preference 4 (4) 24 (24) 0.1 (0.0-0.4) <0.01*

54

Table  4.  Child-­‐-­‐-­‐specific  reasons  given  by  physicians  for  reluctance  to  use  OPAT/HITH  

Responses No. (%)

n=96 Age

92 (96) Under 6 months

6 months-1 year 44 (46)

Clinical symptoms

Sunburn-like rash 52 (54)

Fever 48 (50)

Vesicular rash 48 (50)

Maculopapular rash 19 (20)

Urticarial rash 16 (17)

Complications*

Risk of child deteriorating unnoticed – high/very high 24 (25)

Risk of needing to represent to hospital – high/very high 22 (23)

Risk of missing a complication – high/very high 19 (20) *Risk of complication scale: very low, low, neutral, high, very high

55

  56  

2.4 Current  practice  of  home  treatment  of  cellulitis  with  intravenous  antibiotics  –  a  baseline  study  

Parallel  to  the  investigation  into  clinicians’  knowledge  and  beliefs  around  

cellulitis  management,  another  study  was  carried  out  to  investigate  the  current  

practice  of  cellulitis  treatment,  with  a  focus  on  the  home  pathway  at  our  

institution.  The  RCH  has  an  established  OPAT  service  since  2001  known  as  

Hospital-­‐in-­‐the-­‐Home  (HITH).12  The  HITH  service  at  RCH  is  nurse-­‐led  with  

medical  oversight.  In  addition  to  highly  experienced  nursing  staff  who  conduct  

home  visits  to  administer  treatment,  a  full  time  consultant  paediatrician  and  a  

full  time  senior  paediatric  trainee  are  allocated  to  this  department.  This  service  

provides  home  care  for  multiple  interventions  that  traditionally  would  be  

provided  in  hospital.  Specifically  regarding  OPAT,  the  majority  at  the  start  of  this  

PhD  was  for  children  requiring  long-­‐term  antibiotics  after  being  on  a  hospital  

ward.  Patients  were  predominantly  from  oncology,  cystic  fibrosis  and  

orthopaedic  populations.  These  patients  were  initially  admitted  to  hospital  for  a  

number  of  days,  before  being  considered  stable  enough  for  transfer  home  via  

HITH  to  finish  the  course  of  intravenous  antibiotics  overseen  by  the  initial  team  

overseeing  their  care.    

More  recently  and  infrequently,  patients  were  referred  directly  from  the  ED  to  

HITH  with  acute  conditions  such  as  cellulitis  and  UTI  for  antibiotic  treatment  at  

home.1  6  Patients  who  were  referred  directly  from  the  ED  to  HITH,  would  receive  

the  first  dose  of  intravenous  antibiotics  in  the  ED  and  be  discharged  home  with  a  

peripherally  inserted  cannula  in  situ.  The  HITH  nurse  would  visit  the  patient  at  

home  daily  for  subsequent  doses  of  antibiotics  and  medical  review.  In  these  

cases,  the  HITH  medical  staff  would  oversee  their  treatment  and  medical  care.    

To  better  understand  how  this  pathway  was  being  used  to  treat  cellulitis,  a  

baseline  study  was  needed  to  investigate  the  characteristics  of  patients  who  use  

this  pathway  and  to  assess  the  safety  and  efficacy  of  home  treatment  for  these  

patients.  Although  the  focus  was  on  patients  treated  at  home,  it  became  apparent  

at  the  start  of  this  study  that  the  majority  of  patients  needing  intravenous  

  57  

antibiotics  for  cellulitis  were  still  treated  in  hospital.  Therefore  the  

characteristics  of  patients  treated  in  hospital  were  also  collected  to  determine  

whether  there  were  features  that  make  these  patients  unsuitable  for  home  

management.  

   

  58  

2.5 Study  2:  Management  of  children  with  cellulitis  with  intravenous  antibiotics  at  home  

Ibrahim  LF,  Hopper  SM,  Babl  FE,  Bryant  PA.  Who  Can  Have  Parenteral  

Antibiotics  at  Home?  A  Prospective  Observational  Study  in  Children  with  

Moderate/Severe  Cellulitis.  Pediatr  Infect  Dis  J.  2016  Mar;35(3):269-­‐74    

 

www.pidj.com | 269

Original StudieS

Background: The benefits of treating children at home or in an ambulatory setting have been well documented. We aimed to describe the characteris-tics and evaluate the outcomes of children with moderate/severe cellulitis treated at home with intravenous (IV) ceftriaxone via direct referral from the Emergency Department to a hospital-in-the-home (HITH) program.Methods: Patients aged 3 months to 18 years with moderate/severe cellulitis referred from a tertiary pediatric Emergency Department to HITH from Sep-tember 2012 to January 2014 were prospectively identified. Data collection included demographics, clinical features, microbiological characteristics and outcomes. To ensure home treatment did not result in inferior outcomes, these patients were retrospectively compared with patients who were hospitalized for IV flucloxacillin, the standard-of-care over the same period. The primary out-come was home treatment failure necessitating hospital admission. Secondary outcomes included antibiotic changes, complications, length of stay and cost.Results: Forty-one (28%) patients were treated on HITH and 103 (72%) were hospitalized. Compared with hospitalized patients, HITH patients were older (P < 0.01) and less likely to have periorbital cellulitis (P = 0.01) or fever (P = 0.04). There were no treatment failures under HITH care. The rate of antibiotic changes was similar in both groups (5% vs. 7%, P = 0.67), as was IV antibiotic duration (2.3 vs. 2.5 days, P = 0.23).Conclusion: Older children with moderate/severe limb cellulitis without systemic symptoms can be treated at home. To ascertain if this practice can be applied more widely, a comparative prospective, ideally randomized, study is needed.

Key Words: antibiotics, intravenous, hospital-in-the-home, ambulatory, cellulitis

(Pediatr Infect Dis J 2016;35:269–274)

Cellulitis is a common infection in children, but while adultswho require intravenous (IV) antibiotics for moderate or severe

cellulitis commonly receive it under an outpatient parenteral anti-microbial treatment (OPAT) model, children are usually admitted to hospital.1,2 In comparison with hospital admission, children treated

at home do better psychologically and physically, have fewer inves-tigations, are at decreased risk of hospital-acquired infections and have subsequent decreased use of healthcare resources.3–6 It is also cheaper and psychologically better for their families.6,7 Previous randomized trials in adults with cellulitis show OPAT is a safe and efficient model of care.8,9 OPAT may be delivered as an outpatient returning daily to the hospital, or via a hospital-in-the-home (HITH) program whereby nurses visit the patient’s home daily to administer IV antibiotics. Although OPAT has been used in children since the 1970s for those requiring long-term antibiotics, it is less commonly used for acute infections requiring short-term antibiotics.10,11

When IV treatment is required for cellulitis, a semisynthetic penicillin or first-generation cephalosporin are the usual choices because they are effective against Staphylococcus aureus and group A streptococci (Streptococcus pyogenes), the main pathogens caus-ing cellulitis.12 However, they are not suitable for OPAT because of their frequent dosing with the majority of OPAT services only able to deliver once daily interventions. Although probenecid can overcome this problem for adults on cefazolin, there are no pharmacokinetic studies of its use children, and the side effect of vomiting may prevent probenecid use.9 Ceftriaxone has anti-staphylococcal activity and can be administered once daily.13 There are only a few studies in children in which ceftriaxone has been used to treat cellulitis either in hospital or OPAT, and although promising, none have compared outcomes to children treated with the standard-of-care inpatient therapy.11,13–16

Increasingly hospitals are developing programs where patients who have traditionally been treated as inpatients are treated at home under the care of hospital doctors and nurses in HITH programs. The Royal Children’s Hospital (RCH) Melbourne has the largest pediatric HITH program in Australia. As an alternative to hospital admission for IV flucloxacillin, RCH HITH recently developed a direct-from-the Emergency Department (ED) pathway for moderate/severe cel-lulitis, using once daily ceftriaxone and medical review at home. However, currently, there are no guidelines about which patients can be transferred to HITH to receive treatment at home. Therefore, the decision between hospital-based and home-based treatment is made variably by ED clinicians. A new pathway should be as safe and as effective as the current standard of care, so evaluating clinical fea-tures and outcomes provides evidence to inform guidelines.17

The aim of this study was to describe the demographics, clinical and microbiological features, outcomes and cost of a cohort of patients with moderate/severe cellulitis who were treated with IV ceftriaxone at home. Additionally, we aimed to compare these with patients concurrently admitted to hospital with the same diagnosis, to determine the differences between these 2 groups at presentation and whether treatment via HITH affected outcomes unfavorably. Based on our findings, we aimed to propose a guideline for which patients with cellulitis can safely receive IV antibiotics at home.

METHODS

SettingThis was a prospective observational study of children pre-

senting to the ED at the RCH Melbourne over a 17-month period

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.ISSN: 0891-3668/16/3503-0269DOI: 10.1097/INF.0000000000000992

Who Can Have Parenteral Antibiotics at Home?

A Prospective Observational Study in Children with Moderate/Severe Cellulitis

Laila F. Ibrahim, MB BCh, BAO,*†‡ Sandy M. Hopper MB BS,‡§ Franz E. Babl, MD,†‡§ and Penelope A. Bryant, PhD*†‡¶

Accepted for publication September 4, 2015.From the *RCH@Home Department, The Royal Children’s Hospital; † Murdoch

Children’s Research Institute; ‡Department of Pediatrics, University of Melbourne; §Emergency Department, and ¶Infectious Diseases Unit, Department of General Medicine, The Royal Children’s Hospital, Parkville, Victoria, Australia.

This study is funded in part by grants from the RCH Foundation, the Murdoch Children's Research Institute and the Victorian Department of Health, Mel-bourne Australia. F.E.B. was supported in part by a grant from the RCH Foundation. The emergency research group, MCRI, is in part supported by a Centre for Research Excellence Grant for Paediatric Emergency Medicine from the National Health and Medical Research Council, Canberra, Austra-lia and the Victorian government infrastructure support program. The fund-ing bodies do not have any authority in collection, management, analysis and interpretation of data. The authors have no conflict of interest to disclose.

Address for correspondence: Penelope A Bryant, PhD, Department of General Medicine, The Royal Children’s Hospital Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia. E-mail: [email protected].

59

Ibrahim et al The Pediatric Infectious Disease Journal • Volume 35, Number 3, March 2016

270  |  www.pidj.com © 2015 Wolters Kluwer Health, Inc. All rights reserved.

from September 1, 2012 to January 31, 2014 with uncomplicated moderate/severe cellulitis and treated at home. As there is no vali-dated or objective score for distinguishing moderate/severe from mild cellulitis, this was defined in the study as those assessed by ED physicians as requiring IV antibiotics because of any of the follow-ing clinical features: rapidly spreading redness (from history), sig-nificant swelling/redness/pain, systemic symptoms/signs (eg, fever, lethargy) or failed oral therapy (not improving despite at least 24 hours oral antibiotics).

Inclusion CriteriaPatients aged 3 months to 18 years with moderate/severe

cellulitis who were referred by ED clinicians directly to the HITH program for IV ceftriaxone were included.

Exclusion CriteriaChildren younger than 3 months, those with mild or com-

plicated cellulitis and those where the initial antibiotic choice within HITH was not ceftriaxone were excluded. Complicated cellulitis included cellulitis associated with abscess requiring surgical drainage, lymphadenitis, underlying soft-tissue mal-formation, bite or penetrating injury, foreign body, fracture, lymphedema, orbital cellulitis, medical comorbidities or immu-nosuppression.

Study ProcedureChildren with moderate/severe cellulitis were identified

by ED clinicians and assessed for HITH suitability at presen-tation. They were referred to the HITH program directly from ED. This involved the ED clinician filling an online referral form and calling the admitting HITH nurse to hand over the patient. After receiving the first dose of ceftriaxone 50 mg/kg once daily in the ED, the patient went home with the peripheral cannula in situ. The HITH nurse visited the child the following day and administered IV ceftriaxone at home. This was followed by daily nursing review and daily ceftriaxone until the child was deemed suitable for oral therapy. The HITH doctor reviewed the child at least once during the course of treatment in person, via telecon-ferencing or by reviewing digital photographs taken by nursing staff. The decision to cease IV antibiotics was made by the HITH doctor. The HITH nurse removed the cannula upon cessation of IV therapy in the patient’s home.

Hospitalized GroupThe standard of care for moderate/severe cellulitis at RCH

is hospitalization with at least daily medical review and IV flu-cloxacillin 50 mg/kg every 6 hours. Patients who received the standard-of-care therapy were identified retrospectively from the ED electronic database (Emergency Department Information Sys-tem for Oracle Version EDISAPAC 12.1 1B5). The same inclusion and exclusion criteria were applied when identifying these patients retrospectively, except for the decision to refer to HITH. Patients who did not receive IV flucloxacillin as their empiric antibiotic were excluded to enable comparison with standard recommended management.

Data CollectionData for HITH patients were collected prospectively

including demographic data and clinical information: age, sex, systemic symptoms at presentation (reported or documented fever >38°C, vomiting, tachycardia or hypotension), prior use of oral antibiotics, results from skin swab and/or blood culture if taken and timing of IV ceftriaxone administration. For all patients who were hospitalized, case notes and microbiology results were reviewed retrospectively.

Outcome MeasuresThe primary outcome was treatment failure, defined as

admission from HITH back to hospital because of inadequate improvement at home as determined by the treating clinician.

Secondary outcomes were change of antibiotic because of poor clinical improvement, septic complications or recurrence during use or within 48 hours of ceasing empiric IV antibiotics, adverse events and readmission to hospital for the same diagno-sis or death within 28 days of discharge, length of stay, duration of IV antibiotics and subsequent oral antibiotic duration. A cost analysis was also done which included the average costs of beds, consumables and overhead costs, such as administrative time, information technology, and use of hospital cars. Antibiotic costs were included but were low. A vial of ceftriaxone costs Australian Dollar (AUD) 0.60 [United States Dollar (USD) 0.46], whereas a vial of flucloxacillin costs AUD 0.94 (USD 0.72).

Data AnalysisStudent t test was used to compare continuous data between

the 2 groups and χ2-square test for categorical data, with a P value of <0.05 considered statistically significant.

EthicsThis study received approval from the RCH Human

Research Ethics Committee (32291A).

RESULTSOver the 17 months of the study, 700 children presented to

the ED with cellulitis, of which 396 (57%) were discharged home on oral antibiotics. Of the 304 children treated with IV antibiotics, 120 were excluded from the analysis because of being younger than 3 months or having complicated cellulitis, and 40 patients were excluded for being treated with nonstandard antibiotics (Fig. 1). One hundred and forty-four children were treated for uncomplicated moderate/severe cellulitis. Forty-one were treated at home via HITH, and 103 were hospitalized, receiving the RCH standard of care. In terms of the primary outcome, none of the 41 HITH patients had treatment failure at home necessitating admis-sion to hospital. Demographic, clinical and microbiological data were compared with those from the hospitalized patients to deter-mine differences that might explain their different treatment loca-tion choices. Secondary outcomes were compared with determine whether treatment under HITH affected outcomes unfavorably.

Demographics and Clinical FeaturesPatients had similar sex distribution, but HITH patients

were older than hospitalized patients (9.0 vs. 5.9 years; P < 0.01; Table 1). Of patients younger than 5 years, 58 (83%) were hospital-ized. Patients treated under HITH had a higher rate of prior oral antibiotic treatment than hospitalized patients (59% vs. 40%; P = 0.04) and a lower rate of systemic symptoms, in particular fever (22% vs. 37%; P = 0.04). Only 1 patient received a fluid bolus, and no patient in either group was hypotensive. Fewer HITH patients than hospitalized patients had a blood culture taken (27% vs. 41%; P < 0.01), but no cultures were truly positive for a pathogen in either group. Patients with periorbital cellulitis were less likely to be treated under HITH than hospitalized (10% vs. 30%; P = 0.01), whereas a higher proportion of HITH patients than hospitalized patients had lower limb cellulitis (56% vs. 37%; P = 0.03). A total of 59 skin swabs were taken. The 2 most common pathogens iso-lated were S. aureus in 31 (22%) children and S. pyogenes in 9 (6%) children. Methicillin-resistant S. aureus (MRSA) was identified in 6 children, accounting for 10% of pathogens where a skin swab was taken.

60

The Pediatric Infectious Disease Journal • Volume 35, Number 3, March 2016 Home Intravenous Antibiotics

© 2015 Wolters Kluwer Health, Inc. All rights reserved.  www.pidj.com  |  271

Secondary OutcomesTwo HITH patients had empirical antibiotic treatment

changed because of poor clinical improvement and both cultured MRSA (Table 2). Of the hospitalized patients, 6 had empirical anti-biotic treatment changed because of poor clinical improvement and 1 changed because of rapid progression (5% vs. 7%, P = 0.67). There were no complications while on IV antibiotics or within 48 hours of switching to oral antibiotics or severe adverse reactions in either group. There were no readmissions for HITH patients after discharge from the HITH program. There were 3 readmissions for hospitalized patients who had been on more than 48 hours oral antibiotics following discharge after clinical improvement on IV flucloxacillin (2 with abscesses and 1 with recurrence of cellulitis). The length of stay under medical care was 2.7 days in both groups, although this equated to inpatient bed days for hospitalized patients and days at home for HITH patients. The duration of IV antibiotic

treatment was similar for both groups (HITH, 2.3 vs. hospitalized 2.5 days; P = 0.23), although subsequent oral antibiotic durations were shorter for HITH patients (HITH, 5.6 vs. hospitalized 6.9 days; P < 0.01).

Cost AnalysisThe 41 patients treated at home were under HITH for a com-

bined total of 110 days. The difference in antibiotic costs was small with the total number of vials of ceftriaxone for all patients costing AUD 93 (USD 72), whereas the same patients receiving flucloxacillin would have cost AUD 496 (USD 383). The bed cost differences were larger: the cost of being under HITH for 1 day for the treatment of cellulitis is AUD 530 (USD 409), compared with an inpatient medical bed for the same condition which costs AUD 1297 (USD 1001) at our hospital. Based on these costs, these 41 HITH patients cost AUD 17,600 (USD 13,589) compared with AUD 46,200 (USD 35, 674)

FIGURE 1. Disposition of patients presenting to the ED with cellulitis.

61

Ibrahim et al The Pediatric Infectious Disease Journal • Volume 35, Number 3, March 2016

272  |  www.pidj.com

if they had been treated in hospital, a real cost saving AUD 28,600 (USD 22,083). If all of the hospitalized patients had been treated under HITH (combined total of 275 days), the estimated cost saving would have been AUD 210,925 (USD 163,072).

DISCUSSIONThis is the first study describing demographics, clinical and

microbiological characteristics and outcomes of children with uncom-plicated moderate/severe cellulitis treated at home. Home treatment of cellulitis under HITH appears both feasible and efficacious, particu-larly for older children with limb cellulitis without systemic symptoms.

The reason to compare HITH patients with inpatients is not to suggest that the 2 groups are necessarily equivalent, but to

identify features associated with safe treatment under HITH and to evaluate whether the benefits of treatment at home come at a cost in any outcome measures. The measured outcomes, duration of IV antibiotics and length of stay were the same in the 2 groups analyzed. Given that the outcomes were not inferior, referral of these patients to HITH resulted in significant cost savings. As this was a new pathway, it is likely that there were other patients who could have been treated via HITH with additional cost savings. This would need to be evaluated in a prospective study.

There were differences between HITH patients and hospitalized patients. First, HITH patients were older, possibly because of concern about higher likelihood of bacteremia in younger children. This is also reflected in a higher proportion of blood cultures taken in the hospital-ized group. Another difference was that hospitalized patients had more systemic symptoms (almost exclusively fever), although this did not reflect bacteremia or risk of progression to sepsis. A higher proportion of HITH patients received prior oral antibiotics, which may indicate that they had more indolent presentations rather than rapidly progres-sive cellulitis. Children with periorbital cellulitis were more likely to be hospitalized (only 11% were admitted under HITH). The most likely reason is uncertainty in distinguishing periorbital from orbital cellulitis at presentation especially in an uncooperative young child. One previ-ous study of periorbital cellulitis described 42 children treated on an ambulatory basis with low rates of complications.16 However, the clini-cal characteristics of these patients were not specified. Other previous studies using outpatient ceftriaxone in children have either excluded or not reported on periorbital cellulitis.11,14,18

Ceftriaxone is the antibiotic of choice for home-based treat-ment of cellulitis because it can be administered once daily via a peripheral cannula. Use of peripheral cannula is usual practice for patients on HITH receiving short-term OPAT because these are the easiest IV access devices to insert, do not require general anes-thesia and have low complication rates. Flucloxacillin at home would need to be infused over 24 hours via a central venous cath-eter (CVC). As the mean duration of IV antibiotics in our patient population was only 2.5 days, CVC insertion would not be justified. The only adverse event in either group in our study was a single patient with a rash secondary to cannula fixation tape. No patients needed their cannula resiting, but even if they had, the benefits still outweigh the disadvantages of a CVC.

As a novel intervention, it is important to consider whether ceftriaxone is an appropriate antibiotic regarding its effective-ness for the treatment of S. aureus infection and the potential for adverse ecological effects due its broad spectrum. Regarding effectiveness, the literature suggests a rate of <3% ceftriaxone resistance in methicillin-sensitive S. aureus.19 The few studies in

TABLE 1. Comparison of Characteristics of HITH Patients and Hospitalized Patients for Uncomplicated Moderate/Severe Cellulitis

HITH, No. (%)

Hospitalized, No. (%)

P Value

Demographics Total patients 41 (28) 103 (72) Sex, female:male 16:25 52:51 0.21 Age (yr), mean (range) 9.0 (1–17) 5.9 (0.5–17) <0.01*

Clinical features Prior oral antibiotic 24 (59) 41 (40) 0.04* Systemic symptoms 9 (22) 38 (37) 0.08

Fever 8 (20) 38 (37) 0.04* Vomiting 1 (1) 2 (2) 0.85 Tachycardia 0 (0) 1 (1) 0.41

Hypotension 0 (0) 0 (0) Site

Periorbital 4 (10) 31 (30) 0.01* Lower limb 23 (56) 38 (37) 0.03* Upper limb 8 (20) 17 (17) 0.66

Head and neck 1 (2) 12 (12) 0.08 Trunk and abdomen 5 (12) 4 (4) 0.06

Microbiology Skin swab (total) 14 (34) 45 (44) 0.29

Methicillin-sensitive Staphylococcus aureus

8 (57) 17 (38) 0.20

Streptococcus pyogenes 1 (7) 8 (18) 0.33 MRSA 2 (14) 4 (9) 0.55 No growth 1 (7) 11 (24) 0.16

Blood culture taken (total) 11 (27) 42 (41) <0.01* Positive culture 1 (2) 0 (0) 0.03* Contaminant 1 (2) 0 (0) 0.03*

*Significant at P <0.05.

TABLE 2. Outcomes of HITH Patients and Hospitalized Patients for Uncomplicated Moderate/Severe Cellulitis

HITH, No. (%) Hospitalized, No. (%) P Value

Primary outcome Treatment failure 0 (0) Not applicableSecondary outcomes

Change of antibiotic 2 (5) 7 (7) 0.67 Sepsis/complications 0 (0) 0 (0) Adverse events 0 (0) 0 (0) Readmission 0 (0) 3 (3) 0.14 Length of stay (d), mean (range)

In hospital 0 2.7 (1–8) <0.001* Under medical care 2.7 (1–10) 2.7 (1–8) 0.96 Duration of IV antibiotics (d), mean (range) 2.3 (1–6) 2.5 (1–5) 0.23 Duration of oral antibiotics (d), mean (range) 5.6 (4–10) 6.9 (4–14) <0.01*

*Significant at P <0.05.

62

The Pediatric Infectious Disease Journal • Volume 35, Number 3, March 2016 Home Intravenous Antibiotics

© 2015 Wolters Kluwer Health, Inc. All rights reserved.  www.pidj.com  |  273

children, in which ceftriaxone has been used to treat cellulitis (in hospital or as an outpatient), have not used home-based treatment, and there is a lack of comparative outcome data.11,13–16 However, treatment failure rates have been reportedly low. The rate of posi-tive blood culture in our study was extremely low, reflected in other studies in children with cellulitis.11,20 Skin swabs were positive on 68% of occasions when they were taken and showed MRSA in 10%. Interestingly, 5 of the 6 patients with MRSA had clinical improvement with flucloxacillin or ceftriaxone. This phenomenon has been noted previously.21 Highly bioavailable oral antibiotics such as clindamycin could also be considered, although each has disadvantages, such as bad taste or side effects, and relies on the drug being orally tolerated, which is frequently not the case in young children. Our data indicate that ceftriaxone can be used to treat cellulitis successfully.

Regarding the broader effects of ceftriaxone, although likely multifactorial, in adult inpatients ceftriaxone has been associated with an increased rate of Clostridium difficile infections.22–24 Chil-dren have significantly lower rates of C. difficile disease than adults, and this has not been identified as an issue in OPAT for adults or children. Although not studied in pediatrics for the short-term treat-ment of cellulitis, the use of ceftriaxone has the potential to increase the selection of resistant Gram-negative organisms. Its use to treat Gram-positive pathogens should be weighed against this potential risk, although resistance is less likely to emerge with short-term use. This study was not designed to investigate this, and no other studies of the treatment of children with cellulitis have investigated subsequent other infections with resistant bacteria or changes in gut flora. This is an important area of future research.

A thorough review of the literature on cellulitis did not iden-tify any guidelines for treating children at home. The lack of guide-lines for ED clinicians regarding who can be safely treated at home is reflected in the fact that only 28% of patients in this study were treated under HITH. We propose a guideline based on the findings of this study to be evaluated prospectively (Fig. 2).

The main limitation of this study is that the data for the comparison group were collected retrospectively, although we fol-lowed guidelines for high-quality medical record review in that the abstractors were trained and study materials were piloted.27 Numbers were relatively low to detect complications, although rates were similar to other studies.11,13,15 The study was conducted at a tertiary center with pediatricians available to review patient

progress as necessary. With the introduction of this pathway, medi-cal review was incorporated to assess for complications. Lack of available medical review may limit the generalizability of our find-ings, although during the study it became clear that complication rates were low and that the main role of medical staff was in the decision to stop IV antibiotics.

REFERENCES1. Nathwani D. The management of skin and soft tissue infections: outpa-

tient parenteral antibiotic therapy in the United Kingdom. Chemotherapy. 2001;47 (Suppl 1):17–23.

2. Barr DA, Semple L, Seaton RA. Outpatient parenteral antimicrobial therapy (OPAT) in a teaching hospital-based practice: a retrospective cohort studydescribing experience and evolution over 10 years. Int J Antimicrob Agents. 2012;39:407–413.

3. Svahn BM, Remberger M, Heijbel M, et al. Case-control comparison of at-home and hospital care for allogeneic hematopoietic stem-cell transplanta-tion: the role of oral nutrition. Transplantation. 2008;85:1000–1007.

4. Small F, Alderdice F, McCusker C, et al. A prospective cohort study compar-ing hospital admission for gastro-enteritis with home management. Child Care Health Dev. 2005;31:555–562.

5. Tiberg I, Katarina SC, Carlsson A, et al. Children diagnosed with type 1 dia-betes: a randomized controlled trial comparing hospital versus home-basedcare. Acta Paediatr. 2012;101:1069–1073.

6. Hansson H, Kjaergaard H, Johansen C, et al. Hospital-based home care forchildren with cancer: feasibility and psychosocial impact on children andtheir families. Pediatr Blood Cancer. 2013;60:865–872.

7. Balaguer A, Gonzalez de Dios J. Home versus hospital intravenous antibiotic therapy for cystic fibrosis. Cochrane Database Syst Rev. 2012;3:CD001917.

8. Corwin P, Toop L, McGeoch G, et al. Randomised controlled trial of intra-venous antibiotic treatment for cellulitis at home compared with hospital.BMJ. 2005;330:129.

9. Grayson ML, McDonald M, Gibson K, et al. Once-daily intravenous cefazo-lin plus oral probenecid is equivalent to once-daily intravenous ceftriaxoneplus oral placebo for the treatment of moderate-to-severe cellulitis in adults. Clin Infect Dis. 2002;34:1440–1448.

10. Rucker RW, Harrison GM. Outpatient intravenous medications in the man-agement of cystic fibrosis. Pediatrics. 1974;54:358–360.

11. Gouin S, Chevalier I, Gauthier M, et al. Prospective evaluation of the man-agement of moderate to severe cellulitis with parenteral antibiotics at a pae-diatric day treatment centre. J Paediatr Child Health. 2008;44:214–218.

12. Stevens DL, Bisno AL, Chambers HF, et al; Infectious Diseases Society ofAmerica. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis. 2005;41:1373–1406.

13. Nelson SJ, Boies EG, Shackelford PG. Ceftriaxone in the treatment ofinfections caused by Staphylococcus aureus in children. Pediatr Infect Dis. 1985;4:27–31.

14. Frenkel LD. Once-daily administration of ceftriaxone for the treatment ofselected serious bacterial infections in children. Pediatrics. 1988;82(3 Pt2):486–491.

15. Kulhanjian J, Dunphy MG, Hamstra S, et al. Randomized comparative study of ampicillin/sulbactam vs. ceftriaxone for treatment of soft tissue and skel-etal infections in children. Pediatr Infect Dis J. 1989;8:605–610.

16. Brugha RE, Abrahamson E. Ambulatory intravenous antibiotic therapy forchildren with preseptal cellulitis. Pediatr Emerg Care. 2012;28:226–228.

17. Luca NJ, Lara-Corrales I, Pope E. Eczema herpeticum in children: clinicalfeatures and factors predictive of hospitalization. J Pediatr. 2012;161:671–675.

18. Madigan T, Banerjee R. Characteristics and outcomes of outpatient paren-teral antimicrobial therapy at an academic children’s hospital. Pediatr Infect Dis J. 2013;32:346–349.

19. Farrell DJ, Castanheira M, Mendes RE, et al. In vitro activity of ceftaro-line against multidrug-resistant Staphylococcus aureus and Streptococcus pneumoniae: a review of published studies and the AWARE SurveillanceProgram (2008–2010). Clin Infect Dis. 2012;55 (Suppl 3):S206–S214.

20. Trenchs V, Hernandez-Bou S, Bianchi C, et al. Blood cultures are not useful in the evaluation of children with uncomplicated superficial skin and softtissue infections. Pediatr Infect Dis J. 2015;34:924–927.

21. Vasconcellos AG, Leal RD, Silvany-Neto A, et al. Oxacillin or cefalo-tin treatment of hospitalized children with cellulitis. Jpn J Infect Dis. 2012;65:7–12.

FIGURE 2. Proposed guideline for the referral of children with uncomplicated moderate/severe cellulitis directly from the ED for ambulatory intravenous antibiotics.

63

Ibrahim et al The Pediatric Infectious Disease Journal • Volume 35, Number 3, March 2016

274  |  www.pidj.com

22. Owens RC Jr, Donskey CJ, Gaynes RP, et al. Antimicrobial-associated risk factorsfor Clostridium difficile infection. Clin Infect Dis. 2008;46 (Suppl 1):S19–S31.

23. Chapman AL, Dixon S, Andrews D, et al. Clinical efficacy and cost-effec-tiveness of outpatient parenteral antibiotic therapy (OPAT): a UK perspec-tive. J Antimicrob Chemother. 2009;64:1316–1324.

24. Matthews PC, Conlon CP, Berendt AR, et al. Outpatient parenteral antimi-crobial therapy (OPAT): is it safe for selected patients to self-administer athome? A retrospective analysis of a large cohort over 13 years. J Antimicrob Chemother. 2007;60:356–362.

25. Choi SH, Lee JE, Park SJ, et al. Emergence of antibiotic resistance duringtherapy for infections caused by Enterobacteriaceae producing AmpC beta-lactamase: implications for antibiotic use. Antimicrob Agents Chemother. 2008;52:995–1000.

26. Spritzer R, vd Kamp HJ, Dzoljic G, et al. Five years of cefotaxime use in aneonatal intensive care unit. Pediatr Infect Dis J. 1990;9:92–96.

27. Gilbert EH, Lowenstein SR, Koziol-McLain J, et al. Chart reviews inemergency medicine research: where are the methods? Ann Emerg Med. 1996;27:305–308.

64

  65  

2.5.1 Additional  data  

 

Table  2.1  Details  of  patients  whose  empirical  antibiotics  were  changed    

GAS  (Group  A  Streptococci),  MRSA  (Methicillin  resistant  Staphylococcus  aureus)  

MSSA  (Methicillin  sensitive  Staphylococcus  aureus)  

   

Empirical antibiotic

Duration of empirical antibiotic (hours)

Reason for change

Second line antibiotic choice Organism isolated from skin swab

Flucloxacillin 72 Slow to improve Ticarcillin/clavulanate Nil

Flucloxacillin 48 Slow to improve Vancomycin Nil

Flucloxacillin 48 Slow to improve Ticarcillin/clavulanate Nil

Flucloxacillin <12 Rapidly spreading, fever

Ticarcillin/clavulanate + vancomycin + clindamycin

GAS

Flucloxacillin 24 Slow to improve Vancomycin + clindamycin Nil

Flucloxacillin 24 Slow to improve Vancomycin + clindamycin Nil

Flucloxacillin 48 Slow to improve Vancomycin + ceftriaxone MSSA

Ceftriaxone 72 Slow to improve, skin swab result

Trimethoprim/sulfamethoxazole MRSA

Ceftriaxone 48 Poor improvement, skin swab result

Trimethoprim/sulfamethoxazole MRSA

  66  

2.6 Implications  of  studies  on  current  practice  

The  studies  in  this  chapter  (the  clinician  survey  and  the  baseline  study)  provided  

invaluable  insight  into  the  management  of  cellulitis  at  our  institution  and  

specifically  the  outcomes  of  patients  treated  at  home  with  intravenous  

antibiotics.114  The  survey  showed  that  nearly  all  clinicians  treated  mild  cellulitis  

with  oral  antibiotics  and  moderate/severe  cellulitis  with  intravenous  antibiotics,  

as  recommended  by  our  local  guideline.53  Through  the  survey,  clinicians  were  

found  to  be  concerned  with  using  the  home  pathway,  which  had  an  impact  on  the  

proportion  of  patients  treated  at  home.  The  baseline  study  then  clearly  found  

that  the  majority  of  patients  with  moderate/severe  cellulitis  were  still  being  

admitted  to  hospital.  

One  major  concern  clinicians  expressed  was  the  risk  of  bacteraemia  in  

moderate/severe  cellulitis.  This  risk  was  believed  to  be  more  than  10%  by  a  

third  of  clinicians  or  even  as  high  as  50%  by  a  sizeable  minority  of  clinicians.  

This  belief  was  inconsistent  with  the  findings  of  the  baseline  study,  where  

bacteraemia  did  not  occur  at  all,  although  only  53/144  (36%)  patients  had  a  

blood  culture  taken.  This  finding  is  in  line  with  a  previous  study  of  

moderate/severe  cellulitis  that  found  the  risk  of  bacteraemia  to  be  less  than  

1%.45  In  addition,  there  were  no  complications  in  the  baseline  study,  contrary  to  

clinicians’  belief  that  there  was  substantial  risk  of  a  child  deteriorating  unnoticed  

in  the  home.    

A  reasonable  concern  that  clinicians  had  when  managing  cellulitis  was  the  risk  of  

MRSA.  The  baseline  study  revealed  for  4%  of  patients,  skin  swabs  of  the  cellulitis  

area  was  positive  for  MRSA.  Therefore,  in  future  studies  it  would  be  important  to  

investigate  how  consistent  this  risk  was,  particularly  if  the  empiric  antibiotic  

used  in  hospital  or  at  home,  does  not  cover  MRSA.  However,  in  the  baseline  

study,  even  if  a  child  with  cellulitis  caused  by  MRSA  was  sent  home  on  

ceftriaxone  which  does  not  cover  it,  the  worst  outcome  was  readmission  rather  

than  a  more  serious  adverse  outcome.  An  unexpected  finding  was  that  clinicians  

were  willing  to  accept  up  to  20%  of  readmissions  from  a  home  treatment  

  67  

pathway  because  of  the  perceived  benefits  of  being  at  home,  However,  from  the  

baseline  study,  the  rate  of  readmission  was  actually  much  lower  at  2%.  The  

survey  also  showed  the  variation  in  factors  believed  to  be  important  for  starting  

intravenous  antibiotics.  This  may  mean  it  would  be  challenging  to  standardise  

the  indications  for  intravenous  antibiotics  for  clinicians  in  the  ED.    

The  baseline  study  added  to  the  existing  literature  on  the  practice  of  home  

treatment  with  intravenous  antibiotics,  showed  that  a  select  group  of  children,  

predominantly  older  children  with  limb  cellulitis  and  no  systemic  features,  can  

be  safely  and  effectively  treated  at  home  with  no  clear  difference  in  outcomes  

from  those  treated  in  hospital.114  With  this  initial  evidence  for  home  intravenous  

antibiotic  treatment  directly  from  the  ED,  there  was  increasing  clinician  interest  

in  using  this  pathway.  This  led  to  the  question  of  whether  all  children  with  

uncomplicated  moderate/severe  cellulitis,  not  just  those  who  are  carefully  

selected,  can  be  treated  at  home.  It  was  determined  that  the  most  robust  way  to  

address  this  would  be  an  RCT  of  home  versus  hospital  intravenous  antibiotics  for  

the  management  of  cellulitis.  However,  the  clinician  survey  showed  that  

confidence  to  use  home  intravenous  antibiotics  was  very  variable,  with  the  

majority  of  clinicians  concerned  about  treating  children  with  periorbital  cellulitis  

or  systemic  features  at  home,  and  high  levels  of  concern  about  bacteraemia  and  

unnoticed  clinical  deterioration.  

Prior  to  undertaking  an  RCT  it  was  therefore  decided  that  a  prospective  

comparative  study  was  necessary  for  two  main  reasons.  The  first  reason  was  to  

engage  clinicians  in  the  research  while  allowing  them  to  retain  choice  of  

treatment  location,  to  provide  additional  prospectively-­‐gathered  evidence.  The  

aim  was  to  reach  equipoise  on  the  question  of  whether  home  treatment  is  as  

good  as  hospital  treatment,  ensuring  clinician  engagement  and  patient  

enrolment  in  a  subsequent  definitive  RCT.  The  second  reason  was  that  a  number  

of  elements  key  to  undertaking  an  RCT  needed  either  additional  information  or  

an  assessment  of  feasibility  prior  to  starting,  including  inclusion  and  exclusion  

criteria,  sample  size  calculation,  antibiotic  choice  based  on  prevailing  bacteria  

and  collection  of  microbiological  samples.  A  prospective  cohort  study  of  children  

  68  

managed  at  home  and  in  hospital  based  on  clinician  choice  was  therefore  

planned  as  a  foundation  study,  and  this  is  detailed  in  chapter  3.  

   

  69  

Chapter  3 Foundation  studies  

3.1 Introduction  to  foundation  studies  

Although  the  baseline  study  (Chapter  2)  showed  the  efficacy  and  safety  of  

treating  a  select  group  of  children  with  moderate/severe  cellulitis  using  an  

ambulatory  pathway,  there  were  still  some  concerns  and  key  questions  that  

needed  to  be  addressed  before  embarking  on  an  RCT.115  Clinicians  were  still  

reluctant  to  use  the  home  pathway,  reflected  by  both  the  clinician  survey  and  

baseline  study  that  showed  that  only  28%  of  potentially  eligible  patients  were  

treated  at  home.  For  there  to  be  genuine  equipoise  –  the  ethical  basis  for  an  RCT  

–regarding  treatment  at  home  for  moderate/severe  cellulitis,  more  evidence  was  

needed  for  this  treatment  pathway  particularly  for  younger  patients  and  children  

with  periorbital  cellulitis.    

Additionally,  a  number  of  key  elements  to  undertaking  an  RCT  were  unknown.  

Specifically,  we  needed  to  investigate  whether  outcomes  such  as  treatment  

failure  rates  and  readmissions  would  be  similar  to  the  previous  study,  when  

including  a  wider,  more  generic  population.  The  clinician  survey  and  baseline  

study  provided  invaluable  information  about  the  state  of  current  practice  and  

the  reasons  for  clinicians’  hesitation  regarding  OPAT  for  cellulitis  which  included  

complications  such  as  bacteraemia  as  well  as  the  concern  with  the  risk  of  MRSA  

in  this  population.  In  addition,  we  wanted  to  assess  the  practicality  of  the  study  

design  for  the  RCT,  which  include  the  primary  outcome  of  change  in  empiric  

antibiotic  used,  cost  analysis  and  collection  of  microbiology  samples.    

This  chapter  contains  two  foundation  studies.  The  first  is  a  published  manuscript  

of  a  prospective  cohort  study  that  investigated  the  clinical  outcomes  of  home  

treatment  compared  to  hospital  care,  for  children  with  cellulitis.  The  patients  

were  not  randomised  but  represented  a  broader  cohort  than  the  baseline  study,  

with  both  arms  having  data  collected  prospectively,  and  the  study  incorporated  

aspects  to  address  practicality  and  acceptability  for  the  subsequent  planned  RCT.  

The  second  manuscript  describes  the  investigation  of  nasal  colonisation  with  S.  

  70  

aureus  in  children  with  cellulitis  to  better  understand  the  role  of  MSSA  and  

MRSA,  in  our  cohort  and  to  inform  the  RCT.  

3.2 Home  versus  hospital  cohort  

The  were  two  main  aims  of  the  home  versus  hospital  foundation  study:  1)  to  

develop  more  evidence  comparing  home  with  hospital  treatment  to  address  the  

clinical  concerns  of  clinicians  thereby  engaging  them  in  the  research  in  

preparation  for  the  RCT;  and  2)  to  determine  factors  to  inform  the  design  of  the  

RCT.  Evidence  was  needed  to  determine  whether  the  outcomes  of  the  home  care  

pathway  were  comparable  to  standard  care  in  hospital,  if  the  home  pathway  was  

available  to  a  wider  patient  population,  including  younger  children,  those  with  

periorbital  cellulitis  and  those  with  fever,  and  to  investigate  the  risk  of  

bacteraemia  in  this  population.  In  order  to  engage  ED  clinicians  in  this  research  

while  addressing  their  concerns,  treatment  location  would  be  determined  by  

clinician  choice.    

In  addition,  key  design  issues  needed  to  be  addressed  at  this  stage,  which  

included  calculation  of  the  sample  size,  inclusion  and  exclusion  criteria,  

practicality  of  the  primary  outcome  of  the  RCT,  determining  the  population  of  

those  who  required  intravenous  antibiotics  and  conducting  a  cost  analysis.  The  

microbiology  aspects  will  be  addressed  in  the  foundation  colonisation  study  in  

the  next  section  of  this  chapter.  

In  the  previous  baseline  study,  outcomes  for  the  home  group  were  reassuring  

but  patients  were  older  and  had  uncomplicated  lower  limb  cellulitis.114  We  

considered  the  age  group  that  could  be  included  in  this  study  and  although  the  

mean  age  of  patients  treated  at  home  was  9  years  old  in  the  baseline  study,  the  

youngest  child  to  be  treated  at  home  was  only  a  year  old  and  a  previous  

ambulatory  treatment  study  also  had  children  as  young  as  six  months  with  no  

adverse  outcomes.6  To  be  consistent  with  previous  ambulatory  studies,  we  

determined  the  inclusion  criteria  to  be  children  aged  as  young  as  6  months  to  18  

years  old  in  the  foundation  cohort.1    

  71  

In  determining  the  criteria  for  which  patients  with  moderate/severe  cellulitis  

required  intravenous  antibiotics,  we  had  obtained  from  the  clinician  survey  the  

features  clinicians  usually  used  when  deciding  route  of  antibiotic  administration  

as  follows:  lymphangitis/tracking  (86%),  functional  impairment  (76%),  systemic  

features  (78%),  whether  the  patient  had  received  prior  oral  antibiotics  (70%),  

the  size  of  the  affected  area  (63%),  whether  the  site  affected  was  periorbital  

(52%),  swelling  (52%)  and  tenderness  (48%).  However,  these  data  were  

insufficient  to  allow  us  to  narrow  down  the  population  that  required  antibiotics.  

As  the  study  was  designed  specifically  for  the  treating  clinician  to  determine  

whether  to  start  intravenous  antibiotics  and  where  to  treat  the  patient,  the  

reasons  for  using  intravenous  antibiotics  and  for  clinicians’  choice  in  treatment  

location  needed  to  be  documented  in  this  study.    

The  clinician  survey  showed  that  one  reason  for  clinicians’  hesitation  with  

treating  children  outside  the  hospital  was  their  perception  of  the  high  risk  of  

bacteraemia.  There  are  very  few  studies  in  children  that  have  attempted  to  

determine  the  risk  of  bacteraemia  in  cellulitis.  Those  that  have,  show  low  risk  of  

bacteraemia  and  that  taking  a  blood  culture  may  be  associated  with  an  increase  

in  length  of  stay  in  hospital.44,45  When  a  blood  culture  is  initially  flagged  as  

positive,  patients  are  frequently  kept  in  hospital  to  continue  intravenous  

antibiotics  until  the  organism  is  identified,  or  confirmed  as  a  contaminant,  which  

may  prolong  length  of  stay  in  hospital.  This  was  found  in  the  baseline  study,  with  

no  true  bacteraemia  in  any  patient.114  Given  the  importance  of  this  factor  to  

clinicians  and  the  paucity  of  studies  on  this,  it  was  determined  that  further  

investigation  of  this  phenomenon  was  warranted  as  a  foundation  to  the  planned  

RCT.    

Another  key  design  issue  to  address  was  the  primary  outcome.  In  the  baseline  

study,  the  primary  outcome  was  readmission  from  home  during  treatment.  

Although  important,  this  outcome  was  not  applicable  to  the  hospital  cohort  and  

therefore  not  applicable  for  a  comparative  study  of  both  treatment  locations.  In  

previous  studies  in  adults  with  cellulitis,  primary  outcomes  used  were  ‘days  to  

no  advancement  of  erythema’46  and  in  another  study  ‘clinical  cure’,  which  was  

  72  

defined  as  complete  resolution  of  all  signs  and  symptoms  of  cellulitis116.  The  

outcome  of  no  advancement  of  erythema  is  not  useful  and  was  previously  shown  

to  have  poor  association  with  clinical  improvement.1  Clinical  cure  based  on  signs  

and  symptoms  can  vary  for  each  child  and  is  a  subjective  measurement.  In  order  

to  have  a  robust  and  objective  outcome,  we  decided  on  treatment  failure  defined  

as  a  change  in  empiric  antibiotics  due  to  inadequate  clinical  improvement  or  

serious  adverse  events.  If  this  outcome  was  feasible  in  this  foundation  cohort  

study,  it  would  be  used  in  the  RCT.  

Lastly,  we  aimed  to  assess  the  practicality  of  collecting  cost  data,  which  are  

important  for  impact,  with  previous  studies  showing  that  treatment  at  home  was  

less  costly.23,28  However,  we  needed  to  investigate  if  this  finding  was  similar  in  

our  setting,  and  determine  what  would  comprise  the  components  of  calculating  

the  institutional  costs.  By  collecting  these  data  for  the  foundation  cohort  study,  

we  would  be  in  a  better  position  to  design  the  economic  analysis  for  the  RCT.  

We  hypothesized  that  in  a  non-­‐randomised  cohort,  children  selected  by  

clinicians  for  treatment  at  home  with  intravenous  ceftriaxone,  would  have  

similar  outcomes  to  those  treated  in  hospital  with  flucloxacillin.  In  summary,  the  

foundation  cohort  study  aimed  to  determine  the  following:  

• The  efficacy  and  safety  of  home  versus  hospital  care  measured  by  the  rate  

of  treatment  failure,  complications  and  adverse  events  for  a  broad  cohort  

of  children  with  uncomplicated  moderate/severe  cellulitis  

• The  underlying  reasons  for  clinicians’  decisions  for  commencing  

intravenous  antibiotics  and  choice  of  treatment  location  

• Sample  size  calculation,  practicality  of  the  primary  outcome  and  obtaining  

costing  data

  73  

3.3 Study  3:  Home  versus  hospital  cohort  

Ibrahim  LF,  Hopper  SM,  Daley  A,  Connell  T,  Babl  FE,  Bryant  PA.  Home  versus  

Hospital:  A  Prospective  Cohort  of  Children  with  Moderate/Severe  Cellulitis.  

Emerg  Med  J.  2017  Dec;34(12):780-­‐785.  doi:  10.1136/emermed-­‐2017-­‐206829.  

Epub  2017  Oct  4

780

AbstrActObjective Children with moderate/severe cellulitis requiring intravenous antibiotics are usually admitted to hospital. Admission avoidance is attractive but there are few data in children. We implemented a new pathway for children to be treated with intravenous antibiotics at home and aimed to describe the characteristics of patients treated on this pathway and in hospital and to evaluate the outcomes.Methods This is a prospective, observational cohort study of children aged 6 months–18 years attending the ED with uncomplicated moderate/severe cellulitis in March 2014–January 2015. Patients received either intravenous ceftriaxone at home or intravenous flucloxacillin in hospital based on physician discretion. Primary outcome was treatment failure defined as antibiotic change within 48 hours due to inadequate clinical improvement or serious adverse events. Secondary outcomes include duration of intravenous antibiotics and complications.results 115 children were included: 47 (41%) in the home group and 68 (59%) in the hospital group (59 hospital-only, 9 transferred home during treatment). The groups had similar clinical features. 2/47 (4%) of the children in the home group compared with 8/59 (14%) in the hospital group had treatment failure (P=0.10). Duration of intravenous antibiotics (median 1.9 vs 1.8 days, P=0.31) and complications (6% vs 10%, P=0.49) were no different between groups. Home treatment costs less, averaging $A1166 (£705) per episode compared with $A2594 (£1570) in hospital.conclusions Children with uncomplicated cellulitis may be able to avoid hospital admission via a home intravenous pathway. This approach has the potential to provide cost and other benefits of home treatment.

IntrOductIOnSkin and soft tissue infections are common in chil-dren and the majority are treated with oral anti-biotics. A significant minority are treated with intravenous antibiotics for more acute clinical features, including rapid spreading of cellulitis, systemic features or if symptoms are progressing despite oral antibiotics. These infections usually require short-course intravenous antibiotics and in adults are commonly treated without hospital admission in an ambulatory setting (home, outpa-tient clinic or physician’s office).1–3 The well-doc-umented benefits of avoiding hospital admission include psychological benefits, reduced risk of

hospital-acquired infections and decreased use of healthcare resources.4–9 In contrast to adults, chil-dren with cellulitis are usually admitted to hospital due to a lack of evidence for outpatient intravenous treatment for skin and soft tissue infection even though they rarely have serious complications such as bacteraemia.10–12

To enable children to be treated in an outpatient setting, an antibiotic with a long half-life is ideal. First-line antibiotics for cellulitis (flucloxacillin, cephazolin) treat Staphylococcus aureus and group A streptococci (GAS) in settings of low prevalence of methicillin-resistant S. aureus (MRSA). However, they are dosed several times a day so are unsuit-able for outpatient treatment, and bioavailable oral alternatives are often unsuitable in children due to taste and side effects.13–15 The third-generation cephalosporin ceftriaxone has antistaphylococcal activity and can be administered once a day.16 17 While in some studies ceftriaxone was used to treat cellulitis, none of these studies have compared outcomes with first-line antibiotics, and none have been administered at home.16–20

Our institution has a home outreach programme whereby nurses administer antibiotics to children in

Original article

Evaluating an admission avoidance pathway for children in the emergency department: outpatient intravenous antibiotics for moderate/severe cellulitisLaila F Ibrahim,1,2,3 Sandy M Hopper,2,4 Tom G Connell,3,5 Andrew J Daley,5,6 Penelope A Bryant,1,2,3,5 Franz E Babl2,3,4

to cite: Ibrahim LF, Hopper SM, Connell TG, et al. Emerg Med J 2017;34:780–785.

► Additional material is published online only. To view please visit the journal online (http:// dx. doi. org/ 10. 1136/ emermed- 2017- 206829).1Department of RCH@Home, The Royal Children’s Hospital, Parkville, Victoria, Australia2Murdoch Childrens Research Institute, Parkville, Victoria, Australia3Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia4Department of Emergency, The Royal Children’s Hospital, Parkville, Victoria, Australia5Department of General Medicine, Infectious Diseases Unit, The Royal Children’s Hospital, Parkville, Victoria, Australia6Department of Microbiology, The Royal Children’s Hospital, Parkville, Victoria, Australia

correspondence toDr Penelope A Bryant, Department of General Medicine, The Royal Children’s Hospital Melbourne, Parkville, VIC 3052, Australia; penelope. bryant@ rch. org. au

PAB and FEB contributed equally.

Received 18 April 2017Revised 22 August 2017Accepted 31 August 2017Published Online First 4 October 2017

Key messages

What is already known on this subject? ► Children, their families and healthcaresystems all benefit from home versus hospitaltreatment, where possible.

► Children with moderate/severe cellulitisrequiring intravenous antibiotics are usuallytreated in hospital.

What this study adds? ► In a prospective, observational study ofmoderate/severe cellulitis, we comparedoutcomes of children treated at home withdaily ceftriaxone with those treated in hospital.

► Children selected by ED physicians to be treatedat home had low rates of treatment failureand complications. In addition, treatment athome was associated with cost savings for thehealthcare institution.

► Home treatment of moderate/severe cellulitiswith intravenous ceftriaxone may avoidhospital admission altogether.

74

781Ibrahim LF, et al. Emerg Med J 2017;34:780–785. doi:10.1136/emermed-2017-206829

Original article

the home with medical staff oversight. This model uses once-daily ceftriaxone via a peripheral intravenous catheter, the venous access recommended by the Infectious Diseases Society of America practice guidelines for short-course outpatient intra-venous therapy.3 Following a preliminary study, we formulated and implemented guidelines in the ED that allowed children with uncomplicated moderate/severe cellulitis requiring intra-venous antibiotic therapy to be treated either at home or in hospital.21 While the benefits of being at home are not disputed, it is important to ensure that home intravenous treatment in chil-dren does not put them at risk, and therefore prospective evalua-tion of this new pathway is necessary to provide confidence that the guidelines are appropriate.

This study aimed to describe the characteristics of children treated via the direct-to-home from the ED pathway and to prospectively evaluate the outcomes of these children. We hypothesised that there would be a low treatment failure rate at home and the duration of treatment would be comparable to standard hospital care.

MethOdsstudy design and settingThis is a prospective, observational cohort study at the Royal Children’s Hospital (RCH) Melbourne, a tertiary paediatric hospital.

selection of participantsInclusion criteriaChildren aged 6 months–18 years attending ED with uncompli-cated moderate/severe cellulitis from March 2014 to January 2015 were eligible. As there is no validated objective score for distinguishing moderate/severe from mild cellulitis, this was defined in the study as including any of following clin-ical features: rapidly spreading erythema, significant swelling/redness/pain, systemic symptoms/signs (eg, fever, lethargy) or failed oral therapy leading to treatment with intravenous antibiotics.

Exclusion criteriaPatients with complicated cellulitis (orbital cellulitis, undrained abscess, large animal/human bite, penetrating injury, foreign body, suspected fasciitis, toxicity) and comorbidities (immuno-compromise, varicella, any condition receiving different anti-biotic treatment) were excluded. Patients with mild cellulitis (treated with oral antibiotics) were excluded.

InterventionsStudy procedureED physicians were educated on the guidelines for the referral of children with cellulitis to the home intravenous antibiotic pathway (online supplementary figure). They were informed of the benefits and risks of the treatment locations for managing cellulitis prior to starting the study. If a patient was eligible, the ED physician followed an algorithm of inclusion and exclusion criteria, and after discussion with the family decided whether to treat the patient at home or in hospital. Physicians were asked for their reasons for treating with intravenous versus oral antibiotics and their reason for choosing home versus hospital. Patients meeting inclusion criteria were consented and recruited. Patients had cultures of blood, nose and the affected skin if indicated.

Home groupTo receive antibiotics at home, a referral was made to the home intravenous programme with handover to the home nursing team. After receiving the first dose of ceftriaxone 50 mg/kg in ED, the patient went home with the peripheral intravenous catheter in situ until intravenous antibiotics were ceased. On leaving the ED, families were provided with a contact telephone number for a (home intravenous programme) nurse available 24 hours a day, 7 days a week if they had any concerns about their child, while they were at home. A nurse visited the child daily at home and administered intravenous ceftriaxone until the child was deemed suitable for oral therapy. The medical staff overseeing patients at home aimed to review the child at least once during the course of treatment in person, and subsequently daily by teleconferencing or by reviewing digital photographs. The decision to cease intravenous antibiotics was made by the home programme medical staff.

Hospital groupThe standard of care for moderate/severe cellulitis at RCH is admission to the short stay unit for intravenous flucloxacillin 50 mg/kg six hourly. There is at least daily review by medical staff and at least four hourly nursing observations.

In all patients, whether in hospital or at home intravenous antibiotics were ceased when clinically appropriate to switch to oral antibiotics. Any patient deemed to require a further obser-vation period or ongoing interventions (eg, wound dressing) remained under medical care until these were no longer needed.

sample size and data collectionSample size calculation Sample size was calculated based on a treatment failure rate of approximately 3% with standard treatment; a home treatment failure rate of 25% (ie, three of four children treated at home successfully) that was considered acceptable by a panel of senior ED physicians, based on the other advantages of home; and a power of 80%—47 children in each arm. We continued recruit-ment for all eligible patients until we had reached at least this sample size for each group.

Data collectionData collected included age, sex, clinical features, systemic symp-toms at presentation (fever >38°C reported or documented at home or in the ED, vomiting, tachycardia or hypotension) and prior oral antibiotics. Physicians were asked their reason for intravenous versus oral antibiotics and hospital versus home treatment.

OutcomesThe primary outcome was measured as treatment failure defined as any change of initial empiric antibiotics within 48 hours due to inadequate clinical improvement or serious adverse events (anaphylaxis, suspected allergic reaction, sepsis). Secondary outcomes were readmission after discharge, rates of repeat intravenous catheterisation, complications, length of stay in ED, duration of intravenous antibiotics and length of stay under medical care (from the time of arrival in ED to the time of offi-cial discharge from medical care from the home or ward team). A cost comparison between home and hospital, provided by our institution’s business department, included the cost of nursing and medical resources, consumable items, and indirect overhead costs including administrative time, information technology and use of hospital vehicles for visiting patients.

75

782 Ibrahim LF, et al. Emerg Med J 2017;34:780–785. doi:10.1136/emermed-2017-206829

Figure 1 Disposition of patients presenting to the ED with cellulitis.

table 1 Comparison of demographics and clinical features between home and hospital groups

home ceftriaxonen (%)

hospital flucloxacillinn (%)

Or (95% cI) for home treatmentunivariate*

Or (95% cI) for home treatmentMultivariate

Demographics

Total patients 47 (41) 68 (59)

Female 21 (45) 30 (44) 1.02 (0.48 to 2.16) 0.73 (0.28 to 1.92)

Age (year), mean±SD 6.3±4.8 6.3±4.3 0.50 0.95 (0.85 to 1.06)

Clinical features

Site

Periorbital 9 (19) 22 (32) 0.50 (0.20 to1.20) 1.04 (0.30 to 3.59)

Lower limb 27 (57) 20 (29) 3.24 (1.49 to 7.06) 3.91 (1.24 to 12.30)

Upper limb 8 (17) 13 (19) 0.87 (0.33 to 2.29)

Head and neck 2 (4) 7 (10) 0.39 (0.08 to 1.95)

Trunk and abdomen 3 (6) 8 (12) 0.51 (0.13 to 2.04)

Prior oral antibiotics 26 (55) 38 (56) 0.98 (0.46 to 2.07) 1.01 (0.38 to 2.68)

Systemic symptoms 15 (32) 24 (33) 0.86 (0.39 to 1.59) 1.60 (0.60 to 4.26)

Percentage body surface area affected, median (IQR) 0.47 (0.17–1.45) 0.23 (0.13–0.95) 0.13 0.99 (0.74 to 1.33)

Reasons cited for intravenous antibiotics

Failed oral antibiotics 17 (36) 19 (28) 1.46 (0.66 to 3.24)

Clinical features

Rapid spreading/significant swelling 12 (26) 18 (26) 0.95 (0.41 to 2.22)

Thrombophlebitis 6 (13) 9 (13) 0.96 (0.32 to 2.90)

Hard to treat area 4 (9) 6 (7) 0.96 (0.26 to 3.61)

Large area 4 (9) 3 (4) 2.02 (0.43 to 9.46)

Systemic features 3 (6) 3 (4) 1.47 (0.29 to 7.66)

Young age 0 (0) 2 (3) 0.28 (0.01 to 5.97)

Uncertain diagnosis 0 (0) 3 (4) 0.20 (0.01 to 3.90)

Pain 0 (0) 2 (3) 0.28 (0.01 to 5.97)

Not documented 1 (2) 3 (4) 0.47 (0.05 to 4.67)

*P values were calculated using Mann-Whitney U test where OR is not applicable.

Original article

AnalysisFor univariate analysis, Mann-Whitney U test was used to compare continuous data with non-normal distribution and Χ2 test for categorical data. Fisher’s exact test was used where variable count was less than 5. All demographics and clinical features at presentation included in univariate analyses were considered for a multivariate model. Likelihood ratio tests were conducted to assess the best fit for the multivariable model through risk factor inclusion, with the most parsimonious model to be presented. Multivariable logistic regression analysis was conducted using SPSS V.22.0.

resultsOver 10 months, 400 children presented to ED with cellulitis, of whom 189 (47%) were discharged on oral antibiotics and 96 (24%) other patients were excluded from the study (figure 1). There were 115 (29%) children who were eligible for the study. Of these children, 47 were treated entirely at home and 68 were admitted to hospital. Nine of the children admitted to hospital were subsequently transferred home during treatment.

demographics and clinical featuresPatients were similar in terms of sex and age in both groups (table 1).

There was no difference in systemic features between groups. Lower limb cellulitis was more commonly treated at home (P<0.01, OR 3.24 (95% CI 1.49 to 7.06)), and although a lower proportion of children with periorbital cellulitis were treated at home, this was not significant (P=0.11, OR 0.50 (95% CI 0.20

76

783Ibrahim LF, et al. Emerg Med J 2017;34:780–785. doi:10.1136/emermed-2017-206829

table 2 Reasons cited by ED physicians for hospital admission and patient outcome

reasons n (%)Outcome of patients with this reason

Clinical

Rapidly spreading/significant swelling 15 (22) Same proportion as treated at home

Systemic features 10 (15) Same proportion as treated at home

Concern that clinical features may progress and reveal alternate diagnosis*

9 (13) 9/9 discharged with simple cellulitis or periorbital cellulitis

Admitted for intravenous fluids 2 (3) 2/2 no intravenous fluids within 24 hours of admission

Admitted for pain management 1 (1) 1/1 only oral paracetamol given

Potential allergy to ceftriaxone 1 (1)

Non-clinical

Surgical consult requested by ED physicians but unavailable to be provided in ED—surgeons requested admission

7 (10) 7/7 seen by surgical team on ward; 5/7 did not have surgery

Admitted for imaging unavailable in ED 2 (3) 2/2 did not have imaging

Unsuitable for home† 12 (18)

Physician not aware of home pathway 4 (6)

Parents preferred admission 3 (4)

Physician preferred flucloxacillin 2 (3)

*Differential diagnoses were septic arthritis, osteomyelitis and orbital cellulitis.†Unsuitable for home, either due to distance from hospital or difficulty with communicating with the families (non-English-speaking).

table 3 Comparison of microbiology results between home and hospital groups

home: ceftriaxonen (%)

hospital: flucloxacillinn (%) P value

Blood culture 38 (81) 55 (81)

No growth 38 (100) 53 (96) 0.13

Contaminant 0 2 (4) 0.13

Skin swab 23 (49) 29 (43)

MSSA 9 (39) 9 (31) 0.54

MRSA 4 (17) 3 (11) 0.46

GAS 4 (17) 2 (7) 0.23

Other* 6 (26) 15 (52) 0.06

Nasal swab 30 (64) 30 (44)

MSSA 2 (7) 1 (3) 0.75

MRSA 2 (7) 0 0.12

Other† 26 (87) 29 (97) 0.18

*Moraxella catarrhalis, Haemophilus influenzae, Escherichia coli, Corynebacterium spp, skin flora, upper respiratory tract flora, no growth.†H. influenzae (non-B), skin flora, upper respiratory tract flora, no growth.GAS, group A streptococci; MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-sensitive S. aureus.

Original article

to 1.20)). A multivariable analysis was performed for factors potentially affecting the decision to treat at home or in hospital: age and sex, systemic symptoms, antibiotics (having taken at least one dose of oral antibiotics for the same cellulitis prior to ED presentation), proportion of body surface area affected, presence of periorbital cellulitis and lower limb cellulitis. Having lower limb cellulitis was the only factor independently associ-ated with home versus hospital admission (P=0.02, OR 3.91, (95% CI 1.24 to 12.30)).

reasons for choosing hospital versus home treatmentThe most common reasons cited by clinicians for hospitalising patients were rapidly spreading erythema/significant swelling, unsuitable for home treatment (over 40 km from hospital or non-English-speaking family) and presence of systemic features (table 2).

MicrobiologyNone of the blood cultures grew pathogens (table 3). Fifty-two (45%) skin swabs were taken, with methicillin-sensitive S. aureus being the most commonly cultured. The rate of MRSA infection overall was 6% (7/115), with similar numbers in the two treat-ment groups.

OutcomesOverall, the rate of treatment failure was low with no differ-ence between groups (table 4). Of the two patients who failed treatment at home, one developed an abscess resulting in admis-sion to hospital and change of antibiotic to flucloxacillin despite his skin swab being positive for GAS (sensitive to ceftriaxone). The other was not improving and subsequently cultured MRSA,

necessitating a change in antibiotics. Of the eight patients in hospital, three changed antibiotics within 24 hours, one due to allergy and two due to spreading erythema and fever. The remaining five changed antibiotics at 36–48 hours due to wors-ening or lack of improvement in the extent of the erythema or increasing swelling. Three of these eight children subsequently cultured MRSA from their skin swab. There was one child from the hospital group who was readmitted with recurrence of cellu-litis following discharge. Complications during treatment were few. Two children (one in each group) developed abscesses requiring drainage after 48 hours of antibiotics, but the other complications (including rash) were considered non-significant and did not require change in antibiotics. The duration of intra-venous antibiotics and length under medical care were compa-rable to hospital care.

cost analysisThe cost of treating a patient with moderate/severe cellulitis at home at our institution is A$530 (£320) per patient per day, compared with the cost of an inpatient bed on the short stay unit, which is A$1297 (£785) per patient per day. The patients treated at home were in the home intravenous programme for a combined total of 176 days. The home patients therefore cost A$93 280 (£56 429) in total compared with A$228 720 (£138 378) if they had been treated in hospital, a real cost saving of A$134 992 (£81 949). If all of the hospitalised patients (combined total of 295 days) had been treated at home, the estimated cost saving would have been A$226 265 (£136 877) presuming that none of these patients had treatment failures and were subsequently hospitalised.

dIscussIOnThis is the first, prospective, observational cohort study of chil-dren treated with intravenous antibiotics for uncomplicated moderate/severe cellulitis evaluating an admission-avoidance strategy of home management. The results of this study support the use of intravenous antibiotics under a home intravenous programme for a portion of patients, in terms of efficacy, safety and cost. They support the findings of other studies that have

77

784 Ibrahim LF, et al. Emerg Med J 2017;34:780–785. doi:10.1136/emermed-2017-206829

table 4 Outcomes of home and hospital groups

home: ceftriaxonen=47

hospital: flucloxacillinn=59* Or (95% cI)†

Treatment failure, n (%) 2 (4) 8 (14) 0.28 (0.00 to 1.25)

Complications, n (%) 3 (6) 6 (10) 0.74 (0.18 to 2.97)

Abscess after 48 hours 1 (2) 1 (2)

Phlebitis at catheter site 0 1 (2)

Rash 1 (2) 2 (3)

Vomiting 1 (2) 2 (3)

Required intravenous catheter insertion more than once, n (%) 2 (4) 8 (14) 0.28 (0.00 to 1.25)

Readmission (after discharge), n (%) 0 1 (2) 0

Home transfer to hospital (during treatment) 2 (4) N/A N/A

Duration of intravenous antibiotics (days), median (IQR) 1.9 (1.0–2.6) 1.8 (1.3–2.6) 0.31

Length of stay under medical care (days), median (IQR) 2.2 (1.8–3.0) 2.0 (1.6–3.1) 0.39

Duration of stay in ED (hours), median (IQR) 3.3 (2.6–4.4) 4.0 (3.1–5.7) <0.01

*Nine patients transferred during treatment from hospital to home under home intravenous programme excluded from outcome comparisons.†P values were calculated using Mann-Whitney U test where OR is not applicable.N/A denotes not applicable as outcome only available for the home group.

Original article

either been retrospective or did not collect data from the hospi-talised group.18 20 21

In our previous study we concluded that older children with lower limb cellulitis can be treated at home based on the patient cohort that had predominantly been treated via this model to date.21 We hypothesised that this model could be applicable to all patients with uncomplicated moderate/severe cellulitis. We formulated and implemented a guideline that included a wider age range with different sites of cellulitis and prospectively evaluated this. The success of the guideline implementation is reflected in the increase in the proportion of all eligible patients referred via the home intravenous pathway, from 28% in the previous period studied to 41% in this study. In addition, in the previous study only 24% of children treated at home were aged under 4 years old compared with 53% in this study. Although the guideline was cautious with periorbital cellulitis, requiring discussion with senior clinicians, the proportion of these cases referred for home intravenous antibiotics increased from 11% in the previous study to 29%.

In the current study the success rate was high for patients treated at home with intravenous ceftriaxone (96%). However, despite the introduction of guidelines, 59% of patients were still hospitalised. Reasons for hospitalisation were clinical in 56% of admitted patients. Almost all of the remaining hospitalised patients could potentially have been treated at home. We had excluded patients with complicated cellulitis/comorbidities. Reasons for physician hesitation may relate to lack of confidence with this relatively novel home treatment approach or a gener-ally conservative approach.

Regarding efficacy, ceftriaxone is not the usual first-line treat-ment for cellulitis, but it is suitable for home-based treatment because it can be administered once daily via a peripheral cath-eter. The short intravenous duration for cellulitis would not have warranted central venous catheter insertion, and peripheral cath-eter use at home was safe and acceptable to parents. However, uncertainties have remained around the efficacy of ceftriaxone against S. aureus. Although one study suggested high rates of resis-tance to ceftriaxone in methicillin-sensitive S. aureus (MSSA),22 it was subsequently retracted due to methodological flaws.23 24 A more recent study found 99% of MSSA isolates were ceftri-axone-susceptible.25 The in vitro findings are borne out by our study, which had a high clinical success rate. This corroborates

clinical studies where ceftriaxone has been effective for skin and soft tissue infection.17 26

Regarding the broader effects of ceftriaxone, although emer-gence of resistance is a concern for broad-spectrum antibiotics, this has never been shown for short-course antibiotics in children or for patients receiving outpatient/home intravenous antibiotics.21 While antibiotic resistance is a global problem, it is important not to extrapolate effects of longer duration broad-spectrum antibiotics administered in hospital into every situation, partic-ularly where there are other benefits of home treatment such as avoidance of hospital-acquired infections. Further studies in this area are urgently needed and should encompass the impact of short-term antibiotic use on the microbiome.

Although this study was not designed to assess the use of oral antibiotics, it is possible that some of these patients could have been treated with oral antibiotics with high oral bioavailability (eg, clindamycin, high-dose flucloxacillin). However, even disre-garding taste and adherence issues, data collected on reasons for the decision to treat with intravenous antibiotics are hard to refute: failed oral antibiotics (31%), severe clinical features of rapid spreading, significant swelling, thrombophlebitis or systemic features (44%) and large or hard to treat areas (15%), leaving 10% (only 4% of all patients with uncomplicated cellu-litis) where patients could potentially have been treated with oral antibiotics. As there are no comparative safety data for treating moderate/severe cellulitis at home via any route, this study provides valuable evidence that hospital admission may not always be required for this condition.

The strength of this study is its systematic evaluation after formulating and implementing a novel pathway to treating moderate/severe cellulitis in children. Implementation of this new pathway was considered successful with the increase in the proportion of admissions avoided. Our data suggest that increasing ED physician education and awareness of this new pathway may improve the proportion of referrals.

The main potential limitation of this study is that this pathway is specific to institutions that have a home intravenous team. For institutions without a home outreach programme, the antibi-otics could be delivered via an outpatient clinic or in the ED, but returning to the hospital daily may be less acceptable to patients. Second, as this study was not a randomised trial, other unknown factors which may have influenced the treatment location could

78

785Ibrahim LF, et al. Emerg Med J 2017;34:780–785. doi:10.1136/emermed-2017-206829

Original article

not be fully addressed. In addition, this study took place in a locale with low MRSA prevalence, so the results may not be externally valid to MRSA-prevalent regions. Lastly, although our study used the actual costs from our institution’s operational budget to compare the cost of home versus hospital treatment, a thorough assessment of cost-effectiveness to include patient returns was not performed.

In summary, children with uncomplicated moderate/severe cellulitis may be successfully treated at home with intravenous ceftriaxone directly from the ED, avoiding hospital admission altogether. Applying the results across other ambulatory/outpa-tient settings should include physician oversight until there is evidence to the contrary. Even though we found no signifi-cant differences in patient characteristics between the groups, because this study was not randomised, at this stage physicians prescribing intravenous antibiotics for children with cellulitis can select patients for home/outpatient treatment with daily review based on the home cohort in this study. Evaluation of this novel pathway has provided sufficient feasibility, efficacy and safety cohort data to recommend a randomised controlled trial to answer this question for all children presenting to ED with uncomplicated moderate/severe cellulitis.

Acknowledgements We would like to acknowledge the participation of patients and families.

contributors LFI conceptualised, designed and coordinated the study, carried out the initial data analysis, drafted the initial manuscript, and approved the final manuscript as submitted. PAB, FEB and SMH were involved in the design of the study, data analysis, reviewed and revised the manuscript, and approved the final draft. TGC and AJD were involved in the design of the study, reviewed and revised the manuscript, and approved the final draft. PAB had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding This study is funded in part by grants from the RCH Foundation, the Murdoch Childrens Research Institute (MCRI) and the Victorian Department of Health, Melbourne, Australia. LFI was supported in part by a scholarship from Avant Mutual Group. PAB was in part supported by a Clinician Scientist Fellowship from the MCRI. FEB was supported in part by a grant from the RCH Foundation. The emergency research group, MCRI, is in part supported by a Centre for Research Excellence Grant for Paediatric Emergency Medicine from the National Health and Medical Research Council, Canberra, Australia, and the Victorian government infrastructure support programme.

competing interests None declared.

ethics approval The Royal Children’s Hospital Ethics Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

RefeRences 1 Chambers S, Gallagher K, Metcalf S, et al. Home intravenous antimicrobial service--

twelve months experience in Christchurch. N Z Med J 2002;115:216–8. 2 Barr DA, Semple L, Seaton RA. Outpatient parenteral antimicrobial therapy (OPAT) in

a teaching hospital-based practice: a retrospective cohort study describing experience and evolution over 10 years. Int J Antimicrob Agents 2012;39:407–13.

3 Tice AD, Rehm SJ, Dalovisio JR, et al. Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. Clin Infect Dis 2004;38:1651–71.

4 Svahn BM, Remberger M, Heijbel M, et al. Case-control comparison of at-home and hospital care for allogeneic hematopoietic stem-cell transplantation: the role of oral nutrition. Transplantation 2008;85:1000–7.

5 Small F, Alderdice F, McCusker C, et al. A prospective cohort study comparing hospital admission for gastro-enteritis with home management. Child Care Health Dev 2005;31:555–62.

6 Tiberg I, Katarina SC, Carlsson A, et al. Children diagnosed with type 1 diabetes: a randomized controlled trial comparing hospital versus home-based care. Acta Paediatr 2012;101:1069–73.

7 Hansson H, Kjaergaard H, Johansen C, et al. Hospital-based home care for children with cancer: feasibility and psychosocial impact on children and their families. Pediatr Blood Cancer 2013;60:865–72.

8 Orme LM, Babl FE, Barnes C, et al. Outpatient versus inpatient IV antibiotic management for pediatric oncology patients with low risk febrile neutropenia: a randomised trial. Pediatr Blood Cancer 2014;61:1427–33.

9 Sarvis A, Mathison D. 188 inpatient versus outpatient management of infants 29-60 days with presumed pyelonephritis at low risk for bacteremia: a cost analysis. Ann Emerg Med 2016;68:S74.

10 Bryant PA, Babl FE, Daley AJ, et al. Blood cultures in cellulitis are not cost effective and should prompt investigation for an alternative focus. Pediatr Infect Dis J 2016;35:118.

11 Trenchs V, Hernandez-Bou S, Bianchi C, et al. Blood cultures are not useful in the evaluation of children with uncomplicated superficial skin and soft tissue infections. Pediatr Infect Dis J 2015;34:924–7.

12 Malone JR, Durica SR, Thompson DM, et al. Blood cultures in the evaluation of uncomplicated skin and soft tissue infections. Pediatrics 2013;132:454–9.

13 Grayson ML, McDonald M, Gibson K, et al. Once-daily intravenous cefazolin plus oral probenecid is equivalent to once-daily intravenous ceftriaxone plus oral placebo for the treatment of moderate-to-severe cellulitis in adults. Clin Infect Dis 2002;34:1440–8.

14 Steele RW, Russo TM, Thomas MP. Adherence issues related to the selection of antistaphylococcal or antifungal antibiotic suspensions for children. Clin Pediatr 2006;45:245–50.

15 Gee SC, Hagemann TM. Palatability of liquid anti-infectives: clinician and student perceptions and practice outcomes. J Pediatr Pharmacol Ther 2007;12:216–23.

16 Nelson SJ, Boies EG, Shackelford PG. Ceftriaxone in the treatment of infections caused by staphylococcus aureus in children. Pediatr Infect Dis 1985;4:27–31.

17 Frenkel LD. Once-daily administration of ceftriaxone for the treatment of selected serious bacterial infections in children. Pediatrics 1988;82(3 Pt 2):486–91.

18 Gouin S, Chevalier I, Gauthier M, et al. Prospective evaluation of the management of moderate to severe cellulitis with parenteral antibiotics at a paediatric day treatment centre. J Paediatr Child Health 2008;44:214–8.

19 Kulhanjian J, Dunphy MG, Hamstra S, et al. Randomized comparative study of ampicillin/sulbactam vs. ceftriaxone for treatment of soft tissue and skeletal infections in children. Pediatr Infect Dis J 1989;8:605–10.

20 Brugha RE, Abrahamson E. Ambulatory intravenous antibiotic therapy for children with preseptal cellulitis. Pediatr Emerg Care 2012;28:226–8.

21 Ibrahim LF, Hopper SM, Babl FE, et al. Who can safely have antibiotics at home? a prospective observational study in children with moderate/severe cellulitis. Pediatr Infect Dis J 2015.

22 Pickering AJ HR, Harrison LH, et al. Common occurrence of ceftriaxone-resistant, methicillin-sensitive Staphylococcus aureus at a community teaching hospital. Clin Infect Dis 2014;59:e72.

23 Limbago BM, Pierce VM, Lonsway DR, et al. Elevated Staphylococcus ceftriaxone MICs are an Etest artifact. Clin Infect Dis 2015;60:162–3.

24 Phe K, Dao D, Palmer HR, et al. In vitro ceftriaxone susceptibility in methicillin-susceptible staphylococcus aureus. Antimicrob Agents Chemother 2015;59:1370.

25 Greenwood-Quaintance KE, Kohner P, Osmon DR, et al. Ceftriaxone susceptibility of oxacillin-susceptible staphylococcus aureus from patients with prosthetic joint infection. Diagn Microbiol Infect Dis 2015;82:177–8.

26 Vinen J, Hudson B, Chan B, et al. A randomised comparative study of once-daily ceftriaxone and 6-hourly flucloxacillin in the treatment of moderate to severe cellulitis - Clinical efficacy, safety and pharmacoeconomic implications. Clinical Drug Investigation 1996;12:221–5.

79

moderate/severe cellulitisoutpatient intravenous antibiotics forfor children in the emergency department: Evaluating an admission avoidance pathway

Penelope A Bryant and Franz E BablLaila F Ibrahim, Sandy M Hopper, Tom G Connell, Andrew J Daley,

doi: 10.1136/emermed-2017-2068292017

2017 34: 780-785 originally published online October 4,Emerg Med J

http://emj.bmj.com/content/34/12/780Updated information and services can be found at:

These include:

References http://emj.bmj.com/content/34/12/780#ref-list-1

This article cites 25 articles, 3 of which you can access for free at:

serviceEmail alerting

box at the top right corner of the online article. Receive free email alerts when new articles cite this article. Sign up in the

Notes

http://group.bmj.com/group/rights-licensing/permissionsTo request permissions go to:

http://journals.bmj.com/cgi/reprintformTo order reprints go to:

http://group.bmj.com/subscribe/To subscribe to BMJ go to:

80

81  

 

3.4 Nasal  colonisation  in  cellulitis  

Skin  and  soft  tissue  infections,  including  cellulitis,  are  associated  with  nasal  

colonisation  with  S.  aureus.105,107  The  strain  of  S.  aureus  that  colonises  the  

anterior  nares  has  been  shown  to  be  concordant  with  the  strain  that  causes  skin  

infection.117  Therefore  investigating  prevalence  of  S.  aureus  nasal  colonisation  in  

children  presenting  with  cellulitis  has  the  potential  to  improve  our  

understanding  of  this  condition  in  several  ways.    

Primary  amongst  these  is  the  prevalence  of  MRSA  in  our  patient  population  as  

this  directly  informs  choice  of  empiric  antibiotics.  According  to  the  clinician  

survey,  clinicians  believed  the  risk  of  MRSA  to  be  as  high  as  20%  in  children  

presenting  to  ED  with  cellulitis.  In  an  Australia-­‐wide  study  of  S.  aureus,  

susceptibility  patterns  for  isolates  from  children  attending  tertiary  paediatric  

hospitals,  the  rates  of  MRSA  were  between  6-­‐14%,  varying  in  different  states.118  

MRSA-­‐colonised  children  are  24  times  more  likely  to  have  MRSA  infections  

compared  to  non-­‐colonised  patients.104  In  the  baseline  study  (Chapter  2)  6/59  

(10%)  patients  had  skin  swabs  positive  for  MRSA.  However,  skin  swabs  were  

only  performed  when  clinically  indicated,  for  example  if  the  clinician  suspected  

MRSA  due  to  past  history.  Therefore,  59%  of  the  study  cohort  did  not  have  a  skin  

swab,  obscuring  the  actual  proportion  of  those  with  MRSA  colonisation.  

Determining  prevalence  of  MRSA  colonisation  would  be  an  important  

determinant  of  empiric  antibiotic  choice  for  the  RCT.  Although  MRSA  has  

received  more  attention  in  the  literature,  MSSA  is  more  prevalent  in  most  

populations,  both  as  a  colonising  organism  and  as  a  cause  of  invasive  infections.  

Since  there  are  few  studies  investigating  risk  factors  and  the  effect  of  antibiotics  

on  MSSA,  we  determined  that  this  was  an  opportunity  to  investigate  both  MSSA  

and  MRSA  in  children  with  cellulitis.  

Although  there  is  increasing  use  of  ceftriaxone  for  ambulatory/home  treatment  

in  children  with  cellulitis,  there  have  never  been  any  studies  prospectively  

investigating  the  impact  of  short-­‐course  ambulatory  ceftriaxone  on  bacterial  

  82  

colonisation  and  development  of  resistance.  In  a  study  in  a  geriatric  hospital,  use  

of  third  generation  cephalosporins,  monobactam  and  carbapanem  was  

significantly  associated  with  MRSA  infections.69  However,  in  children,  there  is  

conflicting  evidence  on  the  importance  of  antibiotic  exposure  as  a  risk  factor  for  

MRSA  colonisation  or  infection.  Reported  risk  factors  for  colonisation  by  both  

MSSA  and  MRSA  in  children  include  prior  antibiotic  use,  hospitalisation,  

maternal  colonisation,  colonisation  in  other  household  members,  hospitalisation  

of  a  household  member  and  older  age.21,105-­‐107  This  study,  using  the  same  cohort  

of  patients  in  the  previous  foundation  study,  was  therefore  an  opportunity  to  

investigate  the  risk  factors  for  colonisation  with  S.  aureus  at  baseline  to  compare  

our  population  with  those  in  other  studies,  and  for  the  first  time  prospectively  to  

investigate  the  longitudinal  impact  of  antibiotics  on  nasal  colonisation  with  

MSSA  and  MRSA.  It  also  enabled  us  to  determine  the  feasibility  of  longitudinal  

microbiological  sample  collection  for  the  RCT.  

Thirdly,  the  effect  of  S.  aureus  colonisation  status  on  the  severity  of  cellulitis  has  

never  been  investigated.  This  study  was  an  opportunity  to  determine  whether  

nasal  colonisation  affects  outcomes  such  as  duration  of  treatment  or  

complications  such  as  abscess.119    

In  summary,  the  nasal  colonisation  study  aimed  to  investigate  the  following:  

• The  risk  of  nasal  colonisation  with  both  MSSA  and  MRSA  in  children  

presenting  with  moderate/severe  cellulitis  

• The  risk  factors  for  nasal  colonisation  with  MSSA  and  MRSA  at  baseline  

and  the  longitudinal  impact  of  ceftriaxone  on  colonisation  

•  The  effect  of  S.  aureus  colonisation  status  on  the  severity  of  cellulitis  and  

outcomes  

   

  83  

3.5 Study  4:  Nasal  colonisation  

Ibrahim  LF,  Scrivener  A,  Hopper  SM,  Babl  FE,  Bryant  PA.  Does  Hospitalisation  Of  

Children  With  Cellulitis  Increase  Nasal  Carriage  Of  Methicillin-­‐Sensitive  And  

Resistant  Staphylococcus  aureus.  Under  review  with  Journal  of  Pediatric  

Infectious  Diseases  Society.  

(The  following  manuscript  is  a  Word  version  of  the  submitted  work  instead  of  

the  PDF  version  from  Journal  of  Pediatric  Infectious  Diseases  Society  due  to  a  

large  watermark.)  

 

The impact of antibiotics on colonization with Staphylococcus aureus in children

with cellulitis

Laila F Ibrahim MB BCh BAOa,d,e, Alexander Scrivener MDe, Sandy M Hopper

MBBSb,d, Andrew J Daley MMedc,f, Nigel Curtis PhDc,d,e , Franz E Babl MDb,d,e ,

Penelope A Bryant PhDa,c,d,e

Affiliations:

a Hospital-In-The-Home Department, The Royal Children’s Hospital

b Emergency Department, The Royal Children’s Hospital

c Infectious Diseases Unit, Department of General Medicine, The Royal Children’s

Hospital

d Murdoch Children’s Research Institute

e Department of Pediatrics, University of Melbourne

f Department of Microbiology, The Royal Children’s Hospital

50 Flemington Road, Parkville, Victoria 3052, Australia

Corresponding author:

A/Prof. Penelope A Bryant

Department of General Medicine, The Royal Children’s Hospital Melbourne

50 Flemington Road, Parkville, VIC 3052, Australia

Email: [email protected]

Tel: +613 93455522 Fax: +613 9345 6667

Key words: Staphylococcus aureus, antibiotics, cellulitis

Word count 2, 704

84

Abbreviated title: Antibiotic impact on Staphylococcus aureus colonization

Running head title: Staphylococcus aureus colonization and antibiotics

Key points:

• In children treated with intravenous antibiotics for cellulitis, there was an

increase in nasal colonization of Staphylococcus aureus 12-months post-

antibiotic treatment for those who received flucloxacillin in hospital.

• In contrast those who received ambulatory ceftriaxone did not have increased

colonization.

85

Abstract

Background

Staphylococcus aureus is a major cause of invasive infection in children, with nasal

colonization playing a key role in pathogenesis. We aimed to: 1) compare

colonization with nasal S. aureus (methicillin-sensitive (MSSA) and methicillin-

resistant (MRSA)) in children with cellulitis treated with either intravenous

flucloxacillin in hospital or ambulatory ceftriaxone at home; 2) assess other risk

factors for colonization; 3) evaluate the effect of colonization on cellulitis severity.

Methods

A prospective cohort study from 2014-2015 in patients with cellulitis treated with

intravenous antibiotics. Patients had a nasal swab at baseline and 12 months post

antibiotics, which was cultured for S. aureus. Risk factors and clinical features were

collected.

Results

90 children had at least one swab, with 50 sampled at both time points. Forty-five

(50%) received flucloxacillin in hospital and 45 (50%) ceftriaxone at home. Between

baseline and 12 months, S. aureus colonization increased in the flucloxacillin group

(12% versus 40%, p=0.01), but did not in the ceftriaxone group (18% versus 19%,

p=1.00). The difference in post-antibiotic acquisition between flucloxacillin and

ceftriaxone was 42% versus 12% (p=0.02). Only 4 patients were colonized with

MRSA at baseline and none at 12 months. The only additional risk factor for

colonization with MSSA was having a large area of cellulitis. S. aureus colonization

did not affect severity of cellulitis.

86

Conclusions

The unexpected increase in S. aureus acquisition may be attributable to either

hospitalization or flucloxacillin use. The use of short-course ceftriaxone at home was

not associated with an increase in colonization with S. aureus.

87

Introduction

Staphylococcus aureus is a major cause of invasive infection in children, and

bacteremia is associated with 4% mortality.(1) Nasal colonization with S. aureus

plays a key role in the pathogenesis of invasive infection including cellulitis and

bacteremia(2-5) and is associated with non-infectious conditions such as asthma(6),

eczema(7) and epistaxis(8). In adults, much is known about the risk factors for nasal

colonization with methicillin-resistant S. aureus (MRSA), with fewer studies

investigating children.(9) Less still is known about risk factors for methicillin-

sensitive S. aureus (MSSA) colonization, which in many settings causes a higher

proportion of invasive infections than MRSA and is associated with a similar

mortality.(1, 10)

Reported risk factors for colonization by both MSSA and MRSA in children include

prior antibiotic use, hospitalization, maternal colonization, colonization in other

household members, hospitalization of a household member and older age.(11-14)

However these findings are from a relatively small number of studies, relying on

recollection of antibiotic use, predominantly screening healthy children, and there is

conflicting evidence on the importance of antibiotic exposure as a risk factor. No

study with prospective antibiotic administration, has compared the effect of different

antibiotics on colonization and no study has related colonization to the severity of

concurrent infection.

The most common infection caused by S. aureus in children is cellulitis. At our

institution we developed a treatment pathway to avoid admission for children with

moderate/severe cellulitis requiring intravenous (IV) treatment.(15) Patients can

receive ceftriaxone at home as outpatient parenteral antimicrobial therapy (OPAT) as

88

an alternative to standard admission to hospital for flucloxacillin. Although the

advantage of ceftriaxone is its once daily administration allowing ambulatory use, a

potential disadvantage is that third-generation cephalosporins have been associated

with resistance in colonizing bacteria, including MRSA in adults, although the latter

has not been clearly identified in children.(9, 16-20) There are many centres

worldwide using ceftriaxone for ambulatory/home treatment without any prospective

studies documenting the impact on nasal colonization, compared to those receiving

standard care in hospital.(15, 21-23)

We therefore undertook a prospective study of children with moderate/severe

cellulitis with the following aims: 1) to compare the rates of colonization and

acquisition of nasal S. aureus in children treated for cellulitis between intravenous

flucloxacillin in hospital and ambulatory ceftriaxone at home; 2) to identify risk

factors for both MSSA and MRSA nasal colonization in this setting, in particular the

impact of antibiotics; and 3) to determine whether nasal S. aureus colonization at

presentation affects the severity of cellulitis.

Methods

Design and setting: A prospective cohort study recruiting from March 2014 to Jan

2015 in the Emergency Department (ED) at the Royal Children’s Hospital (RCH)

Melbourne, a tertiary pediatric hospital.

Inclusion/exclusion criteria: Children aged 6 months to 18 years treated for

uncomplicated moderate/severe cellulitis with IV antibiotics were eligible. Patients

with complicated cellulitis (orbital cellulitis, undrained abscess, large animal/human

bite, penetrating injury, foreign body, suspected fasciitis, toxicity) and co-morbidities

89

(immunocompromise, varicella, any condition receiving different antibiotic treatment)

were excluded. Patients with mild cellulitis (treated with oral antibiotics) were also

excluded.

Recruitment: ED clinicians received education about the home pathway and they then

decided whether to treat a child with moderate/severe cellulitis with standard care of

IV flucloxacillin 50 mg/kg 6 hourly in hospital or IV ceftriaxone 50 mg/kg once daily

at home. For completion with oral antibiotics, patients in both groups were switched

to cephalexin 25 mg/kg 8 hourly, unless they cultured MRSA from a skin swab for

which they received trimethoprim/sulfamethoxazole (8/40 mg per mL – 0.5 ml/kg).

Intervention: Patients in either group had a peripheral cannula inserted in the ED

using standard cannulation techniques. The first dose of antibiotic was administered in

the ED. For home patients, after the first dose of ceftriaxone, they were discharged

home with the peripheral cannula in situ followed by once daily visits at home from

the OPAT nurse for assessment and further doses of ceftriaxone. For the hospital

patients, after commencing the first dose of flucloxacillin, they were transferred to a

medical ward followed by routine medical ward care. For both groups of patients,

decision to cease IV antibiotics were made by the treating clinician (either OPAT

clinician or ward clinician of at least senior registrar level)

Data and sample collection: Data collected included demographics, features of

cellulitis, oral antibiotic use, duration of IV antibiotics and length of stay in hospital.

At baseline prior to IV antibiotics, a nasal sample was collected using a dry sterile

Amies charcoal swab (Copan,USA) by rotating two to three times in the vestibule of

both anterior nares and placing immediately in Amies charcoal transport medium.

90

After 12 months, a second swab was collected and a questionnaire was administered

to collect information on the clinical history between the two time points, including

antibiotic use, other infections and hospitalizations. Colonization was defined as a

positive nasal swab at either baseline or 12 months. Acquisition was defined as those

who had a negative nasal swab at baseline and subsequently had a positive swab at 12

months.

Bacterial culture: The nasal swab was processed in the microbiology laboratory at

RCH within 24 hours of collection. The swab was inoculated on to mannitol salt agar,

horse blood agar and MacConkey agar, incubated at 35°C and reviewed at 24 and 48

hours. Colonies with mannitol-salt fermentation and morphology suggestive of S.

aureus were tested with Prolex Staph Xtra latex (Pro-Lab Diagnostics, Canada) from

non-selective media, followed by a DNase test. Isolates that were both staphylococcal

latex and DNase positive were identified as S. aureus. Antibiotic susceptibility testing

was done by Vitek AST card (bioMérieux, France). The results were interpreted

according to the 2014 Clinical & Laboratory Standards Institute (CLSI) guideline.

Statistical analysis: For univariate analysis, the Student t test was used to compare

continuous data and chi-square or Fisher’s exact test for categorical data (where

frequency of variables are <5) using Stata statistics (Stata/IC 15.0). All risk factors

included in univariate analyses were considered for a multivariate model. Likelihood

ratio tests were conducted to assess the best fit for the multivariate model through risk

factor inclusion, with the most parsimonious model presented.

Ethics: This study received approval from the RCH human research ethics committee

(No. HREC 34018).

91

Results

Over a 10-month period, 90 children with moderate/severe cellulitis were recruited

who had at least one nasal swab taken: 68 at presentation (baseline), 72 at 12 months

post antibiotics and 50 sampled at both time points. The patients treated with inpatient

flucloxacillin or ambulatory ceftriaxone were of similar age, sex and most clinical

characteristics, with 45 (50%) in each group (table 1). There was a higher proportion

of children in the inpatient flucloxacillin group who had eczema although overall

numbers were small and statistically this was not significant: 9 (20%) versus 2 (4%)

(OR 5.37, 95% CI 1.09 to 26.48, p=0.05). Of those colonised at baseline, there were

2/10 patients who had eczema, 1 from the home group and the other from the hospital

group. At 12 months, of those colonised only 1/21 had eczema, this patient was from

the hospital group.

Nasal colonization with S. aureus

At the time of presentation with cellulitis, 10/68 (15%) children had nasal

colonization with S. aureus (table 2), of which 4 (6%) had MRSA. At 12 months post

IV antibiotics for treatment of cellulitis, 21/72 (29%) children were colonized with S.

aureus, of which no (0%) patients had MRSA (table 3). There was a significant

difference 12 months after antibiotics between the two groups: 14/35 (40%) were

colonized in the flucloxacillin group and 7/37 (19%) in the ceftriaxone group (OR

0.35, 95% CI 0.12 to 1.00, p=0.049). Since there was no difference between the

groups at baseline, this represents an increase in proportion of colonization in the

flucloxacillin group between presentation and 12 months later (4 (12%) versus 14

(40%) patients colonized (OR 5.0, 95% CI 1.44 to 17.34, p=0.01). This was

investigated further for patients who had both baseline and 12 month swabs: overall

92

13/50 (26%) acquired nasal S. aureus colonization post IV antibiotics, 7 (14%) were

no longer colonized and 1 (2%) had persistent colonization. Acquisition of S. aureus

occurred in 10 (42%) patients treated with flucloxacillin in hospital, significantly

more than the 3 (12%) of those treated with ceftriaxone at home (OR 5.48, 95% CI

1.35 to 21.63, p=0.02).

Risk factors for acquisition of S. aureus

We assessed the impact of antibiotics and multiple other risk factors on both

colonization (MRSA and MSSA) and acquisition of S. aureus after treatment for

cellulitis (all MSSA) (table 4). No risk factors investigated prior to the cellulitis

episode were associated with colonization status at baseline or acquisition by 12

months. In addition to the treatment pathway (home versus hospital) being associated

with a difference in acquisition of S. aureus as previously stated, we also found that if

children had a large area of cellulitis (body surface area >1%), a significantly higher

proportion acquired S. aureus than did not: 7/13 (54%) versus 7/36 (19%), OR 4.8

95% CI 1.3-18.4, p=0.02. No other clinical features of cellulitis were associated with

colonization at 12 months or acquisition, nor were any other factors that were

investigated in the 12 months post treatment (table 4). Upon adding each potential risk

factor for S. aureus colonization to the multivariate model, likelihood ratio tests did

not identify model improvement, so a multivariate analysis was not required.

Impact of colonization on severity of cellulitis

The only significant clinical correlation between nasal S. aureus colonization and

severity of cellulitis or outcomes was abscess formation: 4 (40%) patients who were

colonized developed an abscess, compared to 6 (10%) who were not colonized (OR

5.78, 95% CI 1.36 to 25.2, p=0.01). Of those with MRSA colonization, 3 (75%)

93

patients developed an abscess, compared to 1 (17%) with MSSA (OR 15, 95% CI 0.7

to 339, p=0.11). All patients with MSSA colonization at presentation had

improvement in their cellulitis regardless of whether they were treated with

flucloxacillin or ceftriaxone. Of the 4 with MRSA colonization, 2 improved on

ceftriaxone and were subsequently switched to oral trimethoprim/sulfamethoxazole

with the culture result, and 2 did not improve on empiric IV treatment until antibiotics

were changed to vancomycin.

Discussion

This is the first study comparing nasal colonization in children with cellulitis before

and after antibiotic use. The most important finding was that short course IV

ceftriaxone administered via an ambulatory pathway at home did not result in

increased nasal colonization with S. aureus, either MSSA or MRSA, when measured

after 12 months. This is a key finding to add support to the use of ceftriaxone in this

specific setting. Non-inpatient treatment has advantages both for the patient in terms

of psychological outcomes and reduced hospital-associated risks, and for the

healthcare institution in terms of patient flow and costs.(24-26)

An unexpected finding was that IV flucloxacillin in hospital was associated with a 4-

fold increase in the likelihood of nasal S. aureus colonization – all MSSA – after 12

months. There are three possible reasons for the significant difference in S. aureus

colonization between the groups: difference in antibiotic choice, difference in

treatment location or another difference. As both antibiotic and location were different

between the two treatment pathways, we are unable to determine whether the

difference is due to flucloxacillin use or hospital admission. Both are possible based

on hypothesis and supporting literature. Hospital admission is a known risk for

94

pathogen transmission and it has been reported in one previous study as a risk factor

for S. aureus nasal colonization.(11) However, the only other study to investigate

hospitalization as a risk factor found no association, with the authors suggesting that

antibiotic use in previous hospitalizations may have negated the effect.(14) In our

study, neither prior hospitalization nor hospitalization in the 12 months after the

cellulitis were independent risks for acquisition, which therefore questions hospital

admission as the sole risk factor, unless it is a marker for severity of the cellulitis

episode.

We therefore considered aspects of the episode relating to severity that may have been

different between the groups and that may have resulted in hospital admission rather

than the home treatment pathway. However, there was no difference between the

groups in local cellulitis features (large size, rapid spreading, severe swelling),

presence of systemic clinical features or duration of antibiotics.

This leaves the difference in antibiotics between the groups. It might seem unexpected

that flucloxacillin, an anti-staphylococcal antibiotic, would increase nasal colonization

with MSSA. However, we hypothesize that flucloxacillin has an immediate effect

reducing nasal S. aureus colonization but it may additionally cause collateral decrease

in other Gram-positive commensal bacteria. This effect may be greater than

with ceftriaxone due to the high efficacy of flucloxacillin against certain Gram-

positive bacteria. Several studies have shown an inverse relationship between S.

aureus and the presence of other colonising bacteria including Corynebacterium spp,

Staphylococcus epidermidis, Lactobacillus spp and Propionibacterium spp.(27-30)

The absence of these other bacteria competing for space and nutrients may allow S.

aureus to take over the microbiological niche. This hypothesis would also explain the

95

conflicting results of the four retrospective studies in children that have investigated

antibiotics as a risk factor for nasal S. aureus colonization. Three studies showed no

association with antibiotic use over the previous two(31) and three months(14, 32)

whereas the other study investigating antibiotic use in the previous six months showed

increased S. aureus colonization.(11) Time post antibiotics, and therefore time for S.

aureus to take over the newly unoccupied niche, is potentially the factor explaining

the difference. Although in our study a few patients had received subsequent

antibiotics, numbers are too small to draw conclusions from either type or time since

the most recent course.

MRSA rates were low in this study and there was no increase in nasal colonization

after antibiotics contrary to studies in adults(33, 34). There are several possibilities for

this. First, the prevalence of MRSA in our population is low and second, it may be

related to the relatively short antibiotic duration in the study. However, importantly

the results show that in contrast to previous reports of ceftriaxone use in adults in

hospitals(9, 19) short course ceftriaxone use at home in children is not associated with

acquiring MRSA.(9, 19)

Nasal colonization was not associated with a more severe episode of cellulitis, or its

outcomes, apart from the recognized association between MRSA colonization and

soft tissue abscesses.(35) A previous study relating nasal S. aureus colonization to

incidence of bacteremia raises the possibility that colonization may be related to

incidence of cellulitis rather than severity or outcome, although this study was not

designed to answer that.(5)

Limitations of our study include that we are unable to separate IV antibiotic and

96

treatment location as risk factors, but this was a necessary study design based on

assessing the ambulatory pathway and the findings are reassuring regarding that. Also,

as treatment location was decided by the ED clinician, it is possible that other

unknown risk factors may have affected colonization. We mitigated this by

investigating risk factors that other studies have investigated, although numbers of

patients with each risk factor were small and a larger randomized study would be

required to definitively answer this question. We only investigated colonization in the

nose as this is the main reservoir for S. aureus colonization and allows comparison

with other studies; however, it is possible that higher rates may have been found if

other body sites had also been tested for colonization.

In conclusion, use of short-course ceftriaxone at home in this study was not associated

with increased rates of S. aureus colonization. It also did not appear to affect MRSA

acquisition, although this study should be replicated where MRSA has higher

prevalence. These findings provide some reassurance that the widespread use of short-

course ceftriaxone for OPAT in children is not contributing to acquisition or

colonization of S. aureus. That we unexpectedly found that hospitalization with a

narrow spectrum antibiotic appears to be a greater risk factor for colonization than

home administration of a broader spectrum antibiotic needs further study. Future

studies should also investigate the impact of ceftriaxone on gastrointestinal bacteria

given its broader effects against Gram-negative bacteria.

Funding: This study is funded in part by grants from the RCH Foundation, the

Murdoch Children's Research Institute (MCRI), the Victorian Department of Health,

Melbourne Australia. LFI was supported in part by a scholarship from AVANT

Mutual Group Ltd, Melbourne, the Melbourne Children’s Campus Postgraduate

97

Health Research Scholarship and the Doctor Nicholas Collins Fellowship. PAB was

in part supported by a Melbourne Campus Clinician Scientist Fellowship, Melbourne,

Australia. FEB was supported in part by a grant from the RCH Foundation and a

Melbourne Campus Clinician Scientist Fellowship, Melbourne, Australia and a

National Health and Medical Research Council (NHMRC) Practitioner Fellowship,

Canberra, Australia. The emergency research group, MCRI, is in part supported by an

NHMRC Centre for Research Excellence Grant for Pediatric Emergency Medicine,

Canberra, Australia and the Victorian government infrastructure support program.

Acknowledgements: We would like to acknowledge the participation of patients and

families. We would also like to thank the staff of the Department of Microbiology at

the Royal Children’s Hospital.

Transparency declarations: All authors have indicated they have no financial

relationships relevant to this article to disclose. The funding bodies do not have any

authority in design and conduct of the study; collection, management, analysis, and

interpretation of the data; and preparation, review, or approval of the manuscript.

Conflicts of Interest: The authors listed above certify that they have no affiliations

with any organization or entity with any financial or non-financial interest on the

materials discussed in this manuscript. The authors declare there are no competing

interests of note.

Transparency declarations: All authors have indicated they have no financial

relationships relevant to this article to disclose. The funding bodies do not have any

authority in design and conduct of the study; collection, management, analysis, and

98

interpretation of the data; and preparation, review, or approval of the manuscript.

99

References

1.   McMullan  BJ,  Bowen  A,  Blyth  CC,  Van  Hal  S,  Korman  TM,  Buttery  J,  et  al.  

Epidemiology  and  Mortality  of  Staphylococcus  aureus  Bacteremia  in  Australian  

and  New  Zealand  Children.  JAMA  pediatrics.  2016;170(10):979-­‐86.  doi:  

10.1001/jamapediatrics.2016.1477.  PubMed  PMID:  27533601.  

2.   von  Eiff  C,  Becker  K,  Peters  G.  Nasal  carriage  of  Staphylococcus  aureus.  

Reply.  New  Engl  J  Med.  2001;344(18):1400-­‐1.  PubMed  PMID:  

WOS:000168413500019.  

3.   Almeida  GC,  dos  Santos  MM,  Lima  NG,  Cidral  TA,  Melo  MC,  Lima  KC.  

Prevalence  and  factors  associated  with  wound  colonization  by  Staphylococcus  

spp.  and  Staphylococcus  aureus  in  hospitalized  patients  in  inland  northeastern  

Brazil:  a  cross-­‐sectional  study.  BMC  infectious  diseases.  2014;14:328.  doi:  

10.1186/1471-­‐2334-­‐14-­‐328.  PubMed  PMID:  24925025;  PubMed  Central  PMCID:  

PMC4065078.  

4.   Rocha  LA,  Marques  Ribas  R,  da  Costa  Darini  AL,  Gontijo  Filho  PP.  

Relationship  between  nasal  colonization  and  ventilator-­‐associated  pneumonia  

and  the  role  of  the  environment  in  transmission  of  Staphylococcus  aureus  in  

intensive  care  units.  American  journal  of  infection  control.  2013;41(12):1236-­‐40.  

doi:  10.1016/j.ajic.2013.04.009.  PubMed  PMID:  23890377.  

5.   von  Eiff  C,  Becker  K,  Machka  K,  Stammer  H,  Peters  G.  Nasal  carriage  as  a  

source  of  Staphylococcus  aureus  bacteremia.  Study  Group.  The  New  England  

journal  of  medicine.  2001;344(1):11-­‐6.  doi:  10.1056/NEJM200101043440102.  

PubMed  PMID:  11136954.  

100

6.   Davis  MF,  Peng  RD,  McCormack  MC,  Matsui  EC.  Staphylococcus  aureus  

colonization  is  associated  with  wheeze  and  asthma  among  US  children  and  

young  adults.  The  Journal  of  allergy  and  clinical  immunology.  2015;135(3):811-­‐3  

e5.  doi:  10.1016/j.jaci.2014.10.052.  PubMed  PMID:  25533526;  PubMed  Central  

PMCID:  PMC4955790.  

7.   Lebon  A,  Labout  JA,  Verbrugh  HA,  Jaddoe  VW,  Hofman  A,  van  Wamel  WJ,  

et  al.  Role  of  Staphylococcus  aureus  nasal  colonization  in  atopic  dermatitis  in  

infants:  the  Generation  R  Study.  Archives  of  pediatrics  &  adolescent  medicine.  

2009;163(8):745-­‐9.  doi:  10.1001/archpediatrics.2009.117.  PubMed  PMID:  

19652107.  

8.   Whymark  AD,  Crampsey  DP,  Fraser  L,  Moore  P,  Williams  C,  Kubba  H.  

Childhood  epistaxis  and  nasal  colonization  with  Staphylococcus  aureus.  

Otolaryngology-­‐-­‐head  and  neck  surgery  :  official  journal  of  American  Academy  of  

Otolaryngology-­‐Head  and  Neck  Surgery.  2008;138(3):307-­‐10.  doi:  

10.1016/j.otohns.2007.10.029.  PubMed  PMID:  18312876.  

9.   Washio  M,  Mizoue  T,  Kajioka  T,  Yoshimitsu  T,  Okayama  M,  Hamada  T,  et  al.  

Risk  factors  for  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA)  infection  in  

a  Japanese  geriatric  hospital.  Public  health.  1997;111(3):187-­‐90.  doi:  

10.1016/S0033-­‐3506(97)00581-­‐7.  PubMed  PMID:  9175465.  

10.   Dolapo  O,  Dhanireddy  R,  Talati  AJ.  Trends  of  Staphylococcus  aureus  

bloodstream  infections  in  a  neonatal  intensive  care  unit  from  2000-­‐2009.  BMC  

pediatrics.  2014;14:121.  doi:  10.1186/1471-­‐2431-­‐14-­‐121.  PubMed  PMID:  

24886471;  PubMed  Central  PMCID:  PMC4024190.  

11.   Rodriguez  EA,  Correa  MM,  Ospina  S,  Atehortua  SL,  Jimenez  JN.  Differences  

in  epidemiological  and  molecular  characteristics  of  nasal  colonization  with  

101

Staphylococcus  aureus  (MSSA-­‐MRSA)  in  children  from  a  university  hospital  and  

day  care  centers.  PloS  one.  2014;9(7):e101417.  doi:  

10.1371/journal.pone.0101417.  PubMed  PMID:  24987854;  PubMed  Central  

PMCID:  PMC4079298.  

12.   Jimenez-­‐Truque  N,  Tedeschi  S,  Saye  EJ,  McKenna  BD,  Langdon  W,  Wright  

JP,  et  al.  Relationship  between  maternal  and  neonatal  Staphylococcus  aureus  

colonization.  Pediatrics.  2012;129(5):e1252-­‐9.  doi:  10.1542/peds.2011-­‐2308.  

PubMed  PMID:  22473373;  PubMed  Central  PMCID:  PMC3340589.  

13.   Fritz  SA,  Hogan  PG,  Hayek  G,  Eisenstein  KA,  Rodriguez  M,  Krauss  M,  et  al.  

Staphylococcus  aureus  colonization  in  children  with  community-­‐associated  

Staphylococcus  aureus  skin  infections  and  their  household  contacts.  Archives  of  

pediatrics  &  adolescent  medicine.  2012;166(6):551-­‐7.  doi:  

10.1001/archpediatrics.2011.900.  PubMed  PMID:  22665030;  PubMed  Central  

PMCID:  PMC3596005.  

14.   Datta  F,  Erb  T,  Heininger  U,  Gervaix  A,  Schaad  UB,  Berger  C,  et  al.  A  

multicenter,  cross-­‐sectional  study  on  the  prevalence  and  risk  factors  for  nasal  

colonization  with  Staphylococcus  aureus  in  patients  admitted  to  children's  

hospitals  in  Switzerland.  Clinical  infectious  diseases  :  an  official  publication  of  

the  Infectious  Diseases  Society  of  America.  2008;47(7):923-­‐6.  doi:  

10.1086/591700.  PubMed  PMID:  18715155.  

15.   Ibrahim  LF,  Hopper  SM,  Connell  TG,  Daley  AJ,  Bryant  PA,  Babl  FE.  

Evaluating  an  admission  avoidance  pathway  for  children  in  the  emergency  

department:  outpatient  intravenous  antibiotics  for  moderate/severe  cellulitis.  

Emergency  medicine  journal  :  EMJ.  2017.  doi:  10.1136/emermed-­‐2017-­‐206829.  

PubMed  PMID:  28978652.  

102

16.   Heikkinen  T,  Saeed  KA,  McCormick  DP,  Baldwin  C,  Reisner  BS,  

Chonmaitree  T.  A  single  intramuscular  dose  of  ceftriaxone  changes  

nasopharyngeal  bacterial  flora  in  children  with  acute  otitis  media.  Acta  

paediatrica.  2000;89(11):1316-­‐21.  PubMed  PMID:  11106042.  

17.   Conus  P,  Francioli  P.  Relationship  between  ceftriaxone  use  and  resistance  

of  Enterobacter  species.  Journal  of  clinical  pharmacy  and  therapeutics.  

1992;17(5):303-­‐5.  PubMed  PMID:  1464634.  

18.   Banerjee  T,  Bhattacharjee  A,  Upadhyay  S,  Mishra  S,  Tiwari  K,  Anupurba  S,  

et  al.  Long-­‐term  outbreak  of  Klebsiella  pneumoniae&  third  generation  

cephalosporin  use  in  a  neonatal  intensive  care  unit  in  north  India.  The  Indian  

journal  of  medical  research.  2016;144(4):622-­‐9.  doi:  10.4103/0971-­‐

5916.200900.  PubMed  PMID:  28256474;  PubMed  Central  PMCID:  PMC5345312.  

19.   Schentag  JJ,  Hyatt  JM,  Carr  JR,  Paladino  JA,  Birmingham  MC,  Zimmer  GS,  et  

al.  Genesis  of  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA),  how  

treatment  of  MRSA  infections  has  selected  for  vancomycin-­‐resistant  

Enterococcus  faecium,  and  the  importance  of  antibiotic  management  and  

infection  control.  Clinical  infectious  diseases  :  an  official  publication  of  the  

Infectious  Diseases  Society  of  America.  1998;26(5):1204-­‐14.  PubMed  PMID:  

9597254.  

20.   de  Man  P,  Verhoeven  BA,  Verbrugh  HA,  Vos  MC,  van  den  Anker  JN.  An  

antibiotic  policy  to  prevent  emergence  of  resistant  bacilli.  Lancet.  

2000;355(9208):973-­‐8.  PubMed  PMID:  10768436.  

21.   Gouin  S,  Chevalier  I,  Gauthier  M,  Lamarre  V.  Prospective  evaluation  of  the  

management  of  moderate  to  severe  cellulitis  with  parenteral  antibiotics  at  a  

paediatric  day  treatment  centre.  Journal  of  paediatrics  and  child  health.  

103

2008;44(4):214-­‐8.  doi:  10.1111/j.1440-­‐1754.2007.01236.x.  PubMed  PMID:  

17944880.  

22.   Smith  JK,  Alexander  S,  Abrahamson  E.  Ambulatory  intravenous  

ceftriaxone  in  paediatric  A&E:  a  useful  alternative  to  hospital  admission?  

Emergency  medicine  journal  :  EMJ.  2011;28(10):877-­‐81.  doi:  

10.1136/emj.2010.093443.  PubMed  PMID:  21325012.  

23.   Brugha  RE,  Abrahamson  E.  Ambulatory  intravenous  antibiotic  therapy  for  

children  with  preseptal  cellulitis.  Pediatric  emergency  care.  2012;28(3):226-­‐8.  

doi:  10.1097/PEC.0b013e318248b19b.  PubMed  PMID:  22344208.  

24.   Hansson  H,  Kjaergaard  H,  Johansen  C,  Hallstrom  I,  Christensen  J,  Madsen  

M,  et  al.  Hospital-­‐based  home  care  for  children  with  cancer:  feasibility  and  

psychosocial  impact  on  children  and  their  families.  Pediatr  Blood  Cancer.  

2013;60(5):865-­‐72.  doi:  10.1002/pbc.24474.  PubMed  PMID:  23335455.  

25.   Small  F,  Alderdice  F,  McCusker  C,  Stevenson  M,  Stewart  M.  A  prospective  

cohort  study  comparing  hospital  admission  for  gastro-­‐enteritis  with  home  

management.  Child  Care  Health  Dev.  2005;31(5):555-­‐62.  doi:  10.1111/j.1365-­‐

2214.2005.00550.x.  PubMed  PMID:  16101651.  

26.   Svahn  BM,  Remberger  M,  Heijbel  M,  Martell  E,  Wikstrom  M,  Eriksson  B,  et  

al.  Case-­‐control  comparison  of  at-­‐home  and  hospital  care  for  allogeneic  

hematopoietic  stem-­‐cell  transplantation:  the  role  of  oral  nutrition.  

Transplantation.  2008;85(7):1000-­‐7.  doi:  10.1097/TP.0b013e31816a3267.  

PubMed  PMID:  18408581.  

27.   Yan  M,  Pamp  SJ,  Fukuyama  J,  Hwang  PH,  Cho  DY,  Holmes  S,  et  al.  Nasal  

microenvironments  and  interspecific  interactions  influence  nasal  microbiota  

complexity  and  S.  aureus  carriage.  Cell  host  &  microbe.  2013;14(6):631-­‐40.  doi:  

104

10.1016/j.chom.2013.11.005.  PubMed  PMID:  24331461;  PubMed  Central  

PMCID:  PMC3902146.  

28.   Bessesen  MT,  Kotter  CV,  Wagner  BD,  Adams  JC,  Kingery  S,  Benoit  JB,  et  al.  

MRSA  colonization  and  the  nasal  microbiome  in  adults  at  high  risk  of  

colonization  and  infection.  The  Journal  of  infection.  2015;71(6):649-­‐57.  doi:  

10.1016/j.jinf.2015.08.008.  PubMed  PMID:  26335708.  

29.   Frank  DN,  Feazel  LM,  Bessesen  MT,  Price  CS,  Janoff  EN,  Pace  NR.  The  

human  nasal  microbiota  and  Staphylococcus  aureus  carriage.  PloS  one.  

2010;5(5):e10598.  doi:  10.1371/journal.pone.0010598.  PubMed  PMID:  

20498722;  PubMed  Central  PMCID:  PMC2871794.  

30.   Liu  CM,  Price  LB,  Hungate  BA,  Abraham  AG,  Larsen  LA,  Christensen  K,  et  al.  

Staphylococcus  aureus  and  the  ecology  of  the  nasal  microbiome.  Science  

advances.  2015;1(5):e1400216.  doi:  10.1126/sciadv.1400216.  PubMed  PMID:  

26601194;  PubMed  Central  PMCID:  PMC4640600.  

31.   Lee  GM,  Huang  SS,  Rifas-­‐Shiman  SL,  Hinrichsen  VL,  Pelton  SI,  Kleinman  K,  

et  al.  Epidemiology  and  risk  factors  for  Staphylococcus  aureus  colonization  in  

children  in  the  post-­‐PCV7  era.  BMC  infectious  diseases.  2009;9:110.  doi:  

10.1186/1471-­‐2334-­‐9-­‐110.  PubMed  PMID:  19594890;  PubMed  Central  PMCID:  

PMC2716346.  

32.   Guillemot  D,  Bonacorsi  S,  Blanchard  JS,  Weber  P,  Simon  S,  Guesnon  B,  et  al.  

Amoxicillin-­‐clavulanate  therapy  increases  childhood  nasal  colonization  by  

methicillin-­‐susceptible  Staphylococcus  aureus  strains  producing  high  levels  of  

penicillinase.  Antimicrobial  agents  and  chemotherapy.  2004;48(12):4618-­‐23.  

doi:  10.1128/AAC.48.12.4618-­‐4623.2004.  PubMed  PMID:  15561834;  PubMed  

Central  PMCID:  PMC529192.  

105

33.   Hidron  AI,  Kourbatova  EV,  Halvosa  JS,  Terrell  BJ,  McDougal  LK,  Tenover  

FC,  et  al.  Risk  factors  for  colonization  with  methicillin-­‐resistant  Staphylococcus  

aureus  (MRSA)  in  patients  admitted  to  an  urban  hospital:  emergence  of  

community-­‐associated  MRSA  nasal  carriage.  Clinical  infectious  diseases  :  an  

official  publication  of  the  Infectious  Diseases  Society  of  America.  

2005;41(2):159-­‐66.  doi:  10.1086/430910.  PubMed  PMID:  15983910.  

34.   Graffunder  EM,  Venezia  RA.  Risk  factors  associated  with  nosocomial  

methicillin-­‐resistant  Staphylococcus  aureus  (MRSA)  infection  including  previous  

use  of  antimicrobials.  The  Journal  of  antimicrobial  chemotherapy.  

2002;49(6):999-­‐1005.  PubMed  PMID:  12039892.  

35.   Britton  PN,  Andresen  DN.  Paediatric  community-­‐associated  

Staphylococcus  aureus:  a  retrospective  cohort  study.  Journal  of  paediatrics  and  

child  health.  2013;49(9):754-­‐9.  doi:  10.1111/jpc.12255.  PubMed  PMID:  

23721234.  

106

Tables Table 1. Demographics and clinical features   IV  flucloxacillin  

in  hospital  (n=45)  No.  (%)  

IV  ceftriaxone  at  home  (n=45)  No.  (%)  

Odds  ratio  or    mean  differencea    (95%  confidence  

interval)  

p  value  

Female,  n  (%)   18  (40)   20  (44)     0.83  (0.52-­‐2.75)   0.67  Age  (y):  mean±SD   6.25±4.44   6.20±4.72   -­‐0.05  (-­‐1.97-­‐1.87)   0.96  Eczema,  n  (%)   9  (20)   2  (4)   5.37  (1.09-­‐26.48)   0.05  Received  oral  antibiotics  prior-­‐hospital  presentation  

24  (53)   24  (53)   1.00  (0.44-­‐2.27)   1.00  

Severe  cellulitis  (rapid  spreading  or  severe  swelling)  

15  (33)   12  (27)   1.40  (0.56-­‐3.36)     0.49  

Percentage  body  surface  area  affected:       mean±SDa     No.  with  >1%  affected  

   

0.90±0.35  12  (27)  

   

0.88±0.40  12  (27)    

   

-­‐0.02  (-­‐0.17-­‐0.14)    1.00  (0.40-­‐2.51)  

   

0.84  1.00  

Systemic  symptoms   16  (36)   12  (27)   1.52  (0.62-­‐3.69)   0.36  Duration  of  antibiotics        IV:  mean±SDa        Total:  mean±SDa     No.  treated  for  >3  days  IV     No.  treated  for  >8  days              total  

 3.37±6.44  9.10±6.44  

13  (29)  25  (56)  

 2.03±1.08  7.74±2.34  

8  (18)  25  (56)  

 -­‐1.33  (-­‐3.29-­‐0.62)  -­‐1.36  (-­‐3.41-­‐0.69)  1.88  (0.70-­‐5.00)  1.00  (0.44-­‐2.28)  

 0.18  0.19  0.21  1.00  

Abbreviations: IV – intravenous, ED – Emergency Department, SD – standard deviation aMean difference is used where the variable is continuous and a mean is presented

107

Table 2. The association between nasal colonization with S. aureus (combined MSSA and MRSA) and features of cellulitis.

Colonization  with  S.  aureus  

(n=10)  No.  (%)  

No  colonization  with  S.  aureus  

(n=58)  No.  (%)  

Odds  ratio  or  mean  differencea    

(95%  confidence  interval)  

p  value  

Severe  cellulitis  (rapid  spreading  or  severe  swelling)  

4  (40)   18  (31)   1.48  (0.40-­‐5.58)   0.57  

Percentage  body  surface  area  affected:    mean  [range]  No.  with  >1%  affected  

0.84±0.27  

2  (20)  

0.89±0.36  

16  (28)  

0.05  (-­‐0.19-­‐0.29)  

0.66  (0-­‐3.09)  

0.70  

0.62  Systemic  symptoms   2  (20)   18  (31)   0.55  (0-­‐2.60)   0.48  Duration  of  antibiotics        IV:  mean±SDa        Total:  mean±SDa  No.  treated  for  >3  days  IV  No.  treated  for  >8  days        

     total  

2.03±1.01  8.03±2.96  

2  (20)  5  (50)  

3.21±0.76  9.08±5.64  

16  (28)  35  (60)  

1.17  (-­‐2.50-­‐4.84)  1.05  (-­‐2.61-­‐4.71)  

0.66  (0-­‐3.09)  0.66  (0.18-­‐2.38)  

0.52  0.57  0.62  0.54  

Outcomes        Complication  with  abscess        Treatment  failure            (changed  antibiotics)    

4  (40)  2  (20)  

6  (10)  8  (14)  

5.78  (1.36-­‐25.2)  1.56  (0-­‐7.90)  

0.01b  0.61  

Abbreviations: IV – intravenous, ED – Emergency Department, SD – standard deviation aMean difference is used where the variable is continuous and a mean is presented bStatistically significant, p<0.05

108

Table 3. Comparison of rates of nasal colonization with S. aureusIV  flucloxacillin  in  hospital  No.  (%)  

IV  ceftriaxone  at  home  No.  (%)  

Odds  ratio    (95%  confidence  

interval)  

p  value  

Colonization  at  presentation/baseline  (n=68)        Total  S.  aureus        MSSA        MRSA  

n=34  4  (12)  3  (9)  1  (3)  

n=34  6  (18)  3  (9)  3  (9)  

 0.62  (0.17-­‐2.30)   0.49  1.00  0.61  

Colonization  12  months  post  antibiotics  (n=72)        Total  S.  aureus        MSSA        MRSA  

n=35  14  (40)  14  (40)  

0  

n=37  7  (19)  7  (19)  

0  

2.86  (1.00-­‐8.09)   0.049a  0.049a  

Acquisition  of  S.  aureus  post  antibiotics  (n=50)        Total  S.  aureus        MSSA        MRSA  

n=24  10  (42)  10  (42)  

0  

n=26  3  (12)  3  (12)  

0  

5.48  (1.35-­‐21.63)   0.02a  0.02a  

Abbreviations: MSSA – methicillin-sensitive Staphylococcus aureus, MRSA – methicillin-resistant S. aureus aStatistically significant, p<0.05

109

Table 4. Association of risk factors with nasal S. aureus colonization and acquisition

an varies where indicated as one patient did not fill in questionnaire bn varies where indicated as one patient did not fill in questionnaire and 1 had persistent colonization cAdditional course(s) of oral antibiotics after completing treatment for cellulitis episode dMean difference is used where the variable is continuous and a mean is presented eStatistically significant, p<0.05

Colonization  with  S.  aureus  n=90a  

Acquisition  of  S.  aureus  n=50b  

Colonization  

No.  (%)  

No  colonization  

No.  (%)  

Odds  ratio  or    mean  differenced  

(95%  CI)    

p  value   Acquisition  

No.  (%)  

No  acquisition  No.  (%)  

Odds  ratio  (95%  CI)  

p  value  

Prior  to  cellulitis  episode  Eczema   8/30  (13)   3/60  (10)   0.72  (0.19-­‐2.75)   0.65   1/13  (8)   5/36  (14)   0.52  (0-­‐3.84)   0.56  Antibiotic  use  in  previous  year   13/28  (46)   16/43  (37)   1.46  (0.56-­‐3.81)   0.44   6/13  (46)   15/35  (42)   1.14  (0.33-­‐3.98)   0.84  During  cellulitis  episode  Percentage  body  surface  area  affected          mean±SDd  >1%  affected

0.97±0.36  9/21  (43)  

0.85±0.38  11/51  (22)  

-­‐0.12  (-­‐0.31-­‐0.07)  2.73  (0.94-­‐7.99)  

0.21  0.07  

0.98±0.32  7/13  (54)  

0.83±0.35  7/36  (19)  

-­‐0.15  (-­‐0.37-­‐0.07)  4.83  (1.28-­‐18.42)  

0.18  0.02e  

Treatment  pathway:  flucloxacillin  in  hospital  

14  (67)   21  (41)   2.85  (1.00-­‐8.10)   0.049e   10/13  (77)   13/36  (36)   5.90  (1.45-­‐23.47)   0.01e  

Duration  IV  antibiotics,  mean±SDd  >3  days  IV

2.67±2.41  4/21  (19)  

2.82±5.95    11/51  (22)  

0.15  (-­‐2.53-­‐2.84)  0.86  (0.25-­‐3.00)  

0.90  0.81  

 3.37±7.02  3/13  (23)  

3.07±2.95  9/36  (25)  

0.30  (-­‐3.76-­‐4.36)  0.90  (0.22-­‐3.79)  

0.88  0.89  

Post  cellulitis  episode  over  12  months  Additional  antibiotic  usec        No.  of  patients  with  additional  antibiotics  Antibiotic  prescribed/total  courses  taken        amoxicillin  or  amoxicillin/clavulanate        cephalexin  

9/28  (32)  

10/14  (71)  1/14  (7)  

18/43  (42)  

25/45  (56)  1/45  (2)  

0.66  (0.25-­‐1.76)  

2.0  (0.54-­‐7.3)  3.4  (0.21-­‐48.1)  

0.41  

0.23  0.42  

4/13  (31)  

4/4  (100)  0/4  

15/35  (43)  

               21/38(55)  2/38  (5)  

0.59  (0.16-­‐2.21)   0.45  

0.13  1.00  

110

Supplemental table 1. Association of risk factors with nasal S. aureus colonization and acquisition Colonization  with  S.  aureus  

n=90a  Acquisition  of  S.  aureus  

n=50b  Colonization  

No.  (%)  

No  colonization  

No.  (%)  

Odds  ratio  or    mean  differenced  

(95%  CI)    

p  value   Acquisition  

No.  (%)  

No  acquisition  No.  (%)  

Odds  ratio  (95%  CI)  

p  value  

Demographics  and  prior  to  cellulitis  episode  Female   14/30  (47)   24/60  (40)   1.31  (0.55-­‐3.14)   0.55   7/13  (54)   10/36  (28)   3.03  (0.85-­‐10.91)   0.09  Age  >5  years   19/30  (63)   26/60  (43)   2.26  (0.93-­‐5.50)   0.07   9/13  (69)   16/36  (44)   2.81  (0.76-­‐10.25)   0.12  Eczema   8/30  (13)   3/60  (10)   0.72  (0.19-­‐2.75)   0.65   1/13  (8)   5/36  (14)   0.52  (0-­‐3.84)   0.56  Antibiotic  use  in  previous  year   13/28  (46)   16/43  (37)   1.46  (0.56-­‐3.81)   0.44   6/13  (46)   15/35  (42)   1.14  (0.33-­‐3.98)   0.84  Number  antibiotic  course(s),  mean±SD   1.7±1.6   2.2±1.8   0.50  (-­‐0.71-­‐1.70)   0.41   1.50±0.84   2.13±1.81   0.63  (-­‐0.99-­‐2.26)   0.43  Hospitalization  in  previous  year        Australia        Overseas  

3/28  (11)  0/28  (0)  

9/43  (21)  1/43  (2)  

0.45  (0.12-­‐1.73)  0  

0.26  0.42  

1/13  (8)  0/13  

6/35  (17)  1/35  (3)  

0.40  (0-­‐2.94)  0  

0.41  0.54  

During  cellulitis  episode  Rapid  spreading  or  severe  swelling  (ie  more  severe  signs)  

3/21  (14)   17/51  (33)   0.33  (0.09-­‐1.22)   0.10   3/13  (23)   12/36  (33)   0.60  (0.15-­‐2.45)   0.49  

Percentage  body  surface  area  affected          mean±SDd  >1%  affected

0.97±0.36  9/21  (43)  

0.85±0.38  11/51  (22)  

-­‐0.12  (-­‐0.31-­‐0.07)  2.73  (0.94-­‐7.99)  

0.21  0.07  

0.98±0.32  7/13  (54)  

0.83±0.35  7/36  (19)  

-­‐0.15  (-­‐0.37-­‐0.07)  4.83  (1.28-­‐18.42)  

0.18  0.02e  

Systemic  symptoms   6/21  (29)   15/51  (29)   0.96  (0.32-­‐2.88)   0.94   2/13  (15)   10/36  (28)   0.47  (0-­‐2.29)   0.37  Treatment  pathway:  flucloxacillin  in  hospital  

14  (67)   21  (41)   2.85  (1.00-­‐8.10)   0.049e   10/13  (77)   13/36  (36)   5.90  (1.45-­‐23.47)   0.01e  

Duration  IV  antibiotics,  mean±SDd  >3  days  IV

Duration  total  antibiotics,  mean±SDd  >8  days  total

2.67±2.41  4/21  (19)  8.38±3.60  13/21  (62)  

2.82±5.95    11/51  (22)  8.64±5.54  28/51  (55)  

0.15  (-­‐2.53-­‐2.84)  0.86  (0.25-­‐3.00)  0.26  (-­‐2.36-­‐2.88)  1.33  (0.48-­‐3.69)  

0.90  0.81  0.84  0.59  

 3.37±7.02  3/13  (23)  9.61±3.10  9/13  (69)  

3.07±2.95  9/36  (25)  9.23±6.38  22/36  (61)  

0.30  (-­‐3.76-­‐4.36)  0.90  (0.22-­‐3.79)  

-­‐0.37  (-­‐4.10-­‐3.35)  1.43  (0.38-­‐5.23)  

0.88  0.89  

     0.84  0.60  

Post  cellulitis  episode  over  12  months  Additional  antibiotic  usec        No.  of  patients  with  additional  antibiotics        Median  no.  of  courses  taken  [range,  total]  Antibiotic  prescribed/total  courses  taken  

9/28  (32)  1  [1-­‐3,  14]  

18/43  (42)  1.5  [1-­‐12,  45]  

0.66  (0.25-­‐1.76)   0.41   4/13  (31)  1  [1,  4]  

15/35  (43)  1.5  [1-­‐12,  38]  

0.59  (0.16-­‐2.21)   0.45  

111

All of these factors were also compared between the hospital and home groups and none were significantly different (data not shown) an varies where indicated as one patient did not fill in questionnaire bn varies where indicated as one patient did not fill in questionnaire and 1 had persistent colonization cAdditional course(s) of oral antibiotics after completing treatment for cellulitis episode dMean difference is used where the variable is continuous and a mean is presented eStatistically significant, p<0.05

     amoxicillin  or  amoxicillin/clavulanate        cephalexin  Timing  of  most  recent  antibiotic  course        within  last  3  months        3-­‐6  months        more  than  6  months  ago  

10/14  (71)  1/14  (7)  

3/9  (33)  4/9  (44)  2/9  (22)  

25/45  (56)  1/45  (2)  

8/18  (44)  7/18  (39)  3/18  (17)  

2.0  (0.54-­‐7.3)  3.4  (0.21-­‐48.1)  

0.63  (0.13-­‐3.13)  1.26  (0.27-­‐6.04)  1.43  (0.23-­‐9.20)  

0.23  0.42  

0.18  0.78  0.73  

4/4  (100)  0/4  

1/4  (25)  2/4  (50)  1/4  (25)  

               21/38(55)  2/38  (5)  

7/15  (47)    7/15  (44)  1/15  (7)  

0.38  (0-­‐3.55)  1.14  (0.15-­‐8.49)  

4.67  (0-­‐26.6)  

0.13  1.00  

0.44  0.91  0.29  

Admission  to  hospital        Australia          Overseas  

3/28  (11)  0/28  

8/43  (19)  0/43  

0.51  (0.13-­‐1.98)   0.35   1/13  (8)  0/13  

7/15  (21)  0/15  

0.2  (0.0-­‐1.8)   0.08  

Attendance  at  General  Practitioner  (GP)        No.  of  patients  attending  GP        Median  no.  of  visits  [range,  total]  

20/28  (71)  2  [1-­‐10,  54]  

30/43  (70)  2  [1-­‐20,  92]  

1.08  (0.39-­‐3.02)   0.88   9/13  (69)  1  [1-­‐10]  

26/35  (74)  2  [1-­‐20]  

0.78  (0.20-­‐2.97)   0.73  

Subsequent  skin  infections   7/28  (25)   12/42  (29)   0.83  (0.29-­‐2.42)   0.74   4/13  (31)   9/35  (26)   1.28  (0.34-­‐5.00)   0.73  Lives  with  a  family  member  who:        is  a  childcare  or  healthcare  worker        has  had  a  prolonged  illness        has  had  a  nursing  home  stay          has  had  an  overseas  hospital  stay  

8/28  (29)  2/28  (7)  

0  0  

16/43  (37)  0  

1/43  (2)  0  

0.68  (0.25-­‐1.86)   0.45  0.15  0.61  

3/13  (23)  0  0  0  

10/35  (29)  1/35  (3)  1/35  (3)  

0  

0.75  (0.19-­‐3.13)  N/A  N/A  

0.70  1.00  1.00  

112

113  

 

3.6 Implication  of  foundation  studies  

The  foundation  studies  were  crucial  for  developing  more  evidence  for  clinicians  

and  determining  factors  to  inform  the  RCT  methodology.  The  increased  

engagement  in  the  home  pathway  was  clear  from  the  increase  in  children  treated  

at  home,  from  28%  in  the  baseline  study  to  41%  in  this  study.  Reasons  provided  

by  clinicians  in  the  study  for  choosing  hospitalisation,  rather  than  home  

treatment  appeared  to  be  clinically  valid  reasons  in  56%  of  admitted  patients.  

However,  the  remaining  hospitalised  patients  could  potentially  have  been  

treated  at  home.  It  was  clear  from  the  outcomes  of  this  study  that  there  was  

clinical  equipoise  and  that  clinicians  would  engage  in  the  RCT,  a  crucial  factor  in  

patient  recruitment.    

The  effect  of  broadening  the  population  base  for  inclusion  in  the  home  treatment  

pathway  and  educating  clinicians  about  this  was  clear.  In  the  baseline  study  only  

24%  of  children  treated  at  home  were  aged  under  4  years  old  compared  with  

53%  in  the  foundation  cohort.  Although  clinicians  remained  cautious  with  

periorbital  cellulitis,  the  proportion  of  children  with  this  condition  referred  for  

home  intravenous  antibiotic  increased  from  11%  in  the  baseline  study  to  29%  in  

this  study.    

Despite  this  broader  patient  cohort,  while  accepting  that  this  was  not  a  

randomised  study,  the  primary  outcome  of  treatment  failure  and  safety  as  

reflected  by  complications  and  adverse  events,  were  not  significantly  different  

between  home  and  hospital  care.115  The  treatment  failure  rate  at  home  in  this  

foundation  cohort  study,  defined  as  requiring  a  change  in  antibiotics,  was  still  

reassuringly  low  at  4%,  no  different  to  the  hospital  group.  The  combined  risk  of  

complications  and  adverse  events  was  6%  for  the  home  group,  also  similar  to  the  

hospital  group.  The  risk  of  bacteraemia  was  investigated  in  93/115  (81%)  of  the  

study  population  and  none  were  bacteraemic,  resolving  this  concern.  With  the  

results  of  the  baseline  and  foundation  studies,  and  acknowledging  that  there  was  

still  clinician  choice  in  the  decision  to  admit  children  to  hospital,  we  anticipated  

  114  

that  when  children  were  randomised  in  the  RCT,  the  treatment  failure  rate  for  

the  home  group  would  potentially  be  higher.  However,  we  hypothesised  that  

both  efficacy  and  safety  would  still  be  within  a  sufficiently  similar  margin  to  

hospital  treatment  so  that  other  benefits  of  home  treatment  would  also  be  

relevant.  

In  terms  of  determining  the  criteria  for  which  patients  have  moderate/severe  

cellulitis  requiring  intravenous  antibiotics,  we  found  that  clinicians  had  various  

reasons  for  starting  intravenous  antibiotics,  which  were  similar  to  the  reasons  in  

the  clinician  survey  (Chapter  2).  Often,  clinicians  had  more  than  one  reason  for  

choosing  the  intravenous  route.  The  most  common  reason  was  failed  oral  

antibiotics,  followed  by  rapid  spreading  or  significant  swelling.  No  previous  

studies  of  cellulitis  have  investigated  the  reasons  or  criteria  for  clinicians  

commencing  intravenous  antibiotics.1,43,120  While  evidence-­‐based  criteria  for  the  

decision  to  use  intravenous  antibiotics  would  therefore  not  be  in  place  for  the  

RCT,  this  was  an  identified  gap  that  warranted  further  research.  

The  study  on  nasal  colonisation  showed  that  there  did  not  appear  to  be  an  

increased  risk  of  acquisition  of  MRSA  with  ceftriaxone  use  in  this  non-­‐

randomised  cohort.  Although  this  was  preliminarily  reassuring,  we  determined  

that  collecting  microbiology  samples  to  assess  the  effect  of  ceftriaxone  on  the  

development  of  resistance  would  be  crucial  in  the  study  of  treatment  of  children  

at  home  with  this  antibiotic.  Providing  evidence  for  the  safety  of  this  home  

pathway  should  also  encompass  investigating  the  association  of  ceftriaxone  with  

the  development  of  not  just  nasal  MRSA,  but  other  pathogens  of  concern,  

specifically  the  stool  pathogens  ESBL-­‐producing  bacteria,  VRE  and  C.  difficile.    

In  the  nasal  colonisation  study,  nasal  swabs  were  only  obtained  at  baseline  and  1  

year,  so  whether  there  was  a  transient  increase  in  colonisation  between  that  

time  period  was  unknown.  We  decided  for  the  RCT,  that  to  obtain  a  complete  

picture  of  the  dynamics  of  colonisation,  samples  should  be  obtained  at  the  

following  time  points:  baseline,  1  week  after  starting  antibiotics  (maximal  

antibiotic  pressure)  and  at  3  months  (after  a  washout  period),  as  well  as  at  1  

  115  

year  to  determine  the  short  and  medium  term  risks.  Nasal  colonisation  was  not  

associated  with  a  more  severe  episode  of  cellulitis,  or  its  outcomes,  apart  from  

the  recognised  association  between  MRSA  colonisation  and  soft  tissue  

abscesses.119  There  was  no  association  found  with  any  other  clinical  features  at  

presentation  or  clinical  outcomes  when  investigated.    

With  regards  other  RCT  design  issues  to  address,  the  sample  size  calculation  was  

informed  by  all  of  the  three  previous  studies  (baseline  study,  clinician  survey,  

foundation  cohort  study)  and  the  literature.  According  to  the  survey,  clinicians  

will  accept  approximately  20-­‐25%  failure  of  treatment  at  home.  This  resulted  

from  a  combination  of  the  benefits  for  children  of  being  treated  at  home,  and  that  

treatment  failure  for  moderate/severe  cellulitis  is  not  a  rapidly  dangerous  

outcome.  In  the  study  by  Gouin  et  al  on  cellulitis  treatment  at  a  day  treatment  

centre,  79%  were  deemed  successfully  treated,  adding  to  the  information  that  

this  was  an  appropriate  approximate  proportion.  Although  in  both  the  baseline  

study  and  the  foundation  cohort  study,  treatment  failure  rates  at  home  were  low  

at  2-­‐4%,  we  anticipated  this  to  be  higher  in  a  randomised  non  pre-­‐selected  

cohort.  We  estimated  a  hospital  failure  rate  of  around  5-­‐7%,  based  on  the  

baseline  study.  The  margin  of  acceptable  difference  between  home  and  hospital  

treatment  arms  was  therefore  13-­‐20%.  Given  the  inherent  inaccuracy  of  all  of  

these  numbers  and  our  belief  that  a  20%  margin  was  too  wide,  we  determined  

based  on  the  above  factors  that  it  was  reasonable  and  clinically  relevant  to  use  a  

15%  margin  of  acceptable  difference  between  the  home  and  hospital  arms,  given  

the  other  benefits  of  home  treatment.  

The  primary  outcome  of  treatment  failure  defined  as  a  change  in  antibiotics  due  

to  a  lack  of  clinical  improvement  or  an  adverse  event  was  determined  as  an  

appropriate  outcome  for  the  RCT.  Clinicians  were  observed  to  consistently  

diagnose  treatment  failure  within  the  first  48  hours  of  commencing  empiric  

intravenous  antibiotics.  This  would  then  lead  to  a  change  in  intravenous  

antibiotic.  It  was  crucial,  however,  to  ensure  that  doctors  making  this  assessment  

received  training  and  recorded  the  clinical  progress  objectively  using  daily  

  116  

photographs  as  well  as  an  objective  scale  of  rating  for  the  different  features  of  

cellulitis.  

In  this  study  a  simple  cost  analysis  was  done  by  obtaining  the  average  cost  for  

treating  a  patient  with  a  diagnosis  of  cellulitis  at  home  and  hospital  from  the  

clinical  costing  unit  in  our  institution.  However,  it  was  determined  that  we  

should  be  more  precise  in  the  RCT  and  that  the  best  method  for  doing  this  was  to  

obtain  institutional  individual  patient  level  cost  data.  Additionally  although  in  

this  study  only  institutional  costs  were  obtained,  for  the  RCT  we  determined  that  

understanding  the  burden  of  costs  to  families  was  also  very  important.  We  

determined  that  a  comprehensive  cost-­‐effectiveness  analysis  should  be  done  that  

incorporated  both  the  cost  differences  of  these  two  interventions  and  

effectiveness  in  terms  of  quality  of  life,  the  key  reason  for  treating  children  at  

home.  

As  a  result  of  these  foundation  studies,  there  were  sufficient  data  to  inform  the  

methodology  for  the  RCT,  clinicians  were  engaged  to  participate,  and  crucially,  

we  believed  there  was  equipoise  in  the  question  of  whether  home  or  hospital  

treatment  was  better  for  patients  with  uncomplicated  moderate/severe  cellulitis.    

At  the  same  time,  through  the  baseline  and  foundation  studies,  we  identified  a  

gap  in  evidence  regarding  which  patients  with  cellulitis  require  intravenous  

antibiotics,  and  the  research  to  provide  that  evidence  will  be  presented  in  the  

next  chapter.  

   

  117  

Chapter  4 Determining  who  needs  intravenous  antibiotics  in  cellulitis  –  a  clinical  scoring  system  

4.1 Introduction  to  the  clinical  scoring  system  

Through  the  previous  studies  in  this  thesis,  (clinician  survey:  Chapter  2,  baseline  

study:  Chapter  2,  foundation  studies:  Chapter  3),  the  absence  of  standardised  

guidelines  for  commencing  intravenous  antibiotics  in  children  with  cellulitis  was  

highlighted.114,115  In  our  centre  and  in  others  described  in  the  literature,  the  

criteria  for  starting  intravenous  antibiotics  in  cellulitis  was  based  on  clinician  

judgement.1,2,43  This  results  in  inconsistencies  in  the  management  of  cellulitis,  

with  unwarranted  variation  in  care  known  to  be  associated  with  poorer  

outcomes.121  Not  treating  patients  with  intravenous  antibiotics  when  they  

require  it  leads  to  slower  recovery  and  the  potential  for  increased  complications.  

Unwarranted  use  of  intravenous  antibiotics  can  expose  children  to  unnecessary  

side  effects,  hospitalisation  with  its  associated  risks,  and  complications  of  

intravenous  catheters.  It  also  places  an  additional  financial  burden  on  healthcare  

institutions.  Use  of  a  standardised  method  to  guide  route  of  initial  treatment  

would  limit  the  inappropriate  use  of  intravenous  antibiotics.  In  addition,  

research  in  cellulitis  would  be  more  robust  if  there  was  a  standardised  way  of  

describing  the  severity  of  the  infection.114    

The  findings  from  the  previous  two  chapters  were  that  clinicians  base  their  

decision  to  start  intravenous  antibiotics  on  multiple  different  clinical  features.  

However,  the  clinician  survey  showed  that  there  appeared  to  be  several  features  

that  the  majority  of  clinicians  recognised  as  representing  moderate/severe  

cellulitis  requiring  intravenous  antibiotics.  In  the  foundation  cohort  study,  the  

reasons  for  clinicians  commencing  intravenous  antibiotics  included  clinical  

features  such  as  significant  swelling  and  systemic  features.115  With  the  

groundwork  for  this  study  already  carried  out,  the  next  study  in  this  PhD  was  to  

attempt  to  develop  a  clinical  scoring  system  to  aid  clinician  decision-­‐making  

when  deciding  which  patient  with  moderate/severe  cellulitis  require  

intravenous  antibiotics.  

  118  

There  are  four  stages  of  developing  a  clinical  score122:  

1.  Derivation  –  deriving  the  score  from  a  cohort  of  patients  by  identifying  the  

predictors  of  the  intervention  of  interest:  intravenous  antibiotics  for  cellulitis.    

2.  Validation  –  using  the  derived  score  and  applying  it  to  a  separate  cohort  of  

patients  to  test  the  reliability  of  the  score.  

3.  Impact  analysis  –  investigating  the  impact  of  the  score  in  real  practice,  in  terms  

of  its  usefulness  for  clinical  outcomes,  cost-­‐effectiveness  and  patient  and  

clinician  satisfaction.  

4.  Refinement  and  implementation  –  once  the  impact  is  investigated,  the  score  

may  need  to  be  refined  to  improve  its  impact  prior  to  more  widespread  

implementation  of  the  score.  

The  scope  of  this  PhD  was  to  achieve  the  first  two  stages  with  a  view  to  

completing  the  final  two  steps  in  the  postdoctoral  phase.  

   

  119  

4.2 Study  5:  Clinical  scoring  system  

Ibrahim  LF,  Hopper  SM,  Donath  S,  Salvin  B,  Babl  FE,  Bryant  PA.  Development  

and  Validation  of  a  Cellulitis  Risk  Score:  The  Melbourne  ASSET  Score.  

Pediatrics  2019.  

ARTICLE

Development and Validation of a Cellulitis Risk Score: The Melbourne ASSET ScoreLaila F. Ibrahim, MB, BCh, BAO, a, b Sandy M. Hopper, FRACP, FACEM, a, b, c Susan Donath, MA, b Bennett Salvin, MD, a Franz E. Babl, MD, a, b, c Penelope A. Bryant, PhDa, b, d, e

BACKGROUND: The evidence is unclear about the optimal route of treatment for children with cellulitis, specifically how to assess the risk of moderate-to-severe cellulitis requiring intravenous (IV) antibiotics. We aimed to derive and validate a cellulitis risk assessment scoring system to guide providers as to which patients require IV antibiotics.METHODS: This was a prospective cohort study of children presenting to the emergency department aged 6 months to 18 years diagnosed with cellulitis from January 2014 to August 2017. Patients were divided into 2 groups based on route of antibiotics at 24 hours (the predetermined gold standard). Demographics and clinical features were compared. Clinicians were surveyed about which features they used to decide whether to start IV antibiotics. Combinations of differentiating features were plotted on receiver operating characteristic curves.RESULTS: There were 285 children in the derivation cohort used to create the Melbourne Area, Systemic features, Swelling, Eye, Tenderness (ASSET) Score, which has a maximum score of 7. The area under the curve was 0.86 (95% confidence interval 0.83–0.91). Using a cutoff score of 4 to start IV antibiotics yielded the highest correct classification of 80% of patients (sensitivity 60%; specificity 93%). This score was validated in 251 children and maintained a robust area under the curve of 0.83 (95% confidence interval 0.78–0.89).CONCLUSIONS: The Melbourne ASSET Score was derived and validated for cellulitis in children to guide clinicians regarding when to start IV antibiotics. Although intended for widespread use, if limitations exist in other settings, it is designed to allow for refinement and is amenable to local impact analysis.

abstract

aDepartment of Paediatrics, University of Melbourne, Parkville, Australia; and bMurdoch Children’s Research Institute, cEmergency Department, dInfectious Diseases Unit, Department of General Medicine, and eHospital-In-The-Home Department, The Royal Children’s Hospital, Parkville, Australia

Dr Ibrahim conceptualized, designed, and coordinated the study, conducted the initial and subsequent data analyses, drafted the initial manuscript, and revised subsequent drafts; Drs Bryant, Babl, and Hopper were involved in the design of the study, provided input into data analysis, and reviewed and revised the manuscript; Ms Donath was involved in the design of the study, advised on statistical analysis, and revised the final manuscript; Dr Salvin was involved in the design of the study, coordinated parts of the study, and revised the final manuscript; and all authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

DOI: https:// doi. org/ 10. 1542/ peds. 2018- 1420

Accepted for publication Oct 29, 2018

WHAT’S KNOWN ON THIS SUBJECT: Cellulitis is a common childhood skin infection. However, there is no clear evidence to guide clinicians treating this condition regarding which patients need intravenous antibiotics. This poses risks for both undertreatment and overtreatment, resulting in unnecessary hospitalization.

WHAT THIS STUDY ADDS: The Melbourne ASSET Score is proposed to aid in decision-making regarding the route of antibiotics for treating cellulitis. This score involves 5 easily assessed clinical features (area, systemic features, swelling, eye involvement, and tenderness) and is adaptable to different clinical environments.

To cite: Ibrahim LF, Hopper SM, Donath S, et al. Develop-ment and Validation of a Cellulitis Risk Score: The Melbourne ASSET Score. Pediatrics. 2019;143(2):e20181420

120

Cellulitis is a superficial skin and soft tissue infection that is a common cause of presentation to emergency departments (EDs) and primary care physicians.1 – 4 Although many children with cellulitis are successfully treated with oral antibiotics, up to 60% are treated with intravenous (IV) antibiotics.5 – 8 In the UnitedStates alone, skin and soft tissueinfections account for >74 000pediatric hospital admissions peryear.9 However, despite the fact thatcellulitis is common, the evidence isunclear about the optimal route oftreatment for children with cellulitis,specifically how to assess the riskof moderate-to-severe cellulitisrequiring IV antibiotics. Since theearly 1980s, clinicians have tried tostratify the severity of cellulitis inchildren, but to date, there are noexisting evidence-based guidelines.10

This is likely due to an absence ofobjective, universally agreed oncriteria or a gold standard for theassessment of cellulitis that requiresIV antibiotics.

The authors of the Infectious Diseases Society of America guidelines for the diagnosis and management of skin and soft tissue infections recommend IV antibiotics for cellulitis with systemic signs of infection.1 However, many children with systemic signs (such as pyrexia, which commonly accompanies cellulitis) can be safely and effectively treated with oral antibiotics.8, 11, 12 These guidelines were intended for a broad population, including adults; therefore, recommendations are not necessarily applicable to children. Attempts to establish guidelines for treating cellulitis affecting the eye serve to differentiate periorbital from orbital cellulitis (to avoid the risk of missing orbital cellulitis) rather than help the primary care or emergency clinician decide between oral or IV treatment for uncomplicated periorbital cellulitis.12 – 15 The local institutional

guideline recommends treatment with oral flucloxacillin or cephalexin unless a case is severe and/or extensive, a patient is systemically unwell, or a patient is not responding to oral treatment, in which case IV flucloxacillin is recommended. These clinical scenarios for when to use the IV route are open to different interpretations and therefore practices.

The absence of standardized practice means that some children are unnecessarily admitted to the hospital and administered IV antibiotics, putting them at risk for hospital-acquired infections, iatrogenic adverse events, and negative psychosocial impacts.16, 17 Several clinical scoring systems have been established for common childhood illnesses, for example, the Westley Croup Score, 18 the Pediatric Respiratory Assessment Measure for asthma, 19 and the Pediatric Appendicitis Score for acute appendicitis.20, 21 Such clinical scores are not intended to be used in isolation to stratify patients, 22, 23 but having a practical guideline for a common condition, such as cellulitis, can improve patient flow and be an important tool in clinical research.24 For a clinical score to be useful in the acute decision-making process, it needs to (1) have as few features as possible while remaining accurate and (2) be unambiguous and easily assessable by junior clinical staff.25

In this study, we had 2 aims: (1) to derive a pediatric cellulitis risk assessment scoring system for use by clinicians in EDs or primary care to guide the decision to start IV antibiotics and (2) to validate this scoring system on a separate cohort of children.

METHODS

Study Design and Population

This was a prospective cohort study in a convenience sample of children

presenting with cellulitis to the ED at the Royal Children’s Hospital in Melbourne. Recruitment occurred over a 15-month period from January 2014 to May 2015. Children aged 6 months to 18 years were eligible if an ED clinician made a diagnosis of cellulitis. The decision to treat with oral or IV antibiotics was made by an experienced ED physician (at least at the registrar and/or fellow level). Per routine institutional practice, patients who were treated with oral antibiotics were discharged from the ED, whereas those who were started on IV antibiotics were admitted to the hospital. Exclusion criteria were children with complicated cellulitis or associated toxicity. Complicated cellulitis was defined as cellulitis associated with the following conditions: orbital cellulitis, undrained abscess, penetrating injury, immunosuppression, fasciitis or foreign body, or cellulitis caused by large animal or human bite. Toxicity was defined as those with signs or symptoms of hypotension, resting tachycardia, or poor central perfusion.

Procedures

We correlated clinical features and outcomes to derive a cellulitis scoring system and, when appropriate, take into account clinicians’ opinions and practice on the basis of a survey. This study was approved by the institutional human research ethics committee (HREC34018).

Data Collection of Clinical Features

Data collection occurred in real time as patients were being assessed in the ED after written consent was obtained. This included demographics, whether previous oral antibiotics were taken before presenting to the ED, and clinical features at presentation. Clinical features were collected from ED clinicians on a standardized proforma and consisted of the size of the area affected (longest diameters

IBRAHIM et al2

121

in length and width measured in centimeters), the absence or presence (0 or 1, respectively) of functional impairment, lymphangitis and/or tracking, systemic features, and periorbital cellulitis. Additionally, clinicians were asked to rate 3 features of cellulitis on a 3-point scale (absent = 0, mild = 1, and moderate to severe = 2) for the following features: erythema, tenderness, and swelling. Patients were recorded as either starting IV or oral antibiotics; the duration administered was also recorded.

The Gold Standard for Treatment

To devise and validate the clinical scoring system, there needs to be a standard against which the decision to prescribe IV or oral antibiotics is judged. Because a gold standard for the appropriateness of this decision does not exist, a consensus was reached among the study investigators at our institution who had the relevant expertise and represented pediatric infectious diseases, general pediatrics, pediatric emergency medicine, and biostatistics. We determined that the route of ongoing antibiotic treatment after review at 24 hours was likely to be the correct one on the basis of ongoing symptom progression even if the patients had been started via the other route at presentation. Patients were therefore divided into 2 groups based on their ongoing route of antibiotic administration at 24 hours and having needed that route from the start regardless of their initial management route: IV or oral at 24 hours.

Patient Follow-up

We conducted follow-up with patients within 48 hours to ascertain their route of ongoing antibiotic treatment (either oral or IV at 24 hours) by checking the hospital attendance record electronically. In addition, within 14 days after the initial ED presentation, we contacted

all patients by telephone to follow-up and ascertain their outcomes.

Survey of Clinicians

This survey was performed at The Royal Children’s Hospital in Melbourne over a period of 4 weeks in December 2014. Participants (selected on the basis of exposure to cellulitis cases in their practices) were acute-care pediatricians from the following departments: ED, general medicine, infectious diseases, and adolescent and developmental medicine. Excluded participants were pediatric clinicians in subspecialties in which cellulitis cases would not be managed and clinicians with a predominantly academic role. Participants were contacted via their respective hospital-based e-mail address, whereby every participant was given a link to the Web-based survey via Research Electronic Data Capture (hosted at the Murdoch Children’s Research Institute).26

Statistical Analysis

All data were entered into a Research Electronic Data Capture database. A univariate analysis was performed in which we compared the demographic and clinical features of the 2 groups: IV versus oral antibiotics at 24 hours. A χ2 test was used for categorical variables, and a t test was used for continuous data. By using features that were significantly different, receiver operating characteristic (ROC) curves were then calculated for various combinations of the different cellulitis features. The size affected, measured in centimeters for length and width, was converted to a percentage of the body surface area affected on the basis of each child’s height. Proportions of survey responses were calculated. All statistical analysis was performed by using Stata/IC version 15.0 (Stata Corp, College Station, TX). A sample size calculation was not performed at the outset because of the exploratory nature of this study. We aimed to

recruit at least 100 patients in each group for each part of the study.

RESULTS

Clinical Features and Outcomes of the Derivation Cohort

There were 285 children in the derivation cohort. Of these, 171 (60%) received oral antibiotics, and 114 (40%) received IV antibiotics at initial presentation. Of those who were started on oral antibiotics, 10 (6%) re-presented within 24 hours and were deemed to require IV antibiotics. Of those who were started on IV antibiotics, 14 (8%) were switched to oral antibiotics within 24 hours. Therefore, 175 of the 285 (61%) were receiving oral antibiotics at 24 hours, and 110 of the 285 (39%) were receiving IV antibiotics at 24 hours. Clinical features at presentation were compared between the 2 groups (Table 1). Only age and sex did not differ between the IV and oral groups at 24 hours. There were 9 features that differed significantly between the groups. These were converted either to a binary score of 0 or 1 (absent or present, respectively; previous oral antibiotics, systemic features, area affected ≥1% of body surface area, functional impairment, lymphangitis, and periorbital cellulitis) or a score on a 3-point scale (0 = absent, 1 = mild, or 2 = moderate to severe; erythema, swelling, and tenderness).

Survey Responses

There were 106 of 138 (77%) clinicians who returned the cellulitis questionnaire. Of these, 61% were consultants or fellows, whereas 39% were trainee doctors. For the purpose of deriving a clinical score, we considered only responses from senior clinicians with consultant or fellow experience. The features clinicians usually used when deciding the route of antibiotic administration were lymphangitis and/or tracking

3

122

(86%), functional impairment (76%), systemic features (78%), whether the patient had received previous oral antibiotics (70%), the size of the affected area (63%), whether the site affected was periorbital (52%), swelling (52%), and tenderness (48%). Features that were not commonly used by clinicians were erythema (25%) and family preference (2%).

Derivation of the Clinical Score

Various combinations and weighting of the 9 features that differed between the 2 groups were used to plot ROC curves and calculate the area under the curve (AUC), sensitivity, and specificity for each combination. The AUC for all 9 features was 0.89 (95% confidence interval [CI] 0.85–0.93), which is reassuringly high (Fig 1). However, having 9 features to score is impractical and inconvenient for clinicians. We therefore iteratively reduced the features by 1 to determine the minimum number of features required to maintain a high AUC. We found that the AUC remained high until the combination was reduced to <5 features (Fig 1). With only 4 features, the lower limit of the 95% CI of the AUC dropped to 0.77, so the minimum number of features for this clinical score was determined to be 5. We tested multiple combinations of 5 features because each significantly differed between the groups, and the AUC results (and therefore sensitivities and specificities) were similar (data not shown). Because there was no mathematical difference, the next stage was to use clinical reasons to determine the 5 most useful features. The 4 features that were removed were erythema, lymphangitis, functional impairment, and previous oral antibiotics. Erythema is difficult to assess in darker skin, therefore limiting the wide applicability of the score, and was only used by 25% of senior clinicians. Lymphangitis is

an uncommon sign at presentation and is specific to limb cellulitis.8 Additionally, although 86% of survey respondents said they would use this feature when considering IV antibiotics, 12 of 29 (41%) patients who had lymphangitis were on oral antibiotics at 24 hours. Functional impairment of the limb occurs because of significant swelling or tenderness, which are both already represented in the score; in addition, this feature is specific to limb cellulitis. Previous oral antibiotic administration was documented, but in 54 of 116 (47%) patients, the type

of antibiotic, dose, frequency, and duration were unknown, and parent recall of dosage is not necessarily reliable.28 The validity of this as a marker of needing IV treatment was therefore uncertain, potentially relating more to the perceived need by physicians to change something at presentation to ED. The 5 remaining features were used to address specific factors relating to the potential need for IV antibiotics: risk of sepsis (systemic features), severity and/or extent of infection (size, swelling, and tenderness), and risk of orbital cellulitis (eye involvement).

IBRAHIM et al4

TABLE 1 Comparison of the Derivation Cohort by Route of Antibiotics After 24 Hours

Clinical Feature at Presentation Oral at 24 h (n = 175)

IV at 24 h (n = 110)

P OR (95% CI)

Age, mean 6.4 ± 4.5 6.6 ± 4.7 .80 —Female sex, n (%) 47 (43) 74 (42) .94 1.0 (0.6–1.6)Previous oral antibiotic, n (%) 55 (31) 61 (55) .0001 2.7 (1.7–4.4)Systemic features, n (%) 35 (20) 36 (33) .02 1.9 (1.1–3.3)Area >1% of BSA, a n (%) 23 (13) 37 (34) <.0001 3.3 (1.8–6.0)Functional impairment, n (%) 28 (16) 35 (32) .002 2.5 (2.5–4.3)Moderate-to-severe erythema, n (%) 11 (7) 60 (57) <.0001 16.3 (8.2–32.4)Moderate-to-severe swelling, n (%) 14 (8) 60 (55) <.0001 13.8 (7.2–26.6)Moderate-to-severe tenderness, n (%) 8 (5) 50 (45) <.0001 17.4 (7.9–38.1)Lymphangitis or tracking, n (%) 12 (7) 17 (15) .02 2.5 (1.2–5.3)Periorbital, n (%) 13 (7) 24 (22) .0004 3.5 (1.7–7.1)

BSA, body surface area; OR, odds ratio; —, not applicable.a A child’s palmar surface and adducted fingers is equivalent to 1% of their BSA.27

FIGURE 1ROC curve with different numbers of features for the derivation cohort (n combination of features; AUC [95% CI]).

123

The Melbourne Area, Systemic features, Swelling, Eye, Tenderness Score

The optimal score therefore consisted of the following features: size of the affected area, systemic features, severity of swelling, periorbital and/or eye involvement, and severity of tenderness, which can be recalled with the acronym ASSET. The Melbourne ASSET Score has a maximum possible score of 7. The AUC was 0.86 (95% CI 0.83–0.91; Fig 2). Using a cutoff score of 4 (patients with a score of ≥4 receive IV antibiotics and those with a score <4 receive oral antibiotics) yields the highest proportion of patients who are correctly classified at 80% (sensitivity 60%; specificity 93%; Supplemental Table 2, Fig 3). If the cutoff score were reduced to a more conservative 3, the sensitivity would increase to 85%, but the specificity would decrease to 76%. By using a frequency distribution graph (Fig 4), a score of 4 would result in 11 (10%) patients receiving unnecessary IV treatment, and 44 (25%) patients on oral antibiotics may represent needing IV antibiotics. Lowering the cutoff to 3 would result in 44 (40%) patients receiving unnecessary IV treatment and 17 (10%) representing needing IV antibiotics.

Validation of the Melbourne ASSET Score

A subsequent cohort of patients presenting to the ED with cellulitis with the same inclusion and exclusion criteria was used to validate the score. Data collection methods and outcome rules were the same as for the derivation cohort. There were 251 children in the validation cohort. When using the same gold standard to define the appropriate route of antibiotic administration, 107 of the 251 (43%) children were receiving oral antibiotics at 24 hours, and 144 of the 251 (57%) children were receiving IV antibiotics at 24 hours.

When the Melbourne ASSET Score was retrospectively applied to the validation cohort, the AUC remained high at 0.83 (95% CI 0.78–0.89; Fig 2). A cutoff score of 4 as the threshold to start IV antibiotics has a sensitivity of 85% and a specificity of 63%, with which 76% of patients were correctly classified. A cutoff of 3 has a sensitivity of 98% and a specificity

of 32%, with which 70% of patients were correctly classified.

DISCUSSION

The results of this study reveal that children who were started on IV treatment have more severe features of cellulitis than those who were started on oral antibiotics, which is

5

FIGURE 2Comparison of ROC curves for the Melbourne ASSET Score for the derivation and validation cohorts.

FIGURE 3Sensitivity and specificity at each threshold of the Melbourne ASSET Score for the derivation cohort.

124

consistent with previous literature.8 Using these features, we were able to derive a score and accurately classify 80% of patients. Importantly for pragmatic use, it is simple to use and widely applicable. Crucially, when the Melbourne ASSET Score was applied to a subsequent unrelated cohort of children, it still could be used to correctly classify a high proportion of patients. Interestingly, this was despite the sensitivity and specificity of the score cutoff of 4 being different between the 2 cohorts. This is useful

information because the trade-off between sensitivity and specificity will be different in different populations and settings.

The score comprises clinical features that clinicians routinely assess for and document in cellulitis without needing any investigations or other measures. This is the first study of cellulitis in which the authors recommend assessing the area involved as >1% or <1% by using the size of the patient’s own hand, 27

and we support this with our data. The site affected was measured by using a tape measure during the study, which is an onerous and time-consuming task for busy physicians, with traditional conversion to percentage of total body surface area also requiring a child’s height and weight and a calculator. Using this novel hand-size method to assess the contribution of the area of cellulitis to the score is simple and convenient. A minimum of 5 features maintained a high AUC, sensitivity, and specificity and is also correlated with the number of fingers on 1 hand, making it easy for clinicians to check off the number of features (Fig 5). All of these features ensure that a child with cellulitis can be examined rapidly in the ED or primary care office with a score that is easy to calculate; both are imperative for it to be useful.29

The 5 features of the Melbourne ASSET Score are each important in the consideration of risk of more severe infection. First, the size of the area involved reflects the burden of infection. Second, the presence of systemic features (fever and lethargy) potentially reflects sepsis. It is 1 of the reasons that the authors of the Infectious Diseases Society of America guidelines for adults recommend that systemic features are used to guide the need for IV antibiotics. Third, swelling reflects the severity of inflammation and can also represent induration in the early formation of abscess. Fourth, the eye is a vulnerable location, and it is not always straightforward to differentiate orbital infection, which has more severe morbidity. Fifth, tenderness also reflects the severity of inflammation, and as a bonus, it can be used to differentiate cellulitis from other inflammatory conditions, such as allergic reactions, which are typically nontender. Several features considered to be important in some contexts were excluded from the score as detailed, and not necessarily

IBRAHIM et al6

FIGURE 4Frequency of patients on IV and oral antibiotics, characterized by the Melbourne ASSET Score for the derivation cohort.

FIGURE 5The Melbourne ASSET Score with a child’s adducted hand measuring 1% of body surface area.

125

because they have no value in individual patients. In addition to those mentioned above, the age of the child is an important consideration in any pediatric condition. However, whether analyzed on a continuum or stratified by different age categories, age was not different between the groups.

A hurdle for us in this study, like for many others attempting to devise a clinical score, is the absence of a gold standard for cellulitis against which to assess the true requirement for IV antibiotics. The rationale behind using the status at 24 hours is that if a change in route has already been made within 24 hours, the features at presentation could likely be used to predict this. It is possible that clinicians who treat children with IV antibiotics may unnecessarily treat beyond 24 hours simply because there is IV access in situ. This would result in a slightly more conservative gold standard than true need, which is similar to other scoring systems.18 If found to be too conservative when validated in a different setting, the score cutoff can be refined.30, 31 Similarly, if using this score in settings in which patients live farther from the hospital,

minimizing ED reattendance may be more important, so the cutoff could be lowered.

Our study has some limitations. Firstly, it was conducted in a tertiary pediatric hospital with experienced pediatric ED clinicians, and a more conservative approach may be required in a different setting. However, we have been able to use the expertise of these clinicians in the absence of a gold standard to derive and validate a clinical score for cellulitis in children for the first time. If a more conservative approach is desired, the cutoff threshold for IV treatment can be lowered. Second, our region has a low prevalence of methicillin-resistant Staphylococcus aureus, which is similar to many other pediatric populations. However, although we would recommend external validation of the score in high-prevalence areas, there is no reason to suspect that this score would not be applicable because it is the defining route, not choice, of antibiotic. Lastly, with this clinical score, we do not aim to replace clinical assessment for each individual patient but to aid in decision-making.22

CONCLUSIONS

The Melbourne ASSET Score is the first risk assessment scoring system for pediatric cellulitis that is proposed to aid clinicians in deciding whether to treat with IV or oral antibiotics. It is simple, easy to use, applicable, and reliable. Although intended for widespread use, if limitations exist in other settings, it is designed to allow for refinement and is amenable to local impact analysis. We propose an impact analysis of this score, ideally in a different setting and population.

ACKNOWLEDGMENTS

We acknowledge the participation of the patients and families.

ABBREVIATIONS

ASSET:  Area, Systemic features, Swelling, Eye, Tenderness

AUC:  area under the curveCI:  confidence intervalED:  emergency departmentIV:  intravenousROC:  receiver operating

characteristic

7

Address correspondence to Franz E. Babl, MD, Emergency Department, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Flemington Rd, Parkville, VIC 3052, Australia. E-mail: [email protected]

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2019 by the American Academy of Pediatrics

All authors hereby declare there has been no support from any organization for the submitted work. There have been no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years. There are no other relationships or activities that could appear to have influenced the submitted work.

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Funded in part by grants from The Royal Children’s Hospital Foundation, the Murdoch Children’s Research Institute, and the Victorian Department of Health and Human Services in Melbourne, Australia. Ms Ibrahim was supported in part by a scholarship from Avant Mutual Group Ltd (Melbourne), the Melbourne Children’s Campus Postgraduate Health Research Scholarship, and the Doctor Nicholas Collins Fellowship. Dr Bryant was supported in part by a Melbourne Campus Clinician Scientist Fellowship (Melbourne, Australia). Dr Babl was supported in part by a grant from The Royal Children’s Hospital Foundation, a Melbourne Campus Clinician Scientist Fellowship (Melbourne, Australia), and a National Health and Medical Research Council Practitioner’s Fellowship (Canberra, Australia). The Emergency Research Group at Murdoch Children’s Research Institute is supported in part by a National Health and Medical Research Council Centre for Research Excellence grant for pediatric emergency medicine (Canberra, Australia) and the Victorian government’s Operational Infrastructure Support Program. The funding bodies do not have any authority in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

126

REFERENCES

1. Stevens DL, Bisno AL, Chambers HF,et al; Infectious Diseases Society ofAmerica. Practice guidelines for thediagnosis and management of skinand soft tissue infections: 2014 updateby the Infectious Diseases Societyof America [published correctionappears in Clin Infect Dis. 2014;59:147–159]. Clin Infect Dis. 2014;59(2):e10–e52

2. Pallin DJ, Egan DJ, Pelletier AJ,Espinola JA, Hooper DC, Camargo CA Jr.Increased US emergency departmentvisits for skin and soft tissueinfections, and changes in antibioticchoices, during the emergence ofcommunity-associated methicillin-resistant Staphylococcus aureus. AnnEmerg Med. 2008;51(3):291–298

3. Pallin DJ, Espinola JA, LeungDY, Hooper DC, Camargo CA Jr.Epidemiology of dermatitis and skininfections in United States physicians’offices, 1993-2005. Clin Infect Dis.2009;49(6):901–907

4. Schuler CL, Courter JD, Conneely SE,et al. Decreasing duration of antibioticprescribing for uncomplicated skinand soft tissue infections. Pediatrics.2016;137(2):e20151223

5. Ibrahim LF, Hopper SM, Connell TG,Daley AJ, Bryant PA, Babl FE. Evaluatingan admission avoidance pathway forchildren in the emergency department:outpatient intravenous antibiotics formoderate/severe cellulitis. Emerg MedJ. 2017;34(12):780–785

6. Gouin S, Chevalier I, Gauthier M,Lamarre V. Prospective evaluationof the management of moderateto severe cellulitis with parenteralantibiotics at a paediatric daytreatment centre. J Paediatr ChildHealth. 2008;44(4):214–218

7. Smith JK, Alexander S, Abrahamson E.Ambulatory intravenous ceftriaxonein paediatric A&E: a useful alternativeto hospital admission? Emerg Med J.2011;28(10):877–881

8. Khangura S, Wallace J, Kissoon N,Kodeeswaran T. Management ofcellulitis in a pediatric emergencydepartment. Pediatr Emerg Care.2007;23(11):805–811

9. Lopez MA, Cruz AT, KowalkowskiMA, Raphael JL. Trends in resource

utilization for hospitalized children with skin and soft tissue infections. Pediatrics. 2013;131(3). Available at: www. pediatrics. org/ cgi/ content/ full/ 131/ 3/ e718

10. Fleisher G, Ludwig S, Henretig F,Ruddy R, Henry W. Cellulitis: initialmanagement. Ann Emerg Med.1981;10(7):356–359

11. Moran GJ, Krishnadasan A, MowerWR, et al. Effect of cephalexin plustrimethoprim-sulfamethoxazolevs cephalexin alone on clinicalcure of uncomplicated cellulitis:a randomized clinical trial. JAMA.2017;317(20):2088–2096

12. Goldman RD, Dolansky G, RogovikAL. Predictors for admission ofchildren with periorbital cellulitispresenting to the pediatric emergencydepartment. Pediatr Emerg Care.2008;24(5):279–283

13. Vu BL, Dick PT, Levin AV, Pirie J.Development of a clinical severityscore for preseptal cellulitis inchildren. Pediatr Emerg Care.2003;19(5):302–307

14. Crosbie RA, Nairn J, Kubba H.Management of paediatric periorbitalcellulitis: our experience of 243children managed according to astandardised protocol 2012-2015.Int J Pediatr Otorhinolaryngol.2016;87:134–138

15. Reynolds DJ, Kodsi SR, Rubin SE,Rodgers IR. Intracranial infectionassociated with preseptal and orbitalcellulitis in the pediatric patient. JAAPOS. 2003;7(6):413–417

16. Hultén KG, Kaplan SL, Lamberth LB, etal. Hospital-acquired Staphylococcusaureus infections at Texas Children’sHospital, 2001-2007. Infect ControlHosp Epidemiol. 2010;31(2):183–190

17. Cunliffe NA, Booth JA, Elliot C, etal. Healthcare-associated viralgastroenteritis among childrenin a large pediatric hospital,United Kingdom. Emerg Infect Dis.2010;16(1):55–62

18. Westley CR, Cotton EK, Brooks JG.Nebulized racemic epinephrine byIPPB for the treatment of croup: adouble-blind study. Am J Dis Child.1978;132(5):484–487

19. Ducharme FM, Chalut D, PlotnickL, et al. The pediatric respiratoryassessment measure: a valid clinicalscore for assessing acute asthmaseverity from toddlers to teenagers. JPediatr. 2008;152(4):476–480, 480.e1

20. Samuel M. Pediatric appendicitisscore. J Pediatr Surg.2002;37(6):877–881

21. Kharbanda AB, Vazquez-BenitezG, Ballard DW, et al. Developmentand validation of a novel PediatricAppendicitis Risk Calculator (pARC).Pediatrics. 2018;141(4):e20172699

22. Babl FE, Borland ML, Phillips N, et al;Paediatric Research in EmergencyDepartments InternationalCollaborative (PREDICT). Accuracyof PECARN, CATCH, and CHALICE headinjury decision rules in children: aprospective cohort study. Lancet.2017;389(10087):2393–2402

23. Mandeville K, Pottker T, Bulloch B,Liu J. Using appendicitis scores inthe pediatric ED. Am J Emerg Med.2011;29(9):972–977

24. Barata I, Brown KM, Fitzmaurice L,Griffin ES, Snow SK; American Academyof Pediatrics Committee on PediatricEmergency Medicine; American Collegeof Emergency Physicians PediatricEmergency Medicine Committee;Emergency Nurses AssociationPediatric Committee. Best practices for improving flow and care of pediatricpatients in the emergency department.Pediatrics. 2015;135(1). Available at:www. pediatrics. org/ cgi/ content/ full/ 135/ 1/ e273

25. Stiell IG, Bennett C. Implementationof clinical decision rules in theemergency department. Acad EmergMed. 2007;14(11):955–959

26. Harris PA, Taylor R, Thielke R, PayneJ, Gonzalez N, Conde JG. Researchelectronic data capture (REDCap)–ametadata-driven methodology andworkflow process for providingtranslational research informaticssupport. J Biomed Inform.2009;42(2):377–381

27. Nagel TR, Schunk JE. Using the handto estimate the surface area of aburn in children. Pediatr Emerg Care.1997;13(4):254–255

IBRAHIM et al8

127

28. Dasanayake AP, Macaluso M,Roseman JM, Caufield PW. Validityof the mother’s recall of her child’santibiotic use. ASDC J Dent Child.1995;62(2):118–122

29. Moons KG, Kengne AP, Grobbee DE,et al. Risk prediction models: II.External validation, model updating,

and impact assessment. Heart. 2012;98(9):691–698

30. Kharbanda AB, Dudley NC, Bajaj L,et al; Pediatric Emergency MedicineCollaborative Research Committee ofthe American Academy of Pediatrics.Validation and refinement of aprediction rule to identify children

at low risk for acute appendicitis. Arch Pediatr Adolesc Med. 2012;166(8):738–744

31. Reilly BM, Evans AT. Translatingclinical research into clinical practice:impact of using prediction rules tomake decisions. Ann Intern Med.2006;144(3):201–209

9

128

originally published online January 3, 2019; Pediatrics Penelope A. Bryant

Laila F. Ibrahim, Sandy M. Hopper, Susan Donath, Bennett Salvin, Franz E. Babl andScore

Development and Validation of a Cellulitis Risk Score: The Melbourne ASSET

ServicesUpdated Information &

018-1420http://pediatrics.aappublications.org/content/early/2019/01/02/peds.2including high resolution figures, can be found at:

References

018-1420#BIBLhttp://pediatrics.aappublications.org/content/early/2019/01/02/peds.2This article cites 31 articles, 7 of which you can access for free at:

Subspecialty Collections

bhttp://www.aappublications.org/cgi/collection/infectious_diseases_suInfectious Diseasesubhttp://www.aappublications.org/cgi/collection/emergency_medicine_Emergency Medicinefollowing collection(s): This article, along with others on similar topics, appears in the

Permissions & Licensing

http://www.aappublications.org/site/misc/Permissions.xhtmlin its entirety can be found online at: Information about reproducing this article in parts (figures, tables) or

Reprintshttp://www.aappublications.org/site/misc/reprints.xhtmlInformation about ordering reprints can be found online:

129

originally published online January 3, 2019; Pediatrics Penelope A. Bryant

Laila F. Ibrahim, Sandy M. Hopper, Susan Donath, Bennett Salvin, Franz E. Babl andScore

Development and Validation of a Cellulitis Risk Score: The Melbourne ASSET

http://pediatrics.aappublications.org/content/early/2019/01/02/peds.2018-1420located on the World Wide Web at:

The online version of this article, along with updated information and services, is

http://pediatrics.aappublications.org/content/suppl/2019/01/02/peds.2018-1420.DCSupplementalData Supplement at:

1073-0397. ISSN:60007. Copyright © 2019 by the American Academy of Pediatrics. All rights reserved. Print

the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois,has been published continuously since 1948. Pediatrics is owned, published, and trademarked by Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it

130

131  

 

4.3 Implications  of  the  Melbourne  ASSET  score  

The  Melbourne  ASSET  score  is  anticipated  to  have  a  significant  impact  on  clinical  

practice,  to  both  patients  and  clinicians.123  Clinical  predictive  rules  that  explicitly  

recommend  a  decision,  such  as  the  ASSET  score,  will  have  greater  impact  

compared  to  an  assistive  prediction  rule  which  provide  probabilities  without  

recommending  decisions.124,125  For  patients,  the  risk  of  being  overtreated  or  

undertreated  with  intravenous  antibiotics  will  likely  be  reduced  as  

recommendations  are  more  standardised.  For  clinicians,  firstly,  this  method  

allows  for  a  rapid,  easy-­‐to-­‐use,  evidence-­‐based  method  to  aid  decision-­‐making.  

Secondly,  this  ensures  consistency  in  practice,  regardless  of  bed  capacity  or  

parental  social  circumstances,  factors  that  potentially  play  a  role  in  decision-­‐

making  under  pressure.  Lastly,  with  further  impact  analysis  and  refinement  of  

this  score,  the  proposed  clinical  score  has  the  potential  to  be  more  accurate  than  

clinician  judgement,  as  has  been  shown  in  previous  clinical  prediction  

rules.126,127      

The  obstacle  for  determining  a  standardised  pathway  for  children  with  cellulitis  

has  been  the  absence  of  a  gold  standard  against  which  to  assess  the  true  

requirement  for  intravenous  antibiotics.  Therefore,  the  next  best  method  was  

used  to  establish  a  ‘gold  standard’,  which  was  a  consensus  amongst  clinicians  

who  had  the  relevant  expertise  and  represented  paediatric  infectious  diseases,  

general  paediatrics,  paediatric  emergency  medicine  and  biostatistics.  This  was  

based  on  the  work  in  the  first  part  of  this  thesis,  the  clinician  survey  and  the  

foundation  cohort  study,  both  of  which  ascertained  prospectively  the  reasons  

clinicians  start  intravenous  antibiotics.115    

The  consensus  of  the  expert  clinicians  was  that  the  route  of  treatment  at  24  

hours  after  ED  presentation  was  likely  the  correct  one,  based  on  the  availability  

of  additional  observations  about  infection  progress  and  patient  status.  If  within  

24  hours  of  initial  presentation  a  child  is  started  on  intravenous  antibiotics,  the  

clinical  features  the  child  had  at  presentation  were  determined  as  the  criteria  for  

  132  

requiring  intravenous  treatment.  If  within  24  hours  of  initial  presentation,  a  

child  was  switched  from  intravenous  to  oral  antibiotics,  meaning  the  child  

received  less  than  a  day  of  intravenous  antibiotics,  the  clinical  features  the  child  

had  at  initial  presentation  was  determined  as  the  criteria  for  requiring  oral  

antibiotics.  It  is  possible  that  clinicians  may  unnecessarily  treat  beyond  24  hours  

simply  because  there  is  intravenous  access  in  situ.  This  would  result  in  a  slightly  

more  conservative  gold  standard  than  ‘true  need’,  which  is  similar  to  other  

clinical  scores.58    

In  assessing  the  impact  of  the  ASSET  score,  there  are  several  potential  clinical  

outcomes  for  patients.  The  proportion  of  patients  who  are  started  on  

intravenous  antibiotics  can  be  measured.  The  baseline  and  foundation  studies  

showed  that  26-­‐29%  of  children  who  present  to  the  ED  with  uncomplicated  

cellulitis  were  commenced  on  intravenous  treatment.114,115  With  the  

introduction  of  the  score,  a  decline  in  this  proportion  is  anticipated.  Secondly,  the  

number  of  patients  discharged  home  on  oral  antibiotics  is  expected  to  increase  

while  the  number  of  patients  with  complications  should  remain  the  same.  Other  

outcomes  include  changes  in  length  of  stay  in  ED  for  patients  with  cellulitis  and  

the  impact  on  cost  of  treatment.  

The  ASSET  score  also  has  the  potential  to  impact  future  research  in  cellulitis.  

Previous  research  studies  investigating  patients  with  cellulitis  differentiated  

mild  from  moderate/severe  based  on  clinician  judgement.1,43,120  This  score  

would  allow  an  objective  method  of  classifying  patients  that  has  the  potential  to  

reduce  selection  bias  in  future  studies.  In  addition,  the  methodology  of  this  

clinical  score  can  be  used  as  a  platform  to  develop  similar  scores  for  other  

childhood  infections.    

The  Melbourne  ASSET  score  was  derived  and  validated  parallel  to  the  RCT  

(Chapter  5)  and  therefore  recruitment  of  patients  into  the  trial  and  later  analysis  

did  not  incorporate  the  ASSET  score.  The  decision  to  commence  intravenous  

antibiotics  in  the  RCT  was  based  on  several  clinical  criteria  along  with  clinical  

judgement,  resulting  in  the  potential  inclusion  of  patients  who  may  not  have  

  133  

required  intravenous  antibiotics.  However,  in  a  randomised  study,  these  patients  

should  have  been  equally  assigned  to  both  study  groups.  The  Melbourne  ASSET  

score  will  prevent  further  studies  investigating  children  with  cellulitis  from  

having  to  use  clinical  judgement  to  determine  their  study  population,  thereby  

reducing  bias.    

The  derivation  and  validation  of  the  Melbourne  ASSET  score  represent  an  

important  first  step  in  standardising  antibiotic  management  for  cellulitis.  The  

next  stages  of  implementation  and  impact  analysis  now  need  to  be  undertaken  to  

encourage  widespread  use  of  this  score.122  

   

  134  

Chapter  5 Randomised  controlled  trial  

5.1 Introduction  to  the  randomised  controlled  trial  of  home  versus  hospital  

The  concept  of  intravenous  antibiotic  administration  in  a  non-­‐inpatient  setting,  

has  been  previously  reported  in  the  literature.1,3,6  Patients  usually  receive  OPAT  

after  a  period  of  hospital  admission  when  they  are  deemed  sufficiently  stable  to  

receive  further  intravenous  antibiotics  in  an  outpatient  ambulatory  unit  or  the  

patient’s  home.5,38  A  more  recent  concept  in  acute  care  has  been  to  use  OPAT  for  

patients  directly  from  the  ED,  avoiding  hospital  admission  altogether.1,6,114  

However,  widespread  uptake  of  this  hospital  admission  avoidance  pathway  for  

intravenous  antibiotics  in  children  with  acute  infections  is  limited,  despite  

benefits  such  as  higher  quality  of  life  for  patients  and  families  and  lower  costs.7,38  

The  reason  for  this  is  likely  due  at  least  in  part  to  the  absence  of  high  quality  

evidence  supporting  that  treatment  at  home  is  as  good  as  standard  care  in  

hospital.    

To  definitively  answer  the  question  about  the  efficacy  and  safety  of  treatment  at  

home  compared  to  hospital  care,  a  randomised  study  was  needed.  As  a  common  

condition  in  children  with  low  risk  of  severe  morbidity  or  mortality,  cellulitis  

was  suitable  to  be  used  as  a  paradigm  to  answer  the  broader  question  regarding  

the  safety  and  efficacy  of  treating  children  at  home  with  intravenous  

antibiotics.1,128  The  treatment  comparison  for  the  two  locations  was  carefully  

considered  for  the  RCT  with  a  deliberate  design  decision  to  ensure  a  combination  

of  best  practice  and  translatability.  The  choice  of  intravenous  ceftriaxone  for  

home  treatment  was  made  due  to  its  once  daily  administration  making  it  a  

pragmatic  choice  for  ambulatory  services,  which  may  only  have  capacity  to  

provide  a  service  to  patients  once  a  day.  Despite  ceftriaxone  being  the  most  

commonly  used  antibiotic  in  OPAT,  there  have  been  no  prospective  studies  to  

answer  the  question  of  ceftriaxone  efficacy  or  its  association  with  the  

development  of  bacterial  resistance.2,3,6  The  aims  of  the  RCT  were  to  investigate  

the  efficacy,  safety,  microbiological  outcomes,  quality  of  life  and  cost-­‐

  135  

effectiveness  of  the  treatment  of  moderate/severe  cellulitis  at  home  compared  to  

standard  care  in  hospital  using  flucloxacillin.  

This  chapter  contains  two  manuscripts,  the  published  protocol  of  the  RCT,  and  

the  manuscript  of  the  RCT  itself  containing  the  primary  and  clinical  secondary  

outcomes,  and  simple  cost  analysis.  The  quality  of  life  outcomes  and  associated  

comprehensive  cost-­‐effectiveness  analysis  are  in  the  next  chapter.  

   

  136  

5.2 Study  6a:  RCT  protocol  

Ibrahim  LF,  Babl  FE,  Orsini  F,  Hopper  SM,  Bryant  PA.  Cellulitis:  Home  Or  

Inpatient  in  Children  from  the  Emergency  Department  (CHOICE):  protocol  for  a  

randomised  controlled  trial.  BMJ  open  2016;  6(1):  e009606.

Cellulitis: Home Or Inpatient inChildren from the EmergencyDepartment (CHOICE): protocolfor a randomised controlled trial

Laila F Ibrahim,1,2,3 Franz E Babl,2,3,4 Francesca Orsini,5 Sandy M Hopper,2,4

Penelope A Bryant6,1,2,3

To cite: Ibrahim LF, Babl FE,

Orsini F, et al. Cellulitis:

Home Or Inpatient in Children

from the Emergency

Department (CHOICE):

protocol

for a randomised controlled

trial. BMJ Open 2016;6:

e009606. doi:10.1136/

bmjopen-2015-009606

▸ Prepublication history for

this paper is available online.

To view these files please

visit the journal online

(http://dx.doi.org/10.1136/

bmjopen-2015-009606).

PAB and FEB contributed

equally to this study.

Received 3 August 2015

Revised 28 September 2015

Accepted 19 October 2015

For numbered affiliations see

end of article.

Correspondence to

Dr Franz E Babl;

[email protected]

ABSTRACTIntroduction: Children needing intravenous antibiotics

for cellulitis are usually admitted to hospital, whereasadults commonly receive intravenous treatment athome. This is a randomised controlled trial (RCT) ofintravenous antibiotic treatment of cellulitis in childrencomparing administration of ceftriaxone at home withstandard care of flucloxacillin in hospital. The studyaims to compare (1) the rate of treatment failure athome versus hospital (2) the safety of treatment athome versus hospital; and (3) the effect of exposure toshort course ceftriaxone versus flucloxacillin on nasaland gut micro-organism resistance patterns and theclinical implications.

Methods and analysis: Inclusion criteria: childrenaged 6 months to <18 years with uncomplicatedmoderate/severe cellulitis, requiring intravenousantibiotics. Exclusions: complicated cellulitis (eg,orbital, foreign body) and immunosuppressed or toxicpatients. The study is a single-centre, open-label, non-inferiority RCT. It is set in the emergency department(ED) at the Royal Children’s Hospital (RCH) inMelbourne, Australia and the Hospital-in-the-Home(HITH) programme; a home-care programme, whichprovides outreach from RCH. Recruitment will occur inED from January 2015 to December 2016. Participantswill be randomised to either treatment in hospital, ortransfer home under the HITH programme. Thecalculated sample size is 188 patients (94 per group)and data will be analysed by intention-to-treat. Primary

outcome: treatment failure defined as a change intreatment due to lack of clinical improvement accordingto the treating physician or adverse events, within 48 hSecondary outcomes: readmission to hospital,representation, adverse events, length of stay,microbiological results, development of resistance,cost-effectiveness, patient/parent satisfaction. Thisstudy has started recruitment.

Ethics and dissemination: This study has beenapproved by the Human Research Ethics Committee ofthe RCH Melbourne (34254C) and registered with theClinicalTrials.gov registry (NCT02334124). We aim todisseminate the findings through international peer-reviewed journals and conferences.

Clinical trial: Pre-results.

INTRODUCTIONChildren with cellulitis receiving intravenousantibiotics are usually admitted to hospital,whereas adults commonly receive intraven-ous treatment at home. Various reasons havebeen cited including parental anxiety andthe acute nature of the infection in children.However, in comparison to hospital admis-sion, children treated at home do better psy-chologically and physically, have fewerinvestigations, are at decreased risk ofhospital-acquired infections, and have subse-quent decreased use of healthcareresources.1 2 It is also less expensive (time offwork and transport costs) and disruptive forfamilies.1 3 Some children with moderate/severe cellulitis may be safely treated athome, but criteria for this are unclear.4

There are no randomised trials comparinghome versus hospital treatment in childrenfor cellulitis. In a recent study at our institu-tion of children presenting with cellulitis tothe emergency department (ED), 57% weredischarged on oral antibiotics and 43% weretreated with intravenous antibiotics due toextensive, rapidly spreading or complicated

Strengths and limitations of this study

▪ Randomisation of a novel home-care interventionversus standard hospital care.

▪ Primary outcome relevant to clinical practice.▪ First investigation of differential impact of short

course antibiotics on the acquisition of resistantorganisms.

▪ Key assessment of parental preference of treat-ment location.

▪ The antibiotics in the two arms are unavoidablydifferent.

▪ Decisions to start or stop intravenous antibioticsare based on a subjective clinical opinion reflect-ing real clinical practice.

Ibrahim LF, et al. BMJ Open 2016;6:e009606. doi:10.1136/bmjopen-2015-009606 1

Open Access Protocol

137

cellulitis or worsening features despite oral antibiotics.Forty-five per cent of those with uncomplicated moder-ate/severe cellulitis had been started on oral therapyand cellulitis had progressed despite this.5 Of those dis-charged on oral antibiotics, 10% re-presented with wor-sening cellulitis, suggesting there is a culture of tryingoral antibiotics first and not starting intravenous antibio-tics unnecessarily (unpublished data).When intravenous treatment is required for cellulitis,

flucloxacillin or cephazolin are the usual choicesbecause they are effective against Staphylococcus aureus

and group A streptococci, the main pathogens causingcellulitis.6 However, they are not suitable for outpatientparenteral antibiotic therapy (OPAT) due to their fre-quent dosing. The majority of paediatric OPAT servicesare only able to deliver once daily interventions.Ceftriaxone has antistaphylococcal activity and can beadministered once daily.7 There are only a few studies inchildren in which ceftriaxone has been used to treat cel-lulitis either in hospital or OPAT, but none have com-pared outcomes to children treated with otherrecommended antibiotics.4 7–10 There are no studies inchildren with cellulitis who require intravenous treat-ment comparing administration at home and in hos-pital. A study of children with moderate/severe cellulitiswho were treated with ceftriaxone at a day treatmentcentre had an 80% success rate, but no comparison wasmade with children treated in hospital.4 Other studiesthat have included ceftriaxone for the treatment of cel-lulitis in children have had cure rates of 91–96%, buthave had small numbers, no comparison group and/orunclear methodology.8 9 A small study in adults com-pared ceftriaxone with flucloxacillin, and while ceftriax-one resulted in a higher success rate than flucloxacillin(96% vs 70%), this was not statistically significant.11 Thedifferential effect of ceftriaxone and flucloxacillin onthe microbiota of children has also never previouslybeen described.Increasingly, hospitals are developing programmes

where patients who have traditionally been treated on ahospital ward are treated at home under the care of hos-pital doctors and nurses in Hospital-in-the-Home(HITH) programmes. While attractive in terms ofresource use, it is unclear to what extent HITH care isefficacious and safe. The Royal Children’s Hospital(RCH) Melbourne has the largest paediatric HITH pro-gramme in Australia. As an alternative to admission forintravenous flucloxacillin, RCH HITH developed adirect-from-the ED pathway for cellulitis, using oncedaily ceftriaxone and medical review at home. SinceSeptember 2012, more than 70 children at RCH withmoderate/severe cellulitis have been treated successfullyat home, with outcomes similar to children treated inhospital, although there may be unappreciated differ-ences in selection criteria.12 13

We therefore plan to randomly assign patients with cel-lulitis requiring intravenous antibiotics to either betreated at home (intravenous ceftriaxone) or to the

hospital ward (intravenous flucloxacillin). The studyaims to compare (1) the rate of treatment failure ofhome treatment with intravenous ceftriaxone versus hos-pital treatment with intravenous flucloxacillin; (2) thesafety of treatment at home versus treatment in hospital;and (3) the effect of exposure to short course ceftriax-one versus flucloxacillin on nasal and gut micro-organism resistance patterns and the clinical implica-tions of this. The main outcome is treatment failure;defined as a change in treatment due to lack of clinicalimprovement or the occurrence of adverse events.

METHODSDesignThis is a single-centre, open-label, non-inferiority rando-mised controlled trial (RCT). This pragmatic trial aimsto determine whether treatment for cellulitis adminis-tered at home is non-inferior to (ie, no worse than)treatment in hospital. It has two parallel arms with 1:1allocation of children with moderate/severe cellulitis.

SettingPatients will be recruited from the ED at the RCH, a ter-tiary paediatric hospital in Melbourne, Australia fromJanuary 2015 to December 2016.

Inclusion criteria▸ Children aged 6 months to <18 years.▸ Children presenting to RCH ED with moderate/

severe cellulitis, that is, those assessed as needingintravenous antibiotics. Currently, there is no vali-dated scoring system on which to base the choicebetween intravenous or oral antibiotics, thereforeclinician judgement is the current gold standard.Although reasons may differ between clinicians, thiswill be accounted for by randomisation. Reasons forstarting intravenous antibiotics include:

A. Failed oral antibiotics (no improvement despite 24 horal antibiotics).

B. Rapidly spreading redness (patient/parent history).C. Significant swelling/redness/pain.D. Systemic symptoms/signs (eg, fever, lethargy).E. Difficult to treat areas (eg, face, ear, toe).

Exclusion criteriaChildren will be excluded if they have:1. Complicated cellulitis defined as follows: orbital cellu-

litis or unable to exclude orbital cellulitis, penetrat-ing injury/bites, suspected/confirmed foreign body,suspected fasciitis or myositis, varicella, undrainedabscess including dental abscess.

2. Toxicity: tachycardia when afebrile or hypotension(both as per the limits from the ‘Development ofheart and respiratory rate percentile curves for hospi-talised children’14), poor central perfusion (capillaryrefill >2 s).

2 Ibrahim LF, et al. BMJ Open 2016;6:e009606. doi:10.1136/bmjopen-2015-009606

Open Access

138

3. Underlying comorbidities: immunosuppression, liverdisease.

4. Any concurrent infection necessitating different anti-biotic treatment to intravenous flucloxacillin or cef-triaxone monotherapy, for example, concurrentsinusitis or otitis media or lymphadenitis.

5. Other medical diagnoses necessitating admission tohospital for observation or treatment relating to theknown medical condition.

6. Unable to obtain intravenous access.7. Age <6 months old.8. With mild cellulitis (ie, can be treated with oral

antibiotics).Non-English speakers will be included so long as at

the time of obtaining consent, an interpreter is avail-able. At our centre, an interpreter is available in personduring normal working hours Monday to Friday and viatelephone 24 h a day. An interpreter service will also beused for subsequent phone calls and clinic visits similarto routine clinical practice involving non-Englishspeakers.

Primary outcomeThe primary outcome is treatment failure defined as achange in treatment due to lack of clinical improvementaccording to the treating physician or adverse events,within 48 h (i,e by Day 3) from the start of the first anti-biotic dose administered in the ED (Day 1). Clinicalimprovement is assessed by the treating physician dailyand includes: reduction in fever (if fever source is cellu-litis and not concurrent illness; reduction in frequencyor degree of temperature), reduction in the cellulitisarea (measured by the largest diameter of erythema),reduction in the severity of swelling ( judged by clinicianas mild, moderate or severe) and reduction in the inten-sity of erythema ( judged by clinician on a scale of 0=noerythema to 5=severe erythema).

Secondary outcomes1. Time to no progression of cellulitis: number of days

(including fractions of days—to one decimal point)from the start of the first dose in ED to the time atwhich the cellulitis stops spreading past the markedarea.

2. Time to discharge: number of days (including frac-tions of days) from the time of arrival in ED to thetime the patient no longer needs hospital-basedinterventions/care, whether in hospital or at home.

3. Readmission rate: proportion of children readmit-ted to hospital within 14 days of discharge date dueto the same cellulitis.

4. Representation to ED: proportion of children repre-senting to ED within 14 days of discharge due to thesame cellulitis.

5. Length of stay in ED: from triage time in ED to thetime the patient leaves ED to go either home or toward.

6. Duration of intravenous antibiotics: in days.

7. Rates of intravenous cannula needing at least oneresiting.

8. Complications of cellulitis: development of abscessrequiring drainage after starting intravenous antibio-tics, bacteraemia.

9. Adverse events: anaphylaxis; allergic reaction (sus-pected or confirmed) necessitating change ofempiric antibiotic; sepsis; death.

10. Microbiology:▸ Rate of ceftriaxone susceptibility in bacteria iso-

lated from a nasal or skin swab of the affectedarea.

▸ Rate of Staphylococcus aureus nasal carriage(methicillin-sensitive and methicillin-resistant)collected within 48 h, after 7–14 days, 3 monthsand 1 year after starting antibiotics.

▸ Rate of resistant bacteria present in stool samplescollected within 48 h, after 7–14 days, 3 monthsand 1 year after starting antibiotics. Rates of clin-ical infection with resistant organisms up to1 year after starting antibiotics.

11. Costs of hospital versus HITH treatment: includingcosts of beds, consumables, nursing and medicaltime and overheads including administrative time,information technology, use of hospital cars.

12. Patient and parent satisfaction (measured byanonymous survey) including questions from a pub-lished quality of life (QOL) tool.15

Patient recruitment, study procedure and data collectionED clinicians (senior doctors, junior doctors or nursepractitioners) will identify patients with moderate/severecellulitis presenting to RCH ED at triage or during clin-ical assessment (figure 1). The patient or parents ofpatients meeting inclusion criteria will be invited to par-ticipate in the study. Consent will be obtained for ran-domisation, data collection and follow-up that is notroutine practice. Data collection includes: age, sex, siteof cellulitis, size of area affected, prior antibiotics, under-lying comorbidity not affecting inclusion, systemic symp-toms and signs. In addition, consent will be requestedfor nasal swab samples and stool samples.Randomisation will be performed after consent isobtained by a study investigator or the ED clinician.Patients who are randomised to HITH will be prescribedintravenous ceftriaxone (50 mg/kg once daily) andthose randomised to the ward will be prescribed intra-venous flucloxacillin (50 mg/kg 6 hourly). A bloodculture, nasal swab and where relevant a skin swab (onlyin the presence of discharge from the site of cellulitis)will be collected at presentation. A stool specimen willbe collected within 48 h of the first dose of antibiotics.Parents will be asked to take two photos of the cellu-

litis area using their own camera/phone (if available)after the affected area is demarcated with indelible inkwith a tape measure placed alongside the area affected.If parents do not have a camera/phone, permission willbe sought from the parent to use a hospital camera to

Ibrahim LF, et al. BMJ Open 2016;6:e009606. doi:10.1136/bmjopen-2015-009606 3

Open Access

139

photograph the lesion. This will aid review the followingday. The first dose of antibiotics will be administered inED before the child goes either to the ward or home.After randomisation, treatment decisions for the patientwill be made by the appropriate treating physician, asper usual practice: if on the ward the general

paediatrician on call, and if at home the HITH paedia-trician. In hospital ward and HITH services, the manage-ment decisions for cellulitis are usually made by seniortrainees/registrars in paediatrics. Sometimes a consult-ant will be called on to make a decision; this is morelikely to occur on the ward than in HITH. Patients will

Figure 1 Study flow chart. ED,emergency department; HITH,Hospital-in-the-Home; IV,intravenous.

Table 1 Study schedule

Assessment/procedure

EDpresentationDay 1

Day2

Day 3 andevery day untildischarge

Day 7–14 afterstartingantibiotics

3 months afterstartingantibiotics

1 year afterstartingantibiotics

Informed consent XDemographic information XClinical assessment X X XBlood culture XSkin swab XNasal swab (optional) X X X XStool sample (optional) X X X XPhoto on parents’ phone X X XIV antibiotics X X XAnonymous questionnaire XFinal review method option1: RCH clinic (whereparents willing)

X

Optional stool for cultureand sensitivity

X

Final review method option2: by telephone (whereparents unwilling to attendclinic)

X

Parents to email photo ofpreviously affected area

X

ED, emergency department; IV, intravenous; RCH, Royal Children’s Hospital.

4 Ibrahim LF, et al. BMJ Open 2016;6:e009606. doi:10.1136/bmjopen-2015-009606

Open Access

140

be switched to oral therapy when there is clinicalimprovement of the cellulitis as judged by the treatingclinician. Oral antibiotics will be cephalexin 25 mg/kg 6hourly (as per RCH guidelines), or the most appropriateantibiotic based on microbiology results. Althoughpatients are usually not followed up any further in hos-pital, in this study, all participants will be followed up asper the study schedule (table 1). If parents decline thefirst follow-up visit at clinic, a review will be conductedby telephone and the parents will be requested to emailphotos of the area previously affected with cellulitis orgive a verbal report (to ensure clinical resolution). Theanonymous patient/parent satisfaction survey will beposted out to the parents at Day 7–14 after startingantibiotics.The nasal swab and stool sample will be requested at

four different time points: (1) within 48 h of the firstantibiotic dose; (2) 7–14 days after starting antibiotics;(3) 3 months after starting antibiotics; and (4) 1 yearafter starting antibiotics. At each time point, additionalinformation will be collected: previous overseas travel,previous hospital admissions, household member whohas been admitted to hospital overseas, other antibioticuse, other infections, medical visits or hospital admis-sions. These samples are optional and do not affect par-ticipation in the study.

STATISTICAL METHODSSample size and power calculation:Previous data collection at RCH has shown a failure rateof standard treatment of cellulitis with flucloxacillin inhospital of approximately 5%.16 Based on the literatureand discussion with clinicians, we have determined thatthe intervention would be deemed acceptable if 80% ofchildren can be successfully treated at home ,that is, amaximum difference of 15%. For a non-inferiority studydesign with a 15% difference, 89 patients are needed ineach treatment arm (based on 80% power). Allowing for5% dropout rate, a total of 188 are therefore required(94 in each treatment arm). Based on our previous data,we will be able to recruit this number over a 2-yearperiod if this study remains within RCH.12 16 However,once this study starts at RCH, depending on recruit-ment, we may expand this study to other centres, whichwould shorten the length of time to complete the study.

RandomisationThe randomisation schedule will be provided by theClinical Epidemiology and Biostatistics Unit atthe Murdoch Children’s Research Institute (MCRI). Therandomisation will be in randomly permuted blocks ofvariable length, stratified by age (6 months to less than9 years and 9 years to 18 years) and by the presence ofperiorbital cellulitis. Randomisation will be enabledthrough the REDCap (Research electronic Data Capture,REDCap Software—V.6.6.2—copyright 2015 VanderbiltUniversity) web-based application housed at MCRI.

Statistical analysisStatistical analysis will follow standard methods for ran-domised controlled trials and the primary analysis willbe primarily by intention to treat. We will also conduct aper protocol analysis, including all randomised partici-pants where outcome data are available. For the primaryoutcome Pearson’s χ

2 test will be used to compare theproportion of participants who fail treatment within48 h from the first dose. Non-inferiority will determinedby calculating difference in treatment failure (risk differ-ence and 95% two-sided CI between the failure rates inthe home and hospital groups. For the home arm to benon-inferior to treatment in the hospital, the upperlimit of the 95% CI must be less than 15% (as we haveprespecified this as the non-inferiority margin). As a sec-ondary analysis on the primary outcome a logistic regres-sion model will be used to investigate whether inclusionof the stratification factor (age at randomisation) as pre-dictor modifies the estimated effect (and 95%CI) oftreatment group on the primary outcome.Secondary continuous outcomes will be compared

between the two groups using unadjusted linear regres-sion while binary outcomes will be compared usingunadjusted logistic regression. Furthermore, as explora-tive analyses, regression models (or logistic modelsaccording to the nature of the outcome) will also befitted to the primary and secondary outcomes adjustingfor age (as used in the randomisation), presence offever at baseline and any other baseline and demo-graphic variables where an imbalance is found. Theappropriate survival analysis models will be used tocompare time to event outcomes between the treatmentgroups. The statistician performing data analysis for theprimary and secondary outcomes will be blinded to thetreatment allocation.

Ethical issues and disseminationPrior to starting of the study and on an on-going basis,ED clinicians have had education sessions to informthem about the study. The appropriate informationsheet will be given to the parent and/or child, the studyexplained and written consent requested. Where parentsdo not give consent, the ED clinician will make the deci-sion about treatment location. Photos will be identifiedonly by the subject unique identifier assigned for thestudy and will be stored in a password-protected data-base. Data will be entered into a password-protecteddatabase enabled through the REDCap (Research elec-tronic Data Capture, REDCap Software—V.6.6.2—copy-right 2015 Vanderbilt University) web-based applicationhoused at MCRI. The case report forms will be kept in alocked filing cabinet, accessible only by the researchers.Consent to collect information will be sought from parti-cipants who deviate from the protocol. All data will beretained until 7 years after last contact with patients oronce all patients involved in the study have reached25 years of age (whichever is longer) as per the ethicsrequirements for our institution.

Ibrahim LF, et al. BMJ Open 2016;6:e009606. doi:10.1136/bmjopen-2015-009606 5

Open Access

141

We aim to disseminate the findings through inter-national peer-reviewed journals and international con-ferences either as an oral or a poster presentation.At the end of the study a summary of the results will

also be posted to the participants. Results will bereported as an analysis of group data rather than individ-ual data and will contain only de-identified information.

Risk management, adverse events and patient safetyThere are no foreseeable additional risks to patients ortheir families by participating in this study. HITH hasbeen shown to be a safe programme under which chil-dren can be treated at home for many conditions, andthere will be daily medical review of all patients. Familieson the HITH programme have direct access via tele-phone to an experienced nurse 24 h a day and thisnurse is supported by a medical team. Potential adverseevents in this study would be an allergic reaction toeither of the antibiotics used, and these will be reportedto the study’s independent data safety monitoringboard. Serious adverse events such as overwhelmingsepsis or death are not expected in this study as cellulitisin children is a condition not associated with such mor-bidity and mortality. None of the patients in our pro-spective study of home treatment of cellulitis developedsepsis or any other serious adverse event.16

Independent safety and data monitoring committeeAn Independent Safety and Data Monitoring Committee(ISDMC) have been established. The ISDMC consists oftwo independent clinicians and a biostatistician whom,collectively, have experience in the management ofpaediatric patients with cellulitis and in the conduct andmonitoring of randomised controlled trials. The ISDMCwill function independently of all other individuals andbodies associated with the conduct of the study. TheISDMC will review all data by treatment arm every 6 to10 months. The first planned ISDMC review is inOctober 2015.

Time planWe have thus far recruited 52 of the planned 188patients. We plan to complete recruitment by the end of2016.

DISCUSSIONOur study will be the first RCT to evaluate the effective-ness and safety of home intravenous antibiotics for chil-dren directly from ED. If treatment at home is found tobe non-inferior, the benefits for children/families andcost-effectiveness for healthcare constitutions will lead tothis pathway (direct-from-the ED to home) becomingstandard care.Our study design has some unavoidable limitations.

Although the main aim is to compare standard care inhospital with the novel intervention of home treatment,the antibiotics in the two arms are also necessarily

different. Intravenous flucloxacillin or cephazolin (usualstandard care) require dosing 3–4 times a day in chil-dren, which is not feasible for home treatment. Thealternative of administering these via a continuous infu-sion would require a form of central line access, whichin children may require sedation or anaesthesia, withassociated increased risks and time in hospital. The onlyintravenous antibiotic viable for home use in this acutedirect-from-ED context is therefore once daily ceftriax-one, and from our previous study we do not anticipatedifferences in antibiotic efficacy.16 Although longer termuse of ceftriaxone has been associated with increasedacquisition of resistant organisms in adults, this has notbeen shown in healthy children or for very short coursesas anticipated in this study. To address the potentialissues of resistance development this study is specificallydesigned to detect any changes in the nasal and gutmicro-organisms and any clinically relevant conse-quences of such changes. Another limitation of thisstudy is that this is a single site, single city study.Antibiotic resistance is geographically influenced, andthe availability/skills of home-based care programmesfor children may not be available to many centres.These factors may limit applicability to other areas.This study will likely have a high impact on clinical

practice not only in our own clinical institution but alsoon a wider global scale. The successful use of home anti-biotics is the tip of the iceberg, as it can be expanded toinclude many common medical conditions ensuringchildren can go home directly to be treated under theHITH programme and avoid hospitalisation. We antici-pate that this would ultimately impact on health policy.

Author affiliations1RCH@Home Department, The Royal Children’s Hospital, Parkville, Victoria,

Australia2Murdoch Children’s Research Institute, Parkville, Victoria, Australia3Department of Paediatrics, University of Melbourne, Melbourne, Victoria,

Australia4Emergency Department, The Royal Children’s Hospital, Parkville, Victoria,

Australia5Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research

Institute, Parkville, Victoria, Australia6Infectious Diseases Unit, Department of General Medicine, The Royal

Children’s Hospital, Parkville, Victoria, Australia

Acknowledgements The authors would like to thank participating families,

emergency department staff and HITH staff. This study is funded in part by

grants from the RCH Foundation, the Murdoch Children’s Research Institute

and the Victorian Department of Health, Melbourne Australia. LFI was

supported in part by a scholarship from Avant Mutual Group Limited. FEB

was supported in part by a grant from the RCH Foundation. The emergency

research group, MCRI, is in part supported by a Centre for Research

Excellence Grant for Paediatric Emergency Medicine from the National Health

and Medical Research Council, Canberra, Australia and the Victorian

government infrastructure support program.

Contributors LFI, PAB and FEB were responsible for identifying the research

question and the design of the study. SMH and FO were responsible for

refining the design and developing the research protocol. All authors have

contributed to the development of the protocol, the implementation of the

study and enrolment of patients. LFI was responsible for the drafting of this

paper. All authors provided comments on the drafts and have read and

6 Ibrahim LF, et al. BMJ Open 2016;6:e009606. doi:10.1136/bmjopen-2015-009606

Open Access

142

approved the final version. PAB and FEB contributed equally to this study.

FEB takes responsibility for the manuscript as a whole.

Funding Victorian Department of Health, The Royal Childrens Hospital

Foundation, Murdoch Childrens Research Institute.

Competing interests None declared.

Patient consent Obtained.

Ethics approval Human Research Ethics Committee of The Royal Children’s

Hospital Melbourne.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with

the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license,

which permits others to distribute, remix, adapt, build upon this work non-

commercially, and license their derivative works on different terms, provided

the original work is properly cited and the use is non-commercial. See: http://

creativecommons.org/licenses/by-nc/4.0/

REFERENCES1. Svahn BM, Remberger M, Heijbel M, et al. Case-control comparison

of at-home and hospital care for allogeneic hematopoietic stem-celltransplantation: the role of oral nutrition. Transplantation2008;85:1000–7.

2. Small F, Alderdice F, McCusker C, et al. A prospective cohort studycomparing hospital admission for gastro-enteritis with homemanagement. Child Care Health Dev 2005;31:555–62.

3. Balaguer A, Gonzalez de Dios J. Home versus hospital intravenousantibiotic therapy for cystic fibrosis. Cochrane Database Syst Rev2012;(3):CD001917.

4. Gouin S, Chevalier I, Gauthier M, et al. Prospective evaluation of themanagement of moderate to severe cellulitis with parenteralantibiotics at a paediatric day treatment centre. J Paediatr ChildHealth 2008;44:214–18.

5. Ibrahim LF, Hopper SM, Babl FE, et al. Who can safely haveantibiotics at home? A prospective observational study in children

with moderate/severe cellulitis. Pediatr Infect Dis J 13 Nov 2015.[Epub ahead of print] www.ncbi.nlm.nih.gov/pubmed/26569189

6. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines forthe diagnosis and management of skin and soft-tissue infections.Clin Infect Dis 2005;41:1373–406.

7. Nelson SJ, Boies EG, Shackelford PG. Ceftriaxone in the treatmentof infections caused by Staphylococcus aureus in children. PediatrInfect Dis 1985;4:27–31.

8. Frenkel LD. Once-daily administration of ceftriaxone for the treatmentof selected serious bacterial infections in children. Pediatrics1988;82(3 Pt 2):486–91.

9. Kulhanjian J, Dunphy MG, Hamstra S, et al. Randomizedcomparative study of ampicillin/sulbactam vs. ceftriaxone fortreatment of soft tissue and skeletal infections in children. PediatrInfect Dis J 1989;8:605–10.

10. Brugha RE, Abrahamson E. Ambulatory intravenous antibiotictherapy for children with preseptal cellulitis. Pediatr Emerg Care2012;28:226–8.

11. Vinen J, Hudson B, Chan B, et al. A randomised comparative studyof once-daily ceftriaxone and 6-hourly flucloxacillin in the treatmentof moderate to severe cellulitis—Clinical efficacy, safety andpharmacoeconomic implications. Clin Drug Investig 1996;12:221–5.

12. Ibrahim LF, Hopper SM, Sacks B, et al. Pilot study of the safety andacceptability of parenteral antibiotics in children referred from theEmergency Department directly to Hospital-In-The-Home. The 8thWorld Congress of the World Society for Pediatric Infectious Disease(WSPID 2013); Cape Town, South Africa, 2013.

13. Ibrahim LF, Hopper SM, Babl FE, et al. A comparison of treatment athome or in hospital for moderate/severe cellulitis in children.Australasian Society for Infectious Diseases Annual ScientificMeeting; Adelaide, Australia, 2014.

14. Bonafide CP, Brady PW, Keren R, et al. Development of heart andrespiratory rate percentile curves for hospitalized children. Pediatrics2013;131:e1150–7.

15. Orme LM, Babl FE, Barnes C, et al. Outpatient versus inpatient IVantibiotic management for pediatric oncology patients with low riskfebrile neutropenia: a randomised trial. Pediatr Blood Cancer2014;61:1427–33.

16. Ibrahim LF, Hopper SM, Babl FE, et al. The CHOICE study: Cellulitistreatment at Home Or Inpatient in Children from Emergency.Australasian College for Emergency Medicine Annual ScientificMeeting; Melbourne, Australia, 2014.

Ibrahim LF, et al. BMJ Open 2016;6:e009606. doi:10.1136/bmjopen-2015-009606 7

Open Access

143

protocol for a randomised controlled trialthe Emergency Department (CHOICE): Cellulitis: Home Or Inpatient in Children from

Penelope A BryantLaila F Ibrahim, Franz E Babl, Francesca Orsini, Sandy M Hopper and

doi: 10.1136/bmjopen-2015-0096062016 6: BMJ Open 

http://bmjopen.bmj.com/content/6/1/e009606Updated information and services can be found at:

These include:

References #BIBLhttp://bmjopen.bmj.com/content/6/1/e009606

This article cites 11 articles, 2 of which you can access for free at:

Open Access

http://creativecommons.org/licenses/by-nc/4.0/non-commercial. See: provided the original work is properly cited and the use isnon-commercially, and license their derivative works on different terms, permits others to distribute, remix, adapt, build upon this workCommons Attribution Non Commercial (CC BY-NC 4.0) license, which This is an Open Access article distributed in accordance with the Creative

serviceEmail alerting

box at the top right corner of the online article. Receive free email alerts when new articles cite this article. Sign up in the

CollectionsTopic Articles on similar topics can be found in the following collections

(648)Paediatrics (582)Infectious diseases

(302)Emergency medicine

Notes

http://group.bmj.com/group/rights-licensing/permissionsTo request permissions go to:

http://journals.bmj.com/cgi/reprintformTo order reprints go to:

http://group.bmj.com/subscribe/To subscribe to BMJ go to:

144

  145  

5.3 Study  6b:  RCT    

Ibrahim  LF,  Hopper  SM,  Daley  A,  Orsini  F,  Babl  FE,  Bryant  PA.  Home  versus  

Hospital  Intravenous  Antibiotics  for  Children  with  Moderate/Severe  Cellulitis  a  

Randomised  Controlled  Non-­‐inferiority  Trial.  The  Lancet  Infectious  Diseases.  

Accepted  –  In  press.    

 

Elsevier Editorial System(tm) for The Lancet

Infectious Diseases

Manuscript Draft

Manuscript Number: THELANCETID-D-18-01041R1

Title: Randomised controlled trial of intravenous antibiotics on OPAT

versus hospital for cellulitis in children: comparison of efficacy and

safety

Article Type: Article (Clinical Trials)

Keywords: Antibiotics; intravenous; hospital-in-the-home; ambulatory;

skin and soft tissue; OPAT

Corresponding Author: Dr. Laila F Ibrahim, MBBCHBAO

Corresponding Author's Institution: The Royal Children's Hospital

Melbourne

First Author: Laila F Ibrahim, MBBCHBAO

Order of Authors: Laila F Ibrahim, MBBCHBAO; Sandy Hopper; Francesca

Orsini; Andrew Daley; Franz Babl; Penelope Bryant

Manuscript Region of Origin: AUSTRALIA

Abstract: Summary

Background

Outpatient parenteral antimicrobial therapy (OPAT) in children, commonly

using ceftriaxone, has no trial-based evidence to support it. We aimed to

compare the efficacy and safety of intravenous antibiotic therapy at home

versus standard treatment in hospital, in children with moderate/severe

cellulitis.

Methods

In a randomised non-inferiority trial, children aged 6 months-18 years

with uncomplicated moderate/severe cellulitis were randomised to receive

either intravenous ceftriaxone at home or intravenous flucloxacillin in

hospital. Patients were randomised 1:1, using web-based randomisation,

stratified by age and periorbital cellulitis. The primary outcome was

treatment failure defined as lack of clinical improvement or adverse

event, resulting in change of antibiotics within 48 hours. For home

treatment to be non-inferior, the difference was designated as less than

15%, with a sample size of 188 providing 80% power. ClinicalTrials.gov:

NCT02334124.

Findings

188 children were randomised, 93 to home and 95 to hospital treatment. By

intention-to-treat, 2 (2%) patients in the home group had treatment

failure compared to 7 (7%) in the hospital group (risk difference [RD] -

5·2%; 95% confidence interval [CI] -11·3 to 0·8, p=0·09). In the per-

protocol analysis, the difference was significantly higher in favour of

the home group. The findings significantly reject the null hypothesis

that home treatment is inferior to hospital treatment. Adverse events

occurred less with home treatment (2% vs 10%, p=0·048). As a secondary

outcome, there was no difference in the rates of acquisition of nasal

methicillin-resistant Staphylococcus aureus, or gastrointestinal extended

146

spectrum beta-lactamase-producing bacteria or Clostridium difficile after

3 months.

Interpretation

Home treatment of cellulitis in children with intravenous ceftriaxone is

not inferior to treatment in hospital with intravenous flucloxacillin.

Ceftriaxone at home did not show a signal of increased acquisition of

resistant bacteria, although larger studies are needed.

Funding

RCH Foundation, MCRI, Victorian Department of Health.

147

Randomised controlled trial of intravenous antibiotics on OPAT versus hospital for

cellulitis in children: comparison of efficacy and safety

Laila F Ibrahim MB BCh BAOa,b, Sandy M Hopper MBBSa,b,c, Francesca Orsini MScb,d,

Andrew J Daley MBBSe,f, *Prof Franz E Babl MDa,b,c,d,*Penelope A Bryant PhDa,b,e,g

*Contributed equally

Affiliations

a Department of Paediatrics, University of Melbourne

b Murdoch Children’s Research Institute

c Emergency Department, The Royal Children’s Hospital

d Melbourne Children's Trials Centre

e Infectious Diseases Unit, Department of General Medicine, The Royal Children’s

Hospital

f Microbiology Department, The Royal Children’s Hospital

g Hospital-In-The-Home Department, The Royal Children’s Hospital

50 Flemington Road, Parkville, Victoria 3052, Australia

Corresponding author

A/Prof. Penelope A Bryant

Department of General Medicine, The Royal Children’s Hospital Melbourne

50 Flemington Road, Parkville, VIC 3052, Australia

Email: [email protected]

Tel: +613 93455522 Fax: +613 9345 6667

148

Key words

Antibiotics; intravenous; hospital-in-the-home; ambulatory; skin and soft tissue; OPAT

Financial Disclosure

All authors have indicated they have no financial relationships relevant to this article to

disclose. The funding bodies did not have any authority in design and conduct of the study;

collection, management, analysis, and interpretation of the data; and preparation, review, or

approval of the manuscript.

149

Research in context

Evidence before this study

A search was performed on MEDLINE 1946 to October 2nd 2018 and EMBASE 1974 to

October 3rd 2018 using the search terms ‘cellulitis/ or soft tissue infections/’, ‘ceftriaxone’

‘outpatient’, ‘home care/’ ‘ambulatory care/’ and limited to ‘all child (0-18years)’ with no

language restrictions. This produced no randomised controlled trials (RCT) and there is no

Cochrane review on home/ambulatory management of cellulitis. The only RCT comparing

home versus hospital care primarily investigated quality of life. However a number of

published retrospective and observational studies were identified indicating widespread use

of home/ambulatory care in children, despite the lack of robust evidence of efficacy and

safety of home treatment. These studies suggest that some children with moderate/severe

cellulitis can be successfully treated via a home or ambulatory pathway, with a readmission

rate ranging from 0-20%. Ceftriaxone is the most common antibiotic used in this setting

because it can be administered once daily. However, no study using ambulatory ceftriaxone

has investigated the broader potential association of ceftriaxone use with resistant bacteria

and opportunistic pathogens such as Clostridium difficile.

Added value of this study

This is the first randomised controlled trial of any acute infection requiring intravenous

antibiotics in children to compare efficacy and safety of home/ambulatory treatment

directly from the Emergency Department to standard management in hospital. Findings

from our study provide robust evidence that children with moderate to severe cellulitis can

be effectively treated at home without the need for hospital admission. In addition, we have

shown that this management pathway is highly acceptable to families and has cost-saving

benefits to the hospital. Of equal importance to clinicians, for uptake of ceftriaxone use for

150

OPAT, there was no signal of increased colonisation with resistant nasal or gastrointestinal

bacteria.

Implications of all the available evidence

Our study provides the first unbiased evidence to support the existing literature and

increasing practice of treating childhood infections with intravenous antibiotics outside the

hospital environment. It promotes the broader uptake of home/ambulatory management of

moderate to severe cellulitis so that children can avoid hospital admission. For centres

without a pre-existing home care or ambulatory service, these findings enable advocacy for

resources for a similar treatment pathway. For those with existing services this study acts as

a platform to be replicated in other acute infections to increase the evidence for

home/ambulatory care.

151

Summary

Background

Outpatient parenteral antimicrobial therapy (OPAT) in children, commonly using

ceftriaxone, has no trial-based evidence to support it. We aimed to compare the efficacy

and safety of intravenous antibiotic therapy at home versus standard treatment in hospital,

in children with moderate/severe cellulitis.

Methods

In a randomised non-inferiority trial, children aged 6 months-18 years with uncomplicated

moderate/severe cellulitis were randomised to receive either intravenous ceftriaxone at

home or intravenous flucloxacillin in hospital. Patients were randomised 1:1, using web-

based randomisation, stratified by age and periorbital cellulitis. The primary outcome was

treatment failure defined as lack of clinical improvement or adverse event, resulting in

change of antibiotics within 48 hours. For home treatment to be non-inferior, the difference

was designated as less than 15%, with a sample size of 188 providing 80% power.

Secondary outcomes included adverse events and acquisition of resistant organisms.

ClinicalTrials.gov: NCT02334124.

Findings

188 children were randomised, 93 to home and 95 to hospital treatment. By intention-to-

treat, 2 (2%) patients in the home group had treatment failure compared to 7 (7%) in the

hospital group (risk difference [RD] -5·2%; 95% confidence interval [CI] -11·3 to 0·8,

p=0·09). In the per-protocol analysis, the difference was significantly higher in favour of

the home group. The findings significantly reject the null hypothesis that home treatment is

inferior to hospital treatment. Adverse events occurred less with home treatment (2 [2%] vs

10 [11]%, p=0·048). There was no difference in the rates of acquisition of nasal

152

methicillin-resistant Staphylococcus aureus, or gastrointestinal extended spectrum beta-

lactamase-producing bacteria or Clostridium difficile after 3 months.

Interpretation

Home treatment of cellulitis in children with intravenous ceftriaxone is not inferior to

treatment in hospital with intravenous flucloxacillin. Ceftriaxone at home did not show a

signal of increased acquisition of resistant bacteria, although larger studies are needed.

Funding

RCH Foundation, MCRI

153

Introduction

There has been a dramatic increase in children in the use of intravenous antibiotics in non-

inpatient settings, known as outpatient parenteral antimicrobial therapy (OPAT).1,2 This is

due to increased awareness that admission to hospital has a negative impact on quality of

life in children, carries the risk of hospital-acquired infections and is associated with higher

costs.3-5 Given the choice, children and caregivers choose treatment at home, an important

factor as we aim to move towards truly patient-centred care.6,7 As such, OPAT has shifted

rapidly from being a novel concept to an accepted model of care. However, published

evidence for its use in children has not kept pace. A recent systematic review found only a

single randomised controlled trial (RCT) of OPAT in children, and its primary outcome

was quality of life.8 The review found that evidence for efficacy and safety were lacking.

The inability to blind patients and clinicians to treatment location may have discouraged

trials in this field. The standard in hospital versus home care RCTs for other conditions in

adults is an open-label approach.9 This should therefore be adopted in OPAT because the

lack of randomised trial evidence is hindering a possible change in practice.

This has not stopped medical practitioners from using OPAT, with an increasing number of

reports of institutional practice, including the recent concept of OPAT for patients directly

from the emergency department (ED), completely avoiding admission to hospital.4,10,11-13

This increase in practice without robust evidence for efficacy and safety has created an

unresolved debate, as the antibiotic most frequently used in paediatric OPAT, and

particularly in admission avoidance management pathways, is ceftriaxone, a broad

spectrum cephalosporin.1,2,13 The reasons for using ceftriaxone are that it can be

administered once daily, it is a single dose so a peripheral cannula can be inserted in ED,

and it has efficacy against many pathogens causing common childhood infections.14

154

However, the argument against using ceftriaxone is that broad spectrum cephalosporin use

in predominantly adult inpatient studies has been temporally associated with the isolation

of resistant bacteria.15,16,17 Although this has not been shown for ceftriaxone use at home,

the current global crisis in antibiotic resistance raises legitimate concerns which have not

been addressed in OPAT in children. The question is therefore whether the benefits of

OPAT outweigh the disadvantages of ceftriaxone use in this setting, and we currently lack

the data to answer this.

We therefore designed the first RCT of OPAT for admission avoidance in children, using

ceftriaxone to treat moderate to severe cellulitis as a paradigm. While the majority of

children with cellulitis can be treated with oral antibiotics, a significant proportion who

have moderate/severe cellulitis, defined as those who require intravenous antibiotics, with

skin and soft tissue infections accounting for over 74,000 US paediatric hospitalisations

annually.18 Cellulitis in hospitalised children is usually managed with narrow spectrum

intravenous antibiotics such as flucloxacillin, but this is administered 6 hourly so is not

compatible with ambulatory use through a peripheral cannula, with ceftriaxone the only

viable alternative. For a trial of OPAT to have useful outcomes that are translatable to

clinical practice, it needs to compare a feasible OPAT option to standard hospital treatment.

Our aim was to compare the efficacy, safety, satisfaction and institutional costs of

treatment at home using intravenous ceftriaxone with standard treatment in hospital using

intravenous flucloxacillin. We hypothesized that children treated at home with intravenous

antibiotics (by necessity ceftriaxone) would not have inferior outcomes to those treated in

hospital (with flucloxacillin). We also specifically aimed to investigate the association

between ceftriaxone use and colonisation with resistant bacteria to provide the first

microbiological evidence for or against its use in the OPAT setting.  

155

Methods

Study Design and participants

The Cellulitis at Home or Inpatient in Children from the Emergency Department

(CHOICE) trial was a single centre, randomised, open label non-inferiority trial. Patients

were enrolled from The Royal Children’s Hospital Melbourne (RCH), a tertiary paediatric

hospital in Melbourne, Australia. Ethics approval was obtained from the institutional

human research and ethics committee. The study protocol was previously published.19

Children and adolescents aged 6 months to 18 years who presented to the RCH ED with

moderate to severe cellulitis were eligible. The inclusion criteria included a diagnosis of

cellulitis requiring intravenous antibiotics by an experienced Emergency clinician (senior

trainee). Reasons for intravenous antibiotics included failed oral antibiotics (no

improvement despite 24 hours of oral antibiotics), rapidly spreading redness, significant

swelling or erythema or pain, systemic symptoms or signs, and difficult to treat areas (eg

facial, periorbital). Children were excluded if they had complicated cellulitis which

includes an undrained abscess, toxicity, underlying comorbidities, unable to obtain

intravenous access, age <6 months old, and with mild cellulitis (appendix). Written

informed consent was obtained from a parent or guardian and from the child when

appropriate, by a study investigator or a research nurse. Ethics approval was obtained from

the institutional human research and ethics committee, at the RCH, reference number

HREC34254. All participants gave informed consent before taking part.

Randomisation and masking

After obtaining written informed consent, eligible patients were randomly assigned in a 1:1

ratio using a web-based randomisation procedure to receive either standard care, which was

156

hospitalisation for treatment with intravenous flucloxacillin (50 mg/kg, every 6 hours) or

the intervention care, which was treatment at home with intravenous ceftriaxone (50 mg/kg,

once a day). The randomisation was in randomly permuted blocks of variable length,

stratified by a) age (6 months to 8 years versus 9 to 18 years) and b) presence of periorbital

cellulitis. These stratification factors, young age and presence of periorbital involvement,

were previously identified as reasons for clinicians’ hesitation in using OPAT. Preparation

of the randomisation sequence was completed by a data management coordinator

independent of the research team and had no further role in the trial. The trial statistician

was blinded to treatment assignment until the primary outcome was analysed. Home care

and hospital medical and nursing staff were not blinded to group assignment.

Procedures

Regardless of the study arm, the child had an intravenous peripheral cannula inserted, and

the first dose of antibiotic administration in ED. None of the patients received intravenous

antibiotics pre-randomisation. The patient had a blood culture collected and a skin swab if

there was discharge from the infected area. A line was drawn on the skin to demarcate the

cellulitis in the ED.

Hospital group: The patient received further doses of intravenous flucloxacillin every 6

hours on the ward in hospital. There was at least daily review by a hospital ward medical

registrar (senior trainee) and at least 4 hourly nursing observations. All of the children in

the hospital group had a continuous infusion of normal saline through their intravenous

cannula between antibiotic doses as per standard practice.

Home group: A referral was made from the ED to the home care team (available 24/7).

After receiving the first dose of ceftriaxone in the ED and meeting a home care nurse, the

patient went home with the peripheral cannula in situ until intravenous antibiotics were

157

ceased. Families were provided with a contact telephone number for a home care nurse

available 24 hours a day. A nurse visited the child at home and administered intravenous

ceftriaxone 50 mg per kilogram over a period of 3 to 5 minutes once daily until the child

was deemed suitable for oral therapy. A home care medical registrar (senior trainee)

reviewed the child in person at least once during the course of treatment, and daily by

teleconferencing and, where necessary, reviewing digital photographs.

In all patients, the decision to cease intravenous antibiotics was made when deemed

clinically appropriate by the hospital or home care doctors respectively, reflecting the real

clinical situation.

Outcomes

The primary outcome was treatment failure defined as lack of clinical improvement of

cellulitis or an adverse event, resulting in a change of initial empiric antibiotics within 2

days (48 hours) of treatment from the start of the first antibiotic dose given in the ED.

Clinical improvement was an objective measure: either continuous or binary assessments as

per the trial protocol (reduction in fever i.e. temperature, cellulitis area, severity of swelling

and erythema). Treatment failure was identified when there were no improvements in any

of the clinical features documented at baseline or an adverse event. Additionally, daily

photographs were taken for comparison, with the first taking place in the ED as baseline.

Secondary outcomes, assessed for 14 days for all patients after discharge, were length of

stay in ED, cessation of erythema spread within 24 hours (by observing spread of erythema

from demarcated line), duration of intravenous antibiotics, the number of intravenous

catheterisations during treatment, length of stay under medical care, re-presentation to ED,

readmission, safety measures (adverse events and complications). The hospital and home

158

care registrars were trained to perform assessments in a standardized way, documented

their assessment of the child daily with regards to clinical improvement, adverse events,

complications and cessation of spread of cellulitis.

Microbiology outcomes were collected for a subgroup of patients who consented. Samples

were used for the investigation of the potential acquisition of resistant colonizing

organisms (extended-spectrum beta-lactamase (ESBL) producing bacteria, vancomycin-

resistant enterococci (VRE) and methicillin-resistant S. aureus (MRSA) and Clostridium

difficile (C. difficile). This was optional and not providing samples did not preclude them

from the study. Parents were also asked to anonymously rate their experience (1 to 5 Likert

scale, 1=very poor, 5=very good), their routine disruption (1=no disruption, 2=slight

disruption, 3=a lot of disruption) and state their preference for either hospital or home

treatment 7 to 14 days after discharge from medical care. An institutional cost comparison

was conducted between the home and hospital groups including the cost of nursing and

medical resources (which includes 24/7 availability for referral and calls), consumable

items, indirect overhead costs including administrative time, information technology and

use of hospital vehicles for visiting patients. A full cost-effectiveness analysis was planned

and conducted alongside this trial, which will be published separately.

Statistical Analysis

Previous data collection at RCH showed a failure rate of standard treatment of cellulitis

with flucloxacillin in hospital of 5-7%.11 The premise for the sample size calculation of this

trial was a treatment failure rate in hospital of approximately 7% and an estimated

treatment failure rate at home of about 10%. We specified that for the home group to be

non-inferior (and clinically acceptable based on the literature and in discussion with ED

159

clinicians), the upper margin of the two-sided 95% confidence interval of the difference in

proportions of treatment failure between the home and the hospital group should be no

greater than 15% difference. In other words, OPAT would be deemed acceptable to

clinicians and families if 80% of children can be successfully treated at home.13 With this

premise, 89 subjects per group were required to provide a statistical power of 80%. Thus,

allowing for a dropout rate and/or cross over between treatments of 5%, 94 participants

were required in each treatment arm, or 188 in total.

The risk difference (RD) between the failure rates in the home and the hospital groups and

its 95% two-sided confidence interval (CI) was obtained by running a binomial regression

model on the primary outcome, adjusted by the stratification factors (age at randomisation

and presence of periorbital cellulitis) as predictors. Binary secondary outcomes were

compared between the two groups using the same adjusted binomial regression used for the

primary outcome. Continuous secondary outcomes were compared between the two groups

using a linear regression model adjusted by the stratification factors. When investigating

acquisition of post-intravenous antibiotic resistant organisms, samples were analysed only

from the per-protocol analysis. Acquisition was documented if a sample at 7 to 14 days or 3

month time point was positive for ESBL, VRE, C. difficile in stool or MRSA in nasal

swabs with a preceding sample that was negative. Microbiology laboratory methodology is

detailed separately (appendix).

As this was a non-inferiority trial, the analyses of the primary and secondary outcomes was

done via intention-to-treat and per-protocol analyses, since participants not following the

protocol were likely to bias the estimated treatment effect towards zero (figure 1).

Participants who were found to be randomised in error were excluded from the analysis and

replaced. An independent data and safety monitoring committee provided trial oversight

160

and reviewed data including adverse events and protocol violations by treatment arm every

six months for the duration of the recruitment period. All analyses were done using Stata

version 15·0. This trial was registered at ClinicalTrials.gov, registry number

NCT02334124.

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data

interpretation, or writing of the report. The first and corresponding author had full access to

all the data in the study and had final responsibility for the decision to submit for

publication.

Results

Between 9th January 2015 and 15th June 2017, 1135 children who presented to ED with

cellulitis were screened (figure 1). Of 190 randomised, two patients were found to be

ineligible after randomisation and were therefore replaced. This resulted in 188 study

participants with 93 randomised to the home arm and 95 to the hospital arm. All study

participants had a primary outcome and 100% were followed up at 7 to 14 days after initial

presentation to document secondary outcomes. Forty-two percent of patients presented with

systemic features, which was primarily fever.(table 1) When systemic features were

explored in more detail, the proportion of patients febrile in the ED was significantly lower

in the home group than the hospital group (3% vs 18%). Fifty-two percent of participants

had received prior oral antibiotics, with a median number of 4 doses (interquartile range 3

to 8).

In the intention-to-treat analysis, there were 2 patients in the home group who had

treatment failure compared to 7 patients in the hospital group (2% vs 7%, RD -5·3%; 95%

161

CI -11·3 to 0·8) (table 2). Therefore the pre-specified criteria for non-inferiority for the

home group were met. In other words, the results of this non-inferiority randomised trial

significantly reject the null hypothesis that home treatment is inferior to hospital treatment.

Further, in the per-protocol analysis of the primary outcome, treatment failure was

significantly lower in the home group [1 (1%) of 89 vs 7 (8%) of 91, RD -6·5%; 95% CI -

12·4 to -0·7]. In the intention-to-treat analysis, the 2 patients who had treatment failure in

the home group were as follows: 1 patient developed a localised abscess a day after initial

ED presentation. At this point, a family history of MRSA infection was elicited, so this

patient was admitted to hospital for intravenous vancomycin and her skin swab

subsequently cultured MRSA. The second patient who had treatment failure in the

intention-to-treat home group was actually treated in hospital with intravenous

flucloxacillin after randomisation. This patient developed a rash consistent with

flucloxacillin allergy after 24 hours and was therefore switched to intravenous ceftriaxone.

In the hospital group, 5 of the 7 patients with treatment failure had no clinical

improvement, which prompted an additional antibiotic to be added to the treatment regimen

within 48 hours (ceftriaxone n=3, vancomycin n=1, oral clindamycin n=1). The remaining

2 of 7 patients were changed to a different antibiotic: one to benzylpenicillin due to lack of

clinical improvement after 47 hours and to ceftriaxone after 24 hours when he developed a

rash consistent with flucloxacillin allergy. All patients eventually fully recovered.

The proportion of children in the intention-to-treat analysis with adverse events were lower

in the home group (2% vs 11%, p=0·048, table 3). These comprised the following: home:

(n=2); rash (n=1), dosing error (n=1); hospital: (n=10), diarrhea or vomiting (n=7),

headache (n=1), vasovagal episode (n=1), and hypotension (n=1). The patient with

hypotension had intermittent low blood pressure (lowest reading 85/56 with normal blood

162

pressure in between, without associated tachycardia) and looked clinically well throughout.

Six percent of children in both groups had complications during treatment (p=0·99). These

comprised the following: home: drainage of abscess or blister (n=6); hospital: drainage of

abscess or blister (n=5) and removal of foreign body (n=1).

Secondary outcomes favoring the home group were shorter length of stay in ED and lower

rate of re-catheterisation, while outcomes favoring the hospital group were shorter duration

of intravenous antibiotics and medical care (table 3). Two percent of children in both

groups re-presented to the ED after discharge (p=0·98). The per-protocol analysis of all

secondary clinical outcomes yielded similar results (appendix). An exploratory analysis

compared those who had failed prior antibiotics to those who had not received any

antibiotics previously and this did not show any differences (appendix).

Of 170 (90%) patients who had a blood culture taken, only 1 (1%) isolated a pathogenic

organism. A single positive blood culture for Staphylococcus aureus occurred in a patient

in the home group who was subsequently diagnosed with osteomyelitis. This patient

remained at home on ceftriaxone as he was already clinically well by the time the culture

flagged as positive; repeat blood culture was negative. Of 159 (85%) patients who provided

at least one microbiological sample, approximately 50% of patients provided longitudinal

stool and nasal swab samples for evaluation of acquisition of resistance. Those who

provided stool samples were slightly younger than those who did not (baseline:

5.8±4.3versus 8.5±4.5, p=0.0001, 7-14 days: 6.0±4.8 versus 8.1±4.5, p=0.001, 3 months:

5.6±4.4 versus 8.1±4.5, p=0.001) and those with treatment failure were less likely to

provide follow up stool samples than those without (7-14 days: 1/81 versus 7/99, p=0.045,

3 months: 0/79 versus 8/101, p<0.001)(appendix). In stool samples at baseline, the

prevalence of ESBL and C. difficile were similar between the home and hospital groups

163

and no patient isolated VRE (table 4). After antibiotics there was no difference between

groups in the proportion of acquisition of ESBL at 7-14 days (home 6% vs hospital 0%,

p=0·13) or at 3 months (11% vs 8%, p=0.64). Likewise there was no difference in

acquisition of C. difficile at 7-14 days (home 6% vs hospital 8%, p=0·94) or at 3 months

(11% vs 10%, p=0·95). No patient acquired VRE at either time point. The rate of MRSA

nasal carriage was 0% in both groups, although one patient cultured MRSA from abscess

pus as above. After antibiotics no patient acquired MRSA.

With regards to quality of life during treatment, 69/73 (95%) of the home group rated the

experience of care as very good compared to 45/62 (73%) of the hospital group

(p=0·001)(table 3). Disruption to parental and child routine were both significantly greater

in the hospital group, and more parents in the home than hospital group would choose

treatment for their child in the same location again (p<0·001).

At our institution, the average cost of treating a patient with moderate to severe cellulitis at

home is AUD530 (GBP308) per day, compared to the cost of a hospital bed on a medical

ward which is AUD1,297 (GBP752) per day. The patients treated at home in the intention-

to-treat analysis were under medical care for a combined total of 242 days. Including the

cost of hospital stay for the 2 patients who were assigned home treatment but had treatment

failure and subsequently required hospitalisation, (6 hospitalised days), the home patients

cost AUD1463 (GBP849) per patient per day. The patients in the hospital group in the

intention-to-treat analysis were admitted for a total of 190 days which cost AUD 2594

(GBP1505) per patient per day, amounting to an excess cost of AUD110,387 (GBP64,052)

compared to the home group. The cost analysis of the per-protocol population yielded a

cost difference of AUD122,104, (GBP70,884) in favor of the home group.

164

Discussion

In this randomised trial of home versus hospital for the treatment of cellulitis in children,

the rate of treatment failure at home with intravenous ceftriaxone was non-inferior to

standard treatment in hospital of intravenous flucloxacillin. In addition, the per-protocol

analysis showed home treatment had lower treatment failure than hospital treatment.

Failing to improve meant there was no improvement at all in all four of the assessment

criteria compared to baseline. This resulted in a team discussion between at least the

registrar and consultant (and usually other members of the team) which led to a discussion

with parents/guardian of the child before changing the antibiotic. Although there were more

children febrile in ED in the hospital group, only 2 of the 18 febrile children had treatment

failure, both in the hospital group.

This study also found that treatment of cellulitis at home with ceftriaxone, appeared to be

safe, as measured by low rates of adverse events, complications and readmissions, although

it was not powered for rare serious events. Although the frequency of formal reporting of

adverse events was daily for both groups, hospital patients had more opportunities to report

any adverse events in face-to-face encounters with medical or nursing staff compared to the

home group. It is very unlikely that symptomatic adverse events such as vasovagal

syncope, diarrhoea or vomiting occurring in patients of the home group would not have

been reported by parents. The worst outcome for a patient at home was return to hospital

for drainage of an abscess. No patient with moderate to severe cellulitis developed sepsis,

consistent with previous studies.11,20,21

With antimicrobial resistance increasing globally, investigating acquisition of resistant

organisms is as important as clinical efficacy and safety. In our study, there was no

165

increased risk of acquisition of resistant nasal or gastrointestinal bacteria or C. difficile in

those treated with ceftriaxone at home compared to those treated with flucloxacillin in

hospital; in particular there was zero acquisition of MRSA. We propose that these findings

are due to a) a different population and b) different antibiotic duration. The association

between third-generation cephalosporin use and colonisation with resistant organisms in

children is less strong than in adults and is predominantly from neonatal studies of unit

antibiotic policy. While most are retrospective or observational making confounding

factors difficult to exclude, there is a single prospective cross-over intervention trial

showing that an antibiotic policy including cefotaxime is associated with colonisation with

cefotaxime-resistant Enterobacteriaceae 22 However, a recent neonatal unit study showed a

steady increase over 25 years in third-generation cephalosporin resistance despite the

absence of third-generation cephalosporin use.23 The same is true with VRE, C. difficile

and nasal colonisation with MRSA: studies have either been in sick or inpatient populations

with prolonged use15, or have not shown a relationship16. No previous studies associating

ceftriaxone with increased bacterial resistance were in previously healthy children

receiving OPAT at home and none investigated short-course use.17,23-26 Other factors to

consider include that our region has low prevalence of resistance in children, particularly

MRSA, although this reflects many paediatric populations worldwide, applicability of the

trial's findings may be limited in regions with high prevalence. Only approximately half of

patients provided longitudinal samples for resistance analysis, so this result may not be

representative of the whole population. However, the tested patients were for the most part,

clinically indistinguishable from those that did not provide a sample (appendix). Our

findings suggest therefore that short-term ceftriaxone use in the OPAT setting in previously

healthy children does not appear to be associated with acquisition of resistance in children.

166

However, as our study was powered for efficacy and not microbiological outcomes, larger

studies are now needed of longer-term use in the outpatient/home setting.

Length of stay in ED was longer in the hospital group, likely reflecting the wait for a

hospital bed, an important finding with ever-increasing pressure to reduce ED waiting

times.27 Intravenous cannulation was also repeated more often in the hospital group. This

may be related to the use in hospital of low volume continuous infusion to keep the vein

open, or possibly the direct irritant effect of intravenous flucloxacillin.28 The duration of

intravenous treatment and consequent length of medical care were longer in the home

group by half a day, likely reflecting that the home care staff only had one opportunity per

day to stop treatment or discharge the patient - a result of the antibiotic dosing interval.

Our study reported high satisfaction rates with home management, and significantly lower

disruption for both parents and patients. While previous studies have shown satisfaction for

children treated via ambulatory pathways, this is the first study to compare satisfaction

between home and hospital groups in non pre-selected patients.4,13

The strengths of this study are that it is the first randomised study of OPAT in children

directly from the ED. It is powered for clinical efficacy, with as low a risk of bias as is

possible in an OPAT RCT. It is also the first to attempt to answer the question about the

microbiological effects of ceftriaxone for short-term OPAT. The main limitation of our

study is applicability to other centers without a home care visiting team. However, studies

have shown that other modes of ambulatory pathways (eg day treatment centres, patients

returning to a physician’s rooms) are also cost effective and preferred by patients to

hospitalisation. We therefore designed this study to be as widely applicable as possible to

other healthcare systems, for example by administering a daily rather than twice daily

167

antibiotic in the home arm, by having more junior doctors make the daily assessments and

by having multiple doctors actually working on the job rather than study doctors assessing

the patients, so our results could be translated to other management pathways. Additionally,

patients who required abscess drainage were directed to the ED, with minimal waiting time

as they already had a management pathway identified. Secondly, there is no gold standard

for the diagnosis of cellulitis requiring intravenous antibiotics. However, the proportion of

children at RCH that receive intravenous antibiotics for uncomplicated cellulitis is lower

than at other institutions.29 Additionally it has reduced from 184 (26%) of 700 in an earlier

observational study11 to 190 (22%) of 881 in this trial and our data showed more than half

had already failed oral antibiotic treatment; this reflects the pragmatic reality of decision-

making by clinicians. Thirdly, due to the deliberate design of this study comparing two

locations with two different antibiotics, the findings of this study cannot be attributed

solely to the location of treatment or to the different antibiotics. For example, the increased

adverse events in hospital compared to home could be due to location or antibiotic or a

combination of the two, so the trial results must be examined in detail when drawing

conclusions. This decision was made to ensure a combination of best practice and

translatability and the only comparison of clinical relevance in the real world. Lastly,

clinicians assessing the primary outcome could not be blinded to home versus hospital care.

While not having blinded assessors has the potential to introduce bias, we determined that

for translatability into clinical practice it was important that it was the ‘on the ground’

clinicians assessing the patients in front of them in real time. We believe we have

minimised the risk of bias by having both pre-determined criteria for ceasing intravenous

antibiotics and multiple clinicians in both arms making the assessments.

168

For children who require intravenous antibiotics for cellulitis, this study provides evidence

that treatment at home with short-course ceftriaxone is efficacious, safe, preferred by

patients and less costly, allowing children to avoid hospital admission with all of its

attendant benefits. In previously healthy children, the use of ceftriaxone at home did not

show a signal of increased acquisition of resistant organisms investigated, although larger

studies are now needed. Regardless, this finding should not be extrapolated to longer

courses of ceftriaxone and robust antimicrobial stewardship should remain a mainstay of

OPAT programs.

Contributors

LFI conceptualized, designed and coordinated the study, carried out the initial and

subsequent data analysis, drafted the initial manuscript, revised subsequent drafts and

approved the final manuscript as submitted. PAB, FEB, and SMH, were involved in the

design of the study, provided input into data analysis, reviewed and revised the manuscript

and approved the final draft. FO was involved in the design of the study, planned the

statistical analysis, carried out the initial data analysis, revised and approved the final

manuscript as submitted. AJD was involved in the design of the microbiology part of the

study, reviewed and revised the manuscript and approved the final draft. All authors

approved the final manuscript.

Declaration of interests

The authors listed above certify that they have no affiliations with any organisation or

entity with any financial or non-financial interest on the materials discussed in this

manuscript. The authors declare there are no competing interests of note. Funding

169

organisations had no role in study design, data collection, data analysis, data interpretation,

or writing of the report.

Acknowledgments

We would like to acknowledge the participation of patients and families and the RCH

Microbiology laboratory staff.

Funding

This study was funded in part by grants from the RCH Foundation, the Murdoch Children's

Research Institute (MCRI), the Victorian Department of Health, Melbourne Australia. LFI

was supported in part by a scholarship from AVANT Mutual Group Ltd, Melbourne, the

Melbourne Children’s Campus Postgraduate Health Research Scholarship and the Doctor

Nicholas Collins Fellowship. PAB was in part supported by a Melbourne Campus Clinician

Scientist Fellowship, Melbourne, Australia. FEB was supported in part by a grant from the

RCH Foundation and a Melbourne Campus Clinician Scientist Fellowship, Melbourne,

Australia and a National Health and Medical Research Council (NHMRC) Practitioner

Fellowship, Canberra, Australia. The emergency research group, MCRI, is in part

supported by an NHMRC Centre for Research Excellence Grant for Paediatric Emergency

Medicine, Canberra, Australia and the Victorian government infrastructure support

program.

References

1. Fernandes P, Milliren C, Mahoney-West HM, Schwartz L, Lachenauer CS,

Nakamura MM. Safety of Outpatient Parenteral Antimicrobial Therapy in Children.

Pediatr Infect Dis J 2017.

170

2. Hodgson KA, Huynh J, Ibrahim LF, et al. The use, appropriateness and outcomes of

outpatient parenteral antimicrobial therapy. Archives of disease in childhood 2016;

101(10): 886-93.

3. Elema A, Zalmstra TA, Boonstra AM, Narayanan UG, Reinders-Messelink HA,

AA VDP. Pain and hospital admissions are important factors associated with quality of life

in nonambulatory children. Acta paediatrica 2016; 105(9): e419-25.

4. Orme LM, Babl FE, Barnes C, Barnett P, Donath S, Ashley DM. Outpatient versus

inpatient IV antibiotic management for pediatric oncology patients with low risk febrile

neutropenia: a randomised trial. Pediatr Blood Cancer 2014; 61(8): 1427-33.

5. Hulten KG, Kaplan SL, Lamberth LB, et al. Hospital-acquired Staphylococcus

aureus infections at Texas Children's Hospital, 2001-2007. Infection control and hospital

epidemiology 2010; 31(2): 183-90.

6. Sartain SA, Maxwell MJ, Todd PJ, Haycox AR, Bundred PE. Users' views on

hospital and home care for acute illness in childhood. Health Soc Care Community 2001;

9(2): 108-17.

7. Hansson H, Kjaergaard H, Johansen C, et al. Hospital-based home care for children

with cancer: feasibility and psychosocial impact on children and their families. Pediatr

Blood Cancer 2013; 60(5): 865-72.

8. Bryant PA, Katz NT. Inpatient versus outpatient parenteral antibiotic therapy at

home for acute infections in children: a systematic review. The Lancet Infectious diseases

2017.

9. Caplan GA. A meta-analysis of "hospital in the home". Med J Aust 2013; 198(4):

195-6.

171

10. Sartain SA, Maxwell MJ, Todd PJ, et al. Randomised controlled trial comparing an

acute paediatric hospital at home scheme with conventional hospital care. Archives of

disease in childhood 2002; 87(5): 371-5.

11. Ibrahim LF, Hopper SM, Babl FE, Bryant PA. Who Can Safely Have Antibiotics at

Home? A Prospective Observational Study in Children with Moderate/Severe Cellulitis.

Pediatr Infect Dis J 2015.

12. Brugha RE, Abrahamson E. Ambulatory intravenous antibiotic therapy for children

with preseptal cellulitis. Pediatric emergency care 2012; 28(3): 226-8.

13. Gouin S, Chevalier I, Gauthier M, Lamarre V. Prospective evaluation of the

management of moderate to severe cellulitis with parenteral antibiotics at a paediatric day

treatment centre. Journal of paediatrics and child health 2008; 44(4): 214-8.

14. Frenkel LD. Once-daily administration of ceftriaxone for the treatment of selected

serious bacterial infections in children. Pediatrics 1988; 82(3 Pt 2): 486-91.

15. Washio M, Mizoue T, Kajioka T, et al. Risk factors for methicillin-resistant

Staphylococcus aureus (MRSA) infection in a Japanese geriatric hospital. Public health

1997; 111(3): 187-90.

16. McKinnell JA, Kunz DF, Chamot E, et al. Association between vancomycin-

resistant Enterococci bacteremia and ceftriaxone usage. Infection control and hospital

epidemiology 2012; 33(7): 718-24.

17. Meletiadis J, Turlej-Rogacka A, Lerner A, et al. Amplification of Antimicrobial

Resistance in Gut Flora of Patients Treated with Ceftriaxone. Antimicrobial agents and

chemotherapy 2017.

18. Lopez MA, Cruz AT, Kowalkowski MA, Raphael JL. Trends in resource utilization

for hospitalized children with skin and soft tissue infections. Pediatrics 2013; 131(3): e718-

25.

172

19. Ibrahim LF, Babl FE, Orsini F, Hopper SM, Bryant PA. Cellulitis: Home Or

Inpatient in Children from the Emergency Department (CHOICE): protocol for a

randomised controlled trial. BMJ open 2016; 6(1): e009606.

20. Bryant PA, Babl FE, Daley AJ, Hopper SM, Ibrahim LF. Blood Cultures in

Cellulitis are not Cost Effective and Should Prompt Investigation for an Alternative Focus.

The Paediatric Infectious Disease Journal 2016; 35(1)(January 2016): 118.

21. Malone JR, Durica SR, Thompson DM, Bogie A, Naifeh M. Blood cultures in the

evaluation of uncomplicated skin and soft tissue infections. Pediatrics 2013; 132(3): 454-9.

22. de Man P, Verhoeven BA, Verbrugh HA, Vos MC, van den Anker JN. An

antibiotic policy to prevent emergence of resistant bacilli. Lancet 2000; 355(9208): 973-8.

23. Carr D, Barnes EH, Gordon A, Isaacs D. Effect of antibiotic use on antimicrobial

antibiotic resistance and late-onset neonatal infections over 25 years in an Australian

tertiary neonatal unit. Archives of disease in childhood Fetal and neonatal edition 2017;

102(3): F244-F50.

24. Knudsen PK, Brandtzaeg P, Hoiby EA, et al. Impact of extensive antibiotic

treatment on faecal carriage of antibiotic-resistant enterobacteria in children in a low

resistance prevalence setting. PloS one 2017; 12(11): e0187618.

25. Prevot MH, Andremont A, Sancho-Garnier H, Tancrede C. Epidemiology of

intestinal colonization by members of the family Enterobacteriaceae resistant to cefotaxime

in a hematology-oncology unit. Antimicrobial agents and chemotherapy 1986; 30(6): 945-

7.

26. Adams DJ, Eberly MD, Rajnik M, Nylund CM. Risk Factors for Community-

Associated Clostridium difficile Infection in Children. The Journal of pediatrics 2017; 186:

105-9.

173

27. Melo MR, Ferreira-Magalhaes M, Flor-Lima F, et al. Dedicated Pediatricians in

Emergency Department: Shorter Waiting Times and Lower Costs. PloS one 2016; 11(8):

e0161149.

28. Paquet F, Marchionni C. What Is Your KVO? Historical Perspectives, Review of

Evidence, and a Survey About an Often Overlooked Nursing Practice. Journal of infusion

nursing : the official publication of the Infusion Nurses Society 2016; 39(1): 32-7.

29. Khangura S, Wallace J, Kissoon N, Kodeeswaran T. Management of cellulitis in a

pediatric emergency department. Pediatric emergency care 2007; 23(11): 805-11.

174

Table 1. Baseline demographics and clinical characteristics in the intention-to-treat population.

*Several patients had more than one systemic feature. Other systemic features were headache, irritable, generalised aches, rash, rigors. Other co-morbidities were haematological disorder, laryngomalacia, cleft lip/palate, other skin disorder. Inguinal hernia. ED=Emergency Department, GP=General Practitioner, SD=standard deviation

Home ceftriaxone

n=93 No. (%)

Hospital flucloxacillin

n=95 No. (%)

Age – mean years ± SD

7·01±4·98

7·08±4·20

Female 37 (40) 49 (52)

Periorbital cellulitis 25 (27) 28 (29)

Age category 6 months to <9 years 9 years to <18 years

66 (71) 27 (29)

67 (71) 28 (29)

Prior oral antibiotics 54 (58) 43 (45)

Systemic features* Febrile>38 in ED Febrile>38 at home or GP Reported fever Vomiting Lethargic Rigors Others

37 (40) 3 (3)

19 (20) 2 (3) 2 (3) 7 (8) 2 (2)

10 (11)

42 (44) 18 (19) 16 (17)

3 (3) 3 (3)

13 (14) 1 (1) 7 (7)

Site Lower limb Periorbital Upper limb Head and neck Trunk Chest Back Face Perineum

40 (43) 25 (27) 20 (22)

2 (2) 0 (0) 1 (1) 1 (1) 3 (3) 1 (1)

48 (51) 28 (29) 10 (11)

0 (0) 2 (2) 0 (0) 2 (2) 5 (5) 0 (0)

Cellulitis features Body surface area – mean % ± SD Functional impairment Moderate to severe swelling

1·0±1·5 53 (57) 65 (70)

0·8±0·8 52 (55) 63 (66)

Co-morbidities Eczema Developmental Asthma Ventricular septal defect Others

13 (14) 4 (4) 4 (4) 1 (1) 1 (1) 3 (3)

13 (14) 6 (6) 3 (3) 1 (1) 1 (1) 2 (3)

175

Table 2. Comparison of primary outcome of treatment failure between groups adjusted for stratification factors Home

ceftriaxone No./Total (%)

Hospital flucloxacillin No./Total (%)

Risk difference (95% CI)

p value

Intention-to-treat analysis Per-protocol analysis

2/93 (2)

1/89 (1)

7/95 (7)

7/91 (8)

-5·3 (-11·3 to 0·8)

-6·5 (-12·4 to -0·7)

0·09

0·029

176

Table 3. Secondary outcomes in the intention-to-treat population adjusted for stratification factors

Home ceftriaxone

No. (%) n=93

Hospital flucloxacillin

No. (%) n=95

Risk or mean difference or odds

ratio* (95% CI)

p value

Clinical outcomes Length of stay in ED – mean hours ± SD

4·3±1·9 5·5±3·1 -1·2 (-1·9 to -0·4) 0·002

Cellulitis stopped spreading within 24 hours

76 (83) 61 (66) 16·8 (4·8 to 28·8) 0·006

Adverse events during hospital or home care

2 (2) 10 (11) -9·8 (-19·5 to -0·1) 0·048

Complications during hospital or home care

6 (6) 6 (6) 0·0 (-6·9 to 6·9) 0·99

Required IV cannula reinsertion during hospital or home care

3 (3) 17 (18) -16·7 (-28·2 to -5·3) 0·004

Duration of IV antibiotics – mean days ± SD

2·2±2·4 1·7±1·1 0·5 (0·0 to 1·1) 0·045

Duration of oral antibiotics after IV– mean days ± SD

6.1±2.8 6.3±2.5 -0.3 (-1.0 to 0.5) 0.49

Total duration of antibiotics – mean days ± SD

8.1±5.0 8.3±2.9 0.2 (-1.0 to 1.4) 0.73

Length of stay under medical care – mean days ± SD

2·7±2·4 2·0±1·1 0·6 (0·1 to 1·2) 0·02

Re-presented to ED within 14 days of discharge, due to same cellulitis

2 (2) 2 (2) 0·0 (-4·1 to 4·2) 0·98

Quality of life outcomes Returned satisfaction questionnaire

73 (79) 62 (65) 1.9 (1.0 to 3.7) 0·04

Reported very good experience

69 (95)

45 (73)

6·5 ( 2·1 to 20·6)

0·001

Reported very poor experience

0 (0)

0 (0)

N/A

No disruption to parental routine

48 (66)

40 (25) 2·8 (1·4 to 5·7) 0·03

No disruption to child routine

49 (67) 22 (35) 3·7 (1·8 to 7·8)

<0·001

Would choose treatment in same location

68 (97)

26 (42)

21·1 (4·5 to 99·3) <0·001

177

*Risk difference is reported for binary outcomes and mean difference for continuous outcomes, odds ratios are presented for questionnaire responses. Percentages for satisfaction questionnaire are based on those who returned the questionnaires (questionnaire responses are not corrected for stratification factors). ED=Emergency Department, IV=intravenous, SD=standard deviation

178

Table 4. Microbiology outcomes in a subgroup of patients Home

ceftriaxone No. (%)

Hospital flucloxacillin

No. (%)

p value

Baseline Stool ESBL C. difficile Nasal MRSA

7/46 (16) 4/46 (10)

0/68 (0)

4/44 (9)

5/44 (11)

0/63 (0)

0.52 0.74

N/A

Colonisation post antibiotics Stool At 7 to 14 days ESBL C. difficile At 3 months ESBL C. difficile Nasal At 7 to 14 days MRSA At 3 months MRSA

10/48 (21) 6/48 (13)

8/44 (18) 4/44 (6)

0/49 (0)

1/54 (2)

4/33 (12) 4/33 (12)

7/35 (20) 4/35 (9)

0/35 (0)

0/34 (0)

0.38 1.00

0.84 0.57

N/A

0.31

Acquisition post antibiotics Stool At 7 to 14 days ESBL C. difficile At 3 months ESBL C. difficile Nasal At 7 to 14 days MRSA At 3 months MRSA

3/41 (7) 3/43 (7)

4/40 (10) 3/43 (7)

0/49 (0)

0/53 (0)

0/29 (0) 2/31 (7)

3/31 (10) 2/35 (6)

0/35 (0)

0/34 (0)

0.26 1.00

1.00 1.00

N/A

N/A

ESBL=extended spectrum beta-lactamase producing bacteria, C. difficile=Clostridium difficile, MRSA=methicillin-resistant Staphylococcus aureus *Persistently-colonised patients or patients who were colonised but had no baseline sample were excluded from acquisition analysis

179

Excluded (n=917): Mild cellulitis - received only oral antibiotics (n=530) Complicated cellulitis (n=351) Abscess require surgical drainage (n=73) Toxicity (n=18) Orbital cellulitis (n=15) Co-morbidities (n=124) Require further imaging/surgical management (n=89) Age <6 months (n=32) Declined to participate (n=36) Patients were missed (n=28)

Randomised (n=190)

Randomised in error (n=2): Misreporting by radiology changing diagnosis to orbital cellulitis (n=1) Emergency clinician unaware fasciitis an exclusion criteria (n=1)

Allocated to receive home with ceftriaxone (n=95)

Assessed for eligibility (n=1135)

Allocated to receive hospital with flucloxacillin (n=95)

Per-protocol analysis (n=89)

Per-protocol analysis (n=91)

Did not receive allocated intervention (n=4): Families insisted on treatment in hospital after randomisation (n=2) Unable to cannulate, went home on oral antibiotic (n=1) Family insisted on initial hospitalisation then home treatment (n=1)

Did not receive allocated intervention (n=4): Families refused treatment in hospital after randomisation (n=2) Initially refused oral antibiotics then after randomisation agreed to comply with oral antibiotics (n=1) Child hospitalised but did not receive intravenous antibiotics (n=1)

Intention-to-treat analysis (n=93)

Intention-to-treat analysis (n=95)

180

Legend Figure 1. Trial profile The intention-to-treat analysis included all randomised participants where outcome data were available, regardless of treatment received. The per-protocol analysis included all individuals that received treatment as per randomised allocation and did not encounter any major protocol violation such as: received treatment in the hospital if randomised to the home group, or received treatment at home if randomised to hospital group or did not receive any study treatment.

181

Appendix Table of Contents

Exclusion criteria ...................................................................................................................................... 2

Supplementary microbiology methodology .............................................................................................. 2 Stool specimen .................................................................................................................................... 2 Nasal specimen .................................................................................................................................... 2

Supplementary tables ................................................................................................................................ 3 Supplementary table 1. Secondary outcomes in the per-protocol analyses adjusted for stratification factors ................................................................................................................................................... 3 Supplementary table 2. Comparison of baseline characteristics and clinical outcomes between patients who provided nasal samples and those who did not at baseline, 7-14 days and 3 months ..... 4 Supplementary table 3. Comparison of baseline characteristics and outcomes of patients who provided stool samples and those who did not at baseline, 7-14 days and 3 months .......................... 5 Supplementary table 4. Comparison of baseline characteristics and outcomes between those who failed prior oral antibiotics and those who did not receive any adjusted for stratification factors ...... 6 Supplementary table 5. Comparison of primary and secondary outcomes for those with periorbital cellulitis ................................................................................................................................................ 7 Supplementary table 6. Comparison of primary and secondary outcomes for those aged 6 months to 9 years ..................................................................................................................................................... 8 Supplementary table 7. Comparison of primary and secondary outcomes for those aged more than 9 years ..................................................................................................................................................... 9

182

Exclusion criteria Children were excluded if they had complicated cellulitis (orbital cellulitis or unable to exclude orbital cellulitis, penetrating injury/bites, suspected/confirmed foreign body, suspected fasciitis or myositis, varicella, undrained abscess including dental abscess), toxicity (tachycardia when afebrile or hypotension, poor central perfusion), underlying comorbidities (immunosuppression, liver, disease, any concurrent infection necessitating different antibiotic treatment to intravenous flucloxacillin or ceftriaxone monotherapy), other medical diagnoses necessitating admission to hospital for observation or treatment relating to the known medical condition, unable to obtain intravenous access, age <6 months old, with mild cellulitis (i.e. can be treated with oral antibiotics)

Supplementary microbiology methodology

Stool specimen Participants were provided with stool jars and provided with verbal and written instructions. Once stool was obtained using the attached spatula, the stool jars were refrigerated and collected within 12 hours and transported to the hospital laboratory where they were processed within 24 hours.

C. difficile detection: Three steps: 1) Qualitative enzyme immunoassay screening of stool usingglutamate dehydrogenase to detect C. difficile antigen (ImmunoCard C. difficile GDH (MeridianBioscience, Inc.)); 2) Positive results confirmed by PCR testing for toxigenic genes Toxin B, binarytoxin and the tcdC deletion (Xpert C.difficile assay Cepheid). 3) Culture: Samples are inoculated ontochromogenic C. difficile agar plate (chromID™ Biomerieux) and incubated anaerobically for 24 hours.Suspected C.difficile colonies are subcultured onto horse blood agar for 24-48 hours. Anaerobiccolonies are Gram stained and sent for Maldi-TOF identification.

ESBL detection: Samples are plated on ESBL screening agar plates producing 1 µg/ml cefotaxime and 3 µg/ml vancomycin for detection of ESBL-producing organisms and incubated overnight in air at 35°C. An oxidase test is done for any Gram-negative bacillus cultured. If it is oxidase positive, the screen is negative. If oxidase negative, VITEK 2 GN AST (Biomerieux) cards are set up for identification, sensitivity assays and ESBL detection.

VRE detection: Samples are inoculated directly onto chromogenic agar plates, Brilliance VRE (Oxoid) and incubated at 37°C in air for 24-48 hours. Plates were inspected for suspicious colonies at 24 hours then at 28 hours. Suspicious colonies were followed up by performing Streptococcal grouping. If group D is identified, a VITEK 2 GN AST (Biomerieux) cards are set up for identification sensitivity testing.

Nasal specimen A nasal swab was gently twirled in both anterior nares and immediately placed in Amies charcoal transport medium and processed in the microbiology laboratory within 12 hours of sampling.

MRSA detection: Nasal swabs are inoculated onto mannitol salt agar, horse blood agar (HBA) and MacConkey agar, and incubated at 35°C in air for 2 days. Colonies suggestive of Staphylococcus have Staph latex (Prolex) testing and are subcultured on DNase agar for S. aureus confirmation. Antibiotic susceptibility testing is done on a VITEK 2 GN AST (Biomerieux) and interpreted per the CLSI guideline.

183

Supplementary tables

Supplementary table 1. Secondary outcomes in the per-protocol analyses adjusted for stratification factors

Data are presented as mean+/- SD or n (%), unless otherwise stated. *Risk difference is reported for binary outcomes and mean difference for continuous outcomes. ED=Emergency Department, IV=intravenous.

Home ceftriaxone

No. (%) n=89

Hospital flucloxacillin

No. (%) n=91

Risk or mean difference* (95% CI)

p value

Length of stay in ED – mean hours ± SD

4·25±1·89

5·54±3·08

-1·3 (-2·0 to -0·5)

0·001

Cellulitis stopped spreading within 24 hours

75 (84%)

59 (66%)

18·4 (6·3 to 30·3)

0·003

Adverse events during hospital or home care

1 (2%)

10 (11%)

-13·1 (-25·7 to -0·4)

0·042

Complications during during hospital or home care

5 (6%)

6 (6%)

-1·0 (-7·9 to 5·3)

0·79

Required IV cannula reinsertion during during hospital or home care

1 (1%)

15 (16%)

-20·6 (-35·8 to -5·3)

0·008

Duration of IV antibiotics – mean days ± SD Duration of oral antibiotics after IV– mean days ± SD Total duration of antibiotics – mean days ± SD

2·00±1·48

5.78±1.66

7.78±2.72

1·67±1·07

6.42±2.41

8.10±2.90

0·3 (-0·03 to 0·7)

-0.7 (-1.26 to -0.04)

-0.3 (-1.13 to 0.52)

0·07

0.037

0.47

Length of stay under hospital care mean days ± SD Re-presented to ED within 14 days of discharge, due to same cellulitis

2·46±1·53

1 (1%)

2·03±1·10

2 (2%)

0·4 (0·05 to 0·8)

-1.6 (-7.5 to 4.2)

0·03

0.58

184

Supplementary table 2. Comparison of baseline characteristics and clinical outcomes between patients who provided nasal samples and those who did not at baseline, 7-14 days and 3 months

Data are presented as mean+/- SD or n (%), unless otherwise stated. Length of stay in ED (mean hours ± SD), Duration of IV antibiotics (mean days ± SD), Length of stay under medical care (mean days ± SD), Represented to ED (within 14 days of discharge), ED=Emergency Department, IV=intravenous, mths=months

Provided sample baseline

No. (%)

Did not provide sample baseline No. (%)

p value

Provided sample

7-14 days

No. (%)

Did not provide sample

7-14 days No. (%)

p value

Provided sample 3mths

No. (%)

Did not provide sample 3mths

No. (%)

p value

Baseline characteristics n=131 n=49 n=84 n=96 n=88 n=92 Age - mean years ± SD

Age category 6 mths to <9 yrs 9 yrs to <18 yrs

Female Prior oral antibiotics Systemic features Body surface area affected - mean % ± SD Underlying comorbidity

7.3±4.9 89 (68%) 40 (31%) 58 (44%) 66 (50%) 57 (44%) 0.9±1.2 16 (12%)

6.8±4.0 37 (76%) 14 (29%) 26 (53%) 25 (51%) 19 (39%) 1.0±1.3 7 (14%)

0.54

0.02 0.47 0.88 0.40 0.65 0.81

6.9±5.1 58 (69%) 25 (30%) 38 (46%) 47 (57%) 36 (43%) 0.91±1.3 11 (13%)

7.3±4.2 68 (71%) 29 (30%) 46 (47%) 44 (45%) 40 (42%) 0.92±1.2 12 (13%)

0.56 0.97 0.83 0.13 0.77 0.84 0.86

6.8±5.0

62 (70%) 25 (29%)

38 (43%)

50 (57%)

41 (47%)

0.95±1.5

10 (11%)

7.2±4.2

64 (70%) 27 (30%)

46 (50%)

40 (43%)

34 (37%)

0.86±0.9

13 (14%)

0.56 0.89 0.69 0.07 0.19 0.59 0.58

Outcomes Treatment failure Length of stay in ED Adverse events Complications Duration of IV Duration of oral antibiotics after IV– mean days ± SD Total duration of antibiotics – mean days ± SD Length of stay under medical care Represented to ED

7 (5%) 5.1±2.7 10 (8%) 7 (5%) 2.0±1.4 6.2±2.1 8.2±2.9

2.4±1.4 1 (1%)

1 (2%) 4.3±2.3 1 (2%) 4 (8%) 1.5±0.9 5.8±2.1 7.3±2.5

2.0±1.0 2 (4%)

0.22 0.06 0.20 0.54 0.03 0.23 0.05

0.09 0.28

2 (2%) 4.7±2.1 4 (5%) 5 (6%) 1.8±0.9 6.1±1.9 8.0±2.1

2.3±1.0 1 (1%)

6 (6%) 5.0±3.0 7 (7%)

6 (6%) 1.8±1.6 6.1±2.3 8.0±3.3

2.2±1.6

2 (2%)

0.20 0.49 0.59 0.97 0.97 0.96 0.99

0.82 0.67

2 (3%) 4.8±2.3 3 (3%) 5 (6%) 1.7±0.9 6.1±1.5 7.8±1.8

2.1±1.0 0 (0%)

6 (7%) 5.0±2.9 8 (8%) 6 (7%) 1.9±1.6 6.1±2.6 8.1±3.5

2.3±1.6

3 (3%)

0.16 0.61 0.18 0.91 0.30 0.81 0.54

0.32 0.26

185

Supplementary table 3. Comparison of baseline characteristics and outcomes of patients who provided stool samples and those who did not at baseline, 7-14 days and 3 months

Data are presented as mean+/- SD or n (%), unless otherwise stated. Length of stay in ED (mean hours ± SD), Duration of IV antibiotics (mean days ± SD), Length of stay under medical care (mean days ± SD), Represented to ED (within 14 days of discharge), ED=Emergency Department, IV=intravenous, mths=months

Provided sample baseline

No. (%)

Did not provide sample baseline No. (%)

p value

Provided Sample

7-14 days

No. (%)

Did not provide sample

7-14 days No. (%)

p value

Provided sample 3mths

No. (%)

Did not provide sample 3mths

No. (%)

p value

Baseline characteristics n=90 n=90 n=81 n=99 n=79 n=101 Age - mean years ± SD

Age category 6 months to <9 years

9 years to <18 years Female Prior oral antibiotics Systemic features Body surface area affected - mean % ± SD Underlying comorbidity

5.8±4.3 70 (78%) 34 (38%) 44 (49%) 46 (51%) 39 (43%) 1.0±1.5 12 (13%)

8.5±4.5 56 (62%) 20 (22%) 40 (44%) 45 (50%) 37 (41%) 0.83±0.9 11 (12%)

0.0001

0.02 0.55 0.88 0.76 0.36 0.82

6.0±4.8 59 (73%) 21 (26%) 42 (52%) 44 (54%) 33 (41%) 0.93±1.2 10 (12%)

7.8±4.3 67 (67%) 33 (33%) 42 (42%) 47 (47%) 43 (43%) 0.90±1.1 13 (13%)

0.002 0.33 0.16 0.29 0.99 0.84 0.92

5.6±4.4

62 (78%) 15 (19%)

36 (46%)

45 (57%)

34 (43%)

0.95±1.5

11 (14%)

8.1±4.5

64 (64%) 39 (39%)

48 (48%)

46 (46%)

42 (42%)

0.86±0.9

12 (12%)

0.001 0.08 0.69 0.09 0.51 0.59 0.93

Outcomes ` Treatment failure Length of stay in ED Adverse events Complications Duration of IV Duration of oral antibiotics after IV– mean days ± SD Total duration of antibiotics – mean days ± SD Length of stay under medical care Represented to ED

4 (4%) 4.7±2.5 4 (4%) 6 (7%) 1.8± 6.0±2.0 7.7±2.6 2.2±1.1 3 (3%)

4 (4%) 5.1±2.8 7 (8%) 5 (6%) 1.9±1.5 6.3±2.1 8.2±3.0

2.3±1.6

0 (0%)

0.94 0.14 0.33 0.80 0.84 0.34 0.30 0.95 0.12

1 (1%) 4.6±2.4 3 (4%) 4 (5%) 1.8±1.5 5.8±2.0 7.7±3.0 2.3±1.6 2 (2%)

7 (7%) 5.1±2.8 8 (8%)

7 (7%) 1.8±1.1 6.3±2.1 8.1±2.6 2.2±1.2 1 (1%)

0.045 0.17 0.27 0.60 0.86 0.16 0.30 0.39 0.52

0 (0%) 4.8±2.4 4 (5%) 6 (8%) 1.9±1.9 6.1±1.8 7.9±2.3 2.1±1.1 0 (0%)

8(8%)

5.0±2.8

7 (7%)

5 (5%)

1.7±1.0

6.1±2.3

8.0±3.2

2.3±1.5

3 (3%)

<0.001 0.33 0.65 0.42 0.72 0.95 0.71 0.77 0.13

186

Supplementary table 4. Comparison of baseline characteristics and outcomes between those who failed prior oral antibiotics and those who did not receive any adjusted for stratification factors

Failed prior oral antibiotics

No. (%) n=97

Nil prior oral antibiotics

No. (%) n=91

p value

Baseline characteristics Age - mean years ± SD

7.6±4·8 6.6±4·3 0·09

Female 47 (48%)

39 (43%)

0·44

Age category 6 months to <9 years 9 years to <18 years

63 (65%) 34 (35%)

70 (77%) 21 (23%)

0·071

Systemic features

42 (43%)

37 (41%)

0·71

Site Lower limb Upper limb Periorbital

45 (46%) 13 (13%) 30 (31%)

43 (47%) 17 (19%) 23 (25%)

0·91 0·32 0·39

Clinical features Body surface area – mean % ± SD Functional impairment Moderate-severe swelling Moderate-severe tenderness Moderate-severe erythema Underlying comorbidity

0·85±1·28 58 (60%) 65 (67%) 63 (65%) 85 (87%)

16 (16%)

0·94±0·12 47 (52%) 63 (69%) 52 (57%) 82 (90%)

10 (11%)

0·59 0·30 0·74 0·27 0·56

0.27

Outcomes Treatment failure 3 (3%) 6 (7%) 0·26

Length of stay in ED – mean hours ± SD 4·6±1.8 5.2±3.2 0.25

Cellulitis stopped spreading within 24 hours

75 (78%)

62 (70%)

0·13

Adverse events during during hospital or home care

4 (4%) 8 (9%) 0·26

Complications during during hospital or home care

3 (3%) 9 (10%) 0·10

Require reinsertion of IV cannula during during hospital or home care

8 (8%)

12 (13%)

0·20

Duration of IV antibiotics – mean days ± SD Duration of oral antibiotics after IV– mean days ± SD Total duration of antibiotics – mean days ± SD

1·9±2·0

6.1±2.8

8.0±4.5

1·9±1·0

6.3±2.5

8.4±3.5

0.72

0.49

0.52

Length of stay under medical care – mean days ± SD

2·3±2.1 2·3±1·6 0·90

Represented to ED within 14 days of discharge

1 (1%) 3 (3%) 0.91

Data are presented as mean+/- SD or n (%), unless otherwise stated. Length of stay in ED (mean hours ± SD), Duration of IV antibiotics (mean days ± SD), Length of stay under medical care (mean days ± SD), Represented to ED (within 14 days of discharge), ED=Emergency Department, IV=intravenous, mths=months

187

Supplementary table 5. Comparison of primary and secondary outcomes for those with periorbital cellulitis

Home ceftriaxone

No. (%) n=25

Hospital flucloxacillin

No. (%) n=28

p value

Baseline characteristics Age - mean years ± SD

4.5±4.0 5.1±3.4 0·54

Female 10 (40%)

14 (50%)

0·47

Age category 6 months to <9 years 9 years to <18 years

22 (88%)

3 (12%)

24 (86%)

4 (14%)

0·81

Systemic features Prior oral antibiotics

9 (36%)

17 (68%)

13 (46%)

13 (46%)

0·44

0.11

Underlying comorbidity 5 (20%) 2 (7%) 0.17

Outcomes Treatment failure 0 (0%) 2 (7%) 0·49

Length of stay in ED – mean hours ± SD 3.9±1.4 5.6±3.1 0.0174

Adverse events during during hospital or home care

0 (0%) 2 (7%) 0·49

Complications during during hospital or home care

1 (4%) 1 (4%) 1.00

Duration of IV antibiotics – mean days ± SD Duration of oral antibiotics after IV– mean days ± SD Total duration of antibiotics – mean days ± SD

1.8±0.7

5.4±1.3

7.1±1.5

1.9±1·3

6.2±3.0

8.6±3.6

0.85

0.21

0.0387

Length of stay under medical care – mean days ± SD

2·1±0.7 2·1±1·3 0·97

Represented to ED within 14 days of discharge

0 (0%) 1 (4%) 1.00

Data are presented as mean+/- SD or n (%), unless otherwise stated. Length of stay in ED (mean hours ± SD%), Duration of IV antibiotics (mean days ± SD%), Length of stay under medical care (mean days ± SD%), Represented to ED (within 14 days of discharge%), ED=Emergency Department, IV=intravenous, mths=months

188

Supplementary table 6. Comparison of primary and secondary outcomes for those aged 6 months to 9 years

Home ceftriaxone

No. (%) n=66

Hospital flucloxacillin

No. (%) n=67

p value

Baseline characteristics Age - mean years ± SD

4.3±2.6 4.8±2·3 0·25

Female 27 (41%)

34 (51%)

0·26

Systemic features Prior oral antibiotics

25 (38%)

36 (55%)

32 (48%)

27 (40%)

0·25

0.10

Site Lower limb Upper limb Periorbital

24 (36%) 15 (23%) 22 (33%)

37 (55%)

4 (6%) 24 (36%)

0·03

0·006 0·76

Clinical features Body surface area – mean % ± SD Functional impairment Moderate-severe swelling Moderate-severe tenderness Moderate-severe erythema Underlying comorbidity

1.1±1·7

34 (52%) 48 (73%) 33 (50%) 55 (83%)

10 (15%)

0·8±0·9

37 (55%) 45 (67%) 33 (49%) 63 (94%)

11 (16%)

0·22 0·67 0·48 0·93 0·05

0.84

Outcomes Treatment failure 2 (3%) 4 (6%) 0·68

Length of stay in ED – mean hours ± SD 4·4±2.1 5.7±3.2 0.01

Cellulitis stopped spreading within 24 hours

56 (85%)

44 (68%)

0·02

Adverse events during during hospital or home care

2 (3%) 7 (10%)

0·17

Complications during during hospital or home care

4 (6%) 5 (7%) 1.00

Require reinsertion of IV cannula during during hospital or home care

3 (5%) 8 (12%) 0·21

Duration of IV antibiotics – mean days ± SD Duration of oral antibiotics after IV– mean days ± SD Total duration of antibiotics – mean days ± SD

2.1±2.4

6.2±3.2

8.2±5.4

1·5±0.8

6.2±2.2

8.2±5.4

0.07

0.91

0.74

Length of stay under medical care – mean days ± SD

2·6±2.5 1.9±0.9 0·03

Represented to ED within 14 days of discharge

1 (2%) 2 (3%) 1.00

Data are presented as mean+/- SD or n (%), unless otherwise stated. Length of stay in ED (mean hours ± SD%), Duration of IV antibiotics (mean days ± SD%), Length of stay under medical care (mean days ± SD%), Represented to ED (within 14 days of discharge%), ED=Emergency Department, IV=intravenous, mths=months

189

Supplementary table 7. Comparison of primary and secondary outcomes for those aged more than 9 years

Home ceftriaxone

No. (%) n=27

Hospital flucloxacillin

No. (%) n=28

p value

Baseline characteristics Age - mean years ± SD

13.6±2.6 12.5±2.2 0·11

Female 10 (37%)

15 (54%)

0·22

Systemic features Prior oral antibiotics

12 (44%)

18 (67%)

10 (36%)

16 (57%)

0·51

0.47

Site Lower limb Upper limb Periorbital

16 (59%)

5 (19%) 3 (11%)

11 (39%)

6 (21%) 4 (14%)

0·14 0·79 1.00

Clinical features Body surface area – mean % ± SD Functional impairment Moderate-severe swelling Moderate-severe tenderness Moderate-severe erythema Underlying comorbidity

0.8±0·7

19 (70%) 17 (63%) 24 (89%) 26 (96%)

3 (11%)

0·8±0·7

15 (54%) 18 (64%) 25 (89%) 23 (82%)

2 (7%)

0·80 0.20 0·92 0·96 0·09

0.61

Outcomes Treatment failure 0 (0%) 3 (11%) 0·23

Length of stay in ED – mean hours ± SD

4·0±1.2 4.8±2.4 0.11

Cellulitis stopped spreading within 24 hours

20 (77%)

17 (61%)

0·20

Adverse events during during hospital or home care

0 (0%) 3 (11%)

0·23

Complications during during hospital or home care

2 (7%) 1 (4%) 0.61

Require reinsertion of IV cannula during hospital or home care

0 (0%) 9 (32%) 0·02

Duration of IV antibiotics – mean days ± SD Duration of oral antibiotics after IV– mean days ± SD Total duration of antibiotics – mean days ± SD

2.5±2.2

6.2±2.2

8.8±4.0

2.1±1.4

6.1±2.9

8.2±3.6

0.36

0.91

0.58

Length of stay under medical care – mean days ± SD

2·9±2.2 2.4±1.4 0·35

Represented to ED within 14 days of discharge

1 (4%) 2 (3%) 0.49

Data are presented as mean+/- SD or n (%), unless otherwise stated. Length of stay in ED (mean hours ± SD%), Duration of IV antibiotics (mean days ± SD%), Length of stay under medical care (mean days ± SD%), Represented to ED (within 14 days of discharge%), ED=Emergency Department, IV=intravenous, mths=months

190

191  

 

5.3.1 Additional  data  

Results  

Parental  quality  of  life  was  measured  using  a  modified  rating  scales  which  had  

been  used  in  two  previous  studies  comparing  home  to  hospital  care.7,23  There  

were  135/188  (72%)  parental  questionnaires  were  returned:  73/93  (79%)  from  

home-­‐treated  patients  and  62/95  (65%)  from  hospitalised  patients.  With  

regards  to  experience  of  care  during  treatment,  95%  of  the  home  group  rated  the  

experience  as  very  good  compared  to  73%  of  the  hospital  group  (OR  6.5,  95%  CI  

2.1  to  20.6,  p=0.001).  None  of  the  patients  rated  their  experience  as  very  poor.  

When  asked  how  much  disruption  the  treatment  caused  to  parental  daily  

routine,  66%  of  the  home  group  experienced  no  disruption  compared  to  40%  of  

the  hospital  group  (OR  2.8,  95%  CI  1.4  to  5.7,  p=0.03).  With  regards  to  disruption  

to  the  child’s  routine,  67%  in  the  home  group  reported  that  their  child  had  no  

disruption  compared  to  35%  of  the  hospital  group  (OR  3.7,  95%  CI  1.8  to  7.8,  

p<0.001).  Parents  were  asked  at  the  end  of  treatment  if  they  would  choose  

hospital  or  home  treatment  if  faced  with  the  same  situation  again.  Of  the  home  

group,  58  (79%)  stated  a  preference  for  home  treatment,  2  (3%)  for  hospital  

treatment  and  13  (18%)  had  no  preference.  Of  the  hospital  group,  22  (35%)  

stated  a  preference  for  home  treatment,  16  (26%)  for  hospital  treatment  and  24  

(39%)  had  no  preference.  In  other  words,  for  parents  with  a  clear  preference  for  

treatment  location,  97%  of  the  home  group  and  42%  of  the  hospital  group  would  

choose  treatment  for  their  child  in  the  same  location  (OR  21.1,  95%  CI  4.5  to  

99.3,  p<0.001).  

     

  192  

5.4 Implications  of  the  RCT  

In  this  non-­‐inferiority  RCT  of  home  versus  hospital  care  in  children  with  

moderate  to  severe  cellulitis,  home  treatment  was  found  to  be  as  good  as  

hospital  treatment.  The  outcomes  of  efficacy  and  safety  of  home  treatment  in  this  

RCT  confirmed  the  findings  of  the  two  previous  non-­‐randomised  studies  

described  in  this  thesis,  the  baseline  (Chapter  2)  and  foundation  (Chapter  3)  

studies.114,115  However,  given  that  treatment  at  home  was  shown  to  result  in  

higher  quality  of  life  for  patients  and  their  families  and  preferred  by  most  

families,  this  RCT  provides  evidence  for  the  home  pathway  to  be  the  standard  of  

care  for  the  treatment  of  children  with  moderate/severe  cellulitis.    

There  are  several  design  issues  that  warrants  further  discussion.  First  is  the  

decision  to  use  two  different  antibiotics  for  the  two  arms.  We  were  very  mindful  

of  the  translatability  of  this  trial  from  the  outset.  If  intravenous  ceftriaxone  at  

home  had  been  compared  with  ceftriaxone  in  hospital,  we  would  not  have  been  

comparing  against  the  current  standard  of  care,  which  in  our  centre  is  

intravenous  flucloxacillin  in  hospital.  If  this  design  had  been  chosen  simply  based  

on  a  direct  comparison  of  ceftriaxone  at  home  and  in  hospital,  the  results  may  

have  had  limited  implications  on  clinical  care,  as  inpatient  narrow  spectrum  

antibiotic  use  would  still  have  been  viewed  as  the  gold  standard.    

Comparing  intravenous  flucloxacillin  in  hospital  with  intravenous  flucloxacillin  

at  home  would  also  have  been  a  more  straightforward  comparison.  However,  

four  times  a  day  dosing  of  flucloxacillin  is  not  feasible  for  OPAT,  so  a  24-­‐hour  

infusion  via  a  central  line  would  have  likely  been  requested.  Inserting  a  central  

line  for  most  children  requires  sedation  or  a  general  anaesthetic,  which  does  not  

appear  to  be  an  ethical  prospect  (nor  one  that  parents  would  agree  to)  when  

there  is  a  once  daily  alternative  that  can  be  delivered  via  a  peripheral  cannula.  

Likewise,  although  we  considered  the  possibility  of  a  24-­‐hour  flucloxacillin  

infusion  via  a  peripheral  cannula,  it  is  not  considered  acceptable  practice  for  

OPAT  in  children  because  of  the  high  chance  of  extravasation  being  unrecognised  

due  to  the  slow  infusion  rate  and  inclusion  of  pre-­‐verbal  infants.  We  are  unaware  

  193  

of  any  paediatric  OPAT  service  that  would  do  this.  Therefore  in  addition  to  

pragmatic  reasons,  for  ethical  and  translatability  reasons,  having  two  different  

antibiotics  was  the  only  viable  comparison  between  the  two  arms.  

Other  antibiotics  considered  for  the  treatment  of  cellulitis  were  cefazolin  and  

clindamycin.46,129  Cefazolin  has  similar  activity  against  bacteria  causing  cellulitis  

as  flucloxacillin.  Cefazolin  could  have  been  used  for  both  the  home  and  hospital  

group,  although  that  would  have  meant  changing  our  current  hospital  guidelines.  

However,  cefazolin  has  a  short  half-­‐life  requiring  8  hourly  dose  frequency.  In  

adult  OPAT,  cefazolin  is  used  in  combination  with  oral  probenecid  to  increase  its  

half-­‐life,  but  oral  probenecid  is  poorly  tolerated  in  children.43,46  In  order  to  use  

cefazolin  in  the  trial,  it  would  have  been  necessary  to  first  conduct  a  study  on  

pharmacokinetics  and  pharmacodynamics  of  once  daily  cefazolin  with  

probenecid  in  children,  which  we  considered.  However,  many  OPAT  services  

around  the  world  already  use  ceftriaxone.3,13  Therefore  there  was  a  more  urgent  

need  to  find  the  evidence  for  or  against  the  use  of  this  antibiotic.  Clindamycin  

was  also  considered  as  it  has  the  advantage  of  high  oral  bioavailability.130  

However  this  antibiotic  is  not  considered  first  line  treatment  in  most  parts  of  the  

world  for  skin  and  soft  tissue  infection  and  is  usually  reserved  for  suspected  or  

confirmed  MRSA.131  In  regions  with  lower  rates  of  MRSA  than  the  US,  such  as  

ours,  it  is  not  used  in  young  children  because  of  its  low  taste  tolerance  and  its  

role  in  the  acquisition  of  C.  difficile.132-­‐134    

The  second  methodological  issue  which  required  careful  consideration  was  the  

unblinded  assessment  of  the  primary  outcome.  Ideally,  clinicians  assessing  the  

primary  outcome  would  be  blinded  to  treatment  location.  Using  central  

adjudication  by  assessors  not  involved  in  the  delivery  of  care  (prospective  

randomised  open  blinded  endpoint  -­‐  PROBE  design)  was  considered,  but  this  

would  mean  having  the  hospital  as  the  location  of  assessment  for  all  patients.  

This  would  place  a  skewed  burden  on  only  the  home  patients,  with  a  substantial  

risk  of  affecting  secondary  outcomes  such  as  quality  of  life  measures.135  Likewise  

photos  were  taken  to  aid  assessment,  but  they  do  not  give  the  full  clinical  picture  

of  the  patient  and  frequently  had  clues  to  the  location  inadvertently  caught  in  the  

  194  

frame.  There  are  no  blinded  comparative  home  versus  hospital  care  studies  in  

the  literature,  likely  at  least  in  part  for  these  reasons.  

However,  we  attempted  to  mitigate  any  potential  bias  by  designing  the  

assessments  of  the  primary  outcome  to  be  as  objective  as  possible  as  either  

continuous  or  binary  outcomes  as  per  our  published  protocol.136  These  clinical  

assessments  were  performed  in  addition  to  taking  daily  photographs  of  the  

affected  area,  with  the  first  taking  place  in  the  ED  at  baseline.    

Since  the  completion  of  this  RCT,  the  impact  of  this  research  has  already  been  

seen.  It  has  already  changed  practice  at  RCH  and  is  has  great  potential  to  change  

the  way  we  manage  this  and  other  acute  infections  in  Australia  and  beyond.  

However,  the  biggest  factor  determining  the  enthusiasm  with  which  institutions  

will  implement  this  pathway  on  a  wider  scale  will  be  the  cost-­‐effectiveness  of  

treatment  at  home.  This  is  addressed  in  the  next  chapter.  

 

   

  195  

Chapter  6 Health  economic  analysis  

6.1 Economic  evaluation  –  comparison  of  alternative  courses  of  actions  

Economic  evaluations  are  used  to  inform  decision-­‐making  in  healthcare  in  

Australia  and  many  other  countries.137  An  economic  evaluation  is  defined  as  the  

comparative  analysis  of  the  costs  and  consequences  of  alternative  programs  or  

interventions.138  RCTs  commonly  incorporate  an  economic  evaluation  such  as  a  

cost-­‐effectiveness  analysis  as  part  of  the  study  design.139,140  In  fact,  research  

funders  commonly  request  that  RCTs  also  assess  the  cost-­‐effectiveness  of  any  

intervention  investigated.141  

6.2 Cost-­‐effectiveness  analysis  

A  cost-­‐effectiveness  analysis,  the  most  common  type  of  health  economic  

evaluation  is  always  a  comparison  of  two  interventions.  For  example  for  the  RCT  

(Chapter  5),  the  home  treatment  program  was  compared  with  the  standard  of  

care,  in  hospital  management.142  The  two  components  of  a  cost-­‐effectiveness  

analysis  are  calculations  of  costs  and  measurement  of  effectiveness.138  New  

healthcare  interventions  are  often  more  effective,  for  example  a  new  drug  or  a  

new  health  program,  but  are  frequently  more  costly  than  the  current  care.  

Therefore,  a  decision  is  made  about  the  threshold  for  which  the  cost  is  

considered  worth  spending  for  the  extra  benefit  of  the  new  intervention,  which  

is  also  known  as  the  ‘willingness  to  pay’  threshold.137  

Calculation  of  costs  in  a  health  economic  evaluation  takes  into  account  a  

specified  pre-­‐determined  perspective.138  This  could  be  the  health  institution  

perspective,  taking  into  consideration  costs  to  the  hospital  or  it  could  be  the  

patient  perspective,  taking  into  consideration  costs  incurred  by  patients.  Ideally  

a  societal  perspective  is  considered,  taking  into  account  both  the  costs  to  the  

healthcare  provider  and  to  the  patients  and  their  families.  The  advantage  of  a  

societal  perspective  is  the  ability  to  exclude  any  ‘cost  shifting’,  the  transfer  of  cost  

burden  to  the  other  party,  for  example,  from  the  healthcare  institution  to  the  

  196  

patient.143  For  this  cost-­‐effectiveness  analysis,  a  societal  perspective  was  chosen,  

incorporating  both  the  costs  to  our  institution  and  costs  to  families  of  having  

their  child  treated  in  each  location.  

Measurement  of  effectiveness  can  be  done  in  different  ways,  and  to  some  degree  

depends  on  the  priorities  and  perspective  of  the  investigators.  Clinical  

researchers  often  use  a  clinical  outcome  as  a  measure  of  effectiveness,  based  on  

the  study  design  to  answer  a  clinical  question  and  impact  on  clinicians’  decision-­‐

making.  The  downside  of  this  is  that  clinical  outcomes  vary  between  studies,  

even  in  those  investigating  the  same  condition.139  The  preferred  method  by  

health  economists,  policymakers  and  funders,  is  to  use  quality  adjusted  life  years  

(QALY)  as  a  measure  of  effectiveness.27  The  QALY  combines  and  summarises  into  

a  single  measure  the  effects  of  health  interventions  on  mortality  and  morbidity.  

This  provides  a  ‘common  currency’  in  a  standardised  format  to  enable  

comparisons  between  different  diseases  and  interventions.144,145  QALY  is  valued  

with  a  number  between  0  and  1,  with  0  representing  death  and  1  representing  

perfect  health  for  one  whole  year.  QALY  are  ideally  obtained  using  validated  

tools,  usually  in  the  form  of  questionnaires  that  ascertain  the  respondent’s  

quality  of  life.  These  questions  usually  relate  to  domains  of  health  such  as  sleep,  

appetite  and  social  activities.146  Some  studies  employ  less  robust  methods  for  

measuring  quality  of  life  such  as  visual  analogue  scales,  which  are  less  time-­‐

consuming  to  complete.147  QALY  are  calculated  using  utility  scores  that  measure  

a  health  state  over  a  specified  period  of  time:  the  ‘time  horizon’.  For  this  cost-­‐

effectiveness  analysis,  the  Child  Health  Utility  9D  (CHU9D)  questionnaire,  a  

validated  quality  of  life  tool,  was  used  to  measure  the  utility  scores  based  on  

activities  of  daily  living,  which  are  then  converted  into  QALY.    

Once  the  cost  and  effectiveness  of  the  two  compared  interventions  are  obtained,  

they  can  then  be  averaged  across  all  patients  in  the  study.  In  the  RCT,  the  cost  for  

each  patient  in  the  home  treatment  program  (h)  and  each  patient  who  received  

standard  care  of  hospital  admission  (s)  were  obtained  and  averaged  to  obtain  the  

mean  cost  C  for  each  group.141  Likewise  individual  measurements  of  

effectiveness  for  each  patient  were  obtained  and  averaged  to  obtain  the  mean  

  197  

effectiveness  E  for  each  group.  The  differences  of  the  mean  cost  and  mean  

effectiveness,  between  the  two  interventions  can  be  summarised  as  a  single  

index  measure,  called  the  incremental  cost-­‐effectiveness  ratio  (ICER).148  The  

ICER  is  the  difference  in  cost  of  the  two  interventions  divided  by  the  difference  in  

effectiveness  of  the  two  interventions:  

ICER=Ch-­‐Cs/Eh-­‐Es  

The  ICER  can  be  depicted  as  a  cost-­‐effectiveness  plane.  (Figure  6.1)  The  ideal  

health  intervention  would  plot  in  the  right  lower  quadrant  of  this  plane,  

reflecting  that  it  is  both  more  effective  and  less  costly.  For  this  cost-­‐effectiveness  

analysis,  two  effectiveness  measures  were  used:  the  primary  clinical  outcome  of  

the  RCT  for  clinical  relevance,  and  QALY  as  a  standardised  measure  comparable  

with  other  studies.  

Lastly,  a  key  concept  in  a  cost-­‐effectiveness  analysis  is  the  uncertainty  around  

the  measures  of  cost  and  effectiveness.149  Determining  the  uncertainty  

surrounding  cost-­‐effectiveness  requires  investigation  of  the  joint  distribution  of  

costs  and  effectiveness,  termed  a  sensitivity  analysis.150  It  allows  varying  the  

input  of  the  costs  and  effectiveness  to  hypothetically  reflect  what  the  cost-­‐

effectiveness  of  the  intervention  may  be  in  other  settings  or  under  different  

circumstances.  One  method  of  sensitivity  analysis  that  is  typically  used  to  

represent  the  uncertainty  in  the  costs  and  effectiveness  associated  with  an  

intervention  is  a  scatter  plot  of  simulated  (by  bootstrapping  or  probabilistic  

modeling)  incremental  cost  and  effectiveness  plots  on  the  incremental  cost-­‐

effectiveness  plane,  whereby  incremental  cost  is  plotted  on  the  y  axis  and  

incremental  effectiveness  is  plotted  on  the  x  axis.151,152    

To  summarise,  the  key  components  of  a  cost-­‐effectiveness  analysis  are  costs,  

effectiveness,  calculation  of  the  ICER  and  a  sensitivity  analysis.  The  cost-­‐

effectiveness  analysis  was  incorporated  into  the  RCT  study  design,  crucial  to  the  

success  of  the  analysis.  

This  chapter  contains  one  manuscript,  which  has  been  submitted  for  publication.  

198  

Figure  6.1  Cost-­‐effectiveness  plane  

199  

6.3 Study  7:  Cost-­‐effectiveness  of  home  versus  hospital  treatment  of  children  with  moderate/severe  cellulitis  

Ibrahim  LF,  Huang  L,  Hopper  SM,  Dalziel  K,  Babl  FE,  Bryant  PA.  Cost-­‐

effectiveness  of  admission  avoidance  with  moderate/severe  cellulitis.  Submitted  

to  The  Lancet  Infectious  Diseases  Dec  2018.  

Elsevier Editorial System(tm) for The Lancet

Infectious Diseases

Manuscript Draft

Manuscript Number:

Title: Cost-effectiveness of admission avoidance with outpatient

parenteral antibiotic therapy for children with moderate/severe

cellulitis'

Article Type: Article (Original Research)

Keywords: Cost-effectiveness, QALY, OPAT, antibiotics, intravenous,

hospital-in-the-home

Corresponding Author: Dr. Laila F Ibrahim, MBBCHBAO

Corresponding Author's Institution: The Royal Children's Hospital

Melbourne

First Author: Laila F Ibrahim, MBBCHBAO

Order of Authors: Laila F Ibrahim, MBBCHBAO; Li Huang; Sandy Hopper; Kim

Dalziel; Franz Babl; Penelope Bryant

Manuscript Region of Origin: AUSTRALIA

Abstract: Background

Outpatient parenteral antibiotic therapy (OPAT) following hospital

admission is increasingly popular, but its use to avoid admission to

hospital altogether by treating wholly as an outpatient, remains uncommon

in children. One reason for this is the lack of evidence for the cost-

effectiveness of this strategy. We aimed to assess the cost-effectiveness

of an admission avoidance pathway compared to standard hospital care for

the intravenous treatment of moderate/severe cellulitis in children.

Methods

A cost-effectiveness analysis of home versus hospital treatment was

undertaken for 180 children aged 6 months-18 years with moderate/severe

cellulitis enrolled in randomised controlled trial. Costs were included

from two sources: institutional costs at patient level and expenses

incurred by families. Effectiveness was measured in two ways: quality

adjusted life years (QALYs) derived from the Child Health Utility 9D, a

validated quality of life assessment tool, and a clinical outcome of

treatment failure which was the primary outcome of the trial.

Findings

The institutional cost per patient per episode was significantly lower

for the home group compared to the hospital group (AUD1965 versus

AUD3775, p<0·001). The mean cost incurred per family was AUD182 for the

home group and AUD593 for the hospital group (p<0·001). Both measures of

effectiveness were significantly better in the home group than the

hospital group. The utility score was higher in the home group (0·86

versus 0·75, p<0·001), as were the QALYs (0·005 versus 0·004, p<0·001).

Treatment failure was lower in the home group (1% versus 7%, p=0·03).

OPAT was therefore less costly and more effective than standard hospital

care and is the dominant treatment choice.

Interpretation

Home intravenous antibiotic treatment for children with moderate/severe

cellulitis is more cost-effective compared to hospital admission, and

costs to families are substantially lower. These finding support

institutions to develop this admission avoidance pathway.

Funding

RCH Foundation

Cost-effectiveness of admission avoidance with outpatient parenteral antibiotic

therapy for children with moderate/severe cellulitis

Laila F Ibrahim MB BCh BAOa,b Li Huang PhDc, Sandy M Hopper MBBSa,b,d, Kim

Dalziel PhDc, Franz E Babl MDa,b,d, Penelope A Bryant PhDa,b,d,e

Affiliations

a Department of Paediatrics, University of Melbourne

b Murdoch Children’s Research Institute

c Centre for Health Policy, the University of Melbourne

d Emergency Department, The Royal Children’s Hospital

e Infectious Diseases Unit, Department of General Medicine, The Royal Children’s

Hospital

e Hospital-In-The-Home Department, The Royal Children’s Hospital

Corresponding author

A/Prof. Penelope A Bryant

Department of General Medicine, The Royal Children’s Hospital, Melbourne,

50 Flemington Road, Parkville, VIC 3052, Australia

Email: [email protected]

Tel: +613 93455522 Fax: +613 9345 6667

Key words

Cost-effectiveness, QALY, OPAT, antibiotics, intravenous, hospital-in-the-home

202

Financial Disclosure

All authors have indicated they have no financial relationships relevant to this article

to disclose. The funding bodies do not have any authority in design and conduct of the

study; collection, management, analysis, and interpretation of the data; and

preparation, review, or approval of the manuscript.

203

Research in context

Evidence before this study

A search was performed on MEDLINE and EMBASE for articles published between

1946 to November 30, 2018 using the search terms ‘cost-effectiveness’ and

‘outpatient’ limited to ‘all child (0-18years)’ with no language restrictions. There

were no cost-effectiveness analyses in randomised studies comparing outpatient

versus hospital treatment either using antibiotics, or where patients avoided

hospitalisation completely. Non-randomised outpatient versus hospital studies have

used secondary or retrospective data or hypothetical cohorts, and these have

suggested that outpatient treatment is less costly. Additionally, a systematic review of

the literature on the economic evaluation of outpatient parenteral antimicrobial

therapy (OPAT) in adults did not identify any cost-effectiveness analyses in

randomised cohorts, and only two economic evaluations studies were considered of

high quality.

Added value of this study

This is the first cost-effectiveness study to compare outpatient with hospital treatment

in a randomised cohort in children, either requiring intravenous antibiotics, or

avoiding hospital admission completely. This study considered costs from the

healthcare provider perspective as well as the patients’ and families’ perspective.

Findings from our study provide robust evidence that treatment of children with

moderate to severe cellulitis at home is more cost-effective compared to standard

admission to hospital. In addition, we have shown that families incur a three-fold

burden of cost when their child is treated in hospital compared to at home, a factor

204

often overlooked by clinicians. This is the first study of outpatient versus hospital care

to measure the incremental cost-effectiveness ratio, using both clinical effectiveness

specific to cellulitis as well as in terms of quality adjusted life years, a widely used

and standardised measure in economic evaluations.

Implications of all the available evidence

This economic analysis, together with the findings of clinical efficacy, safety and

patient preference of intravenous antibiotics at home, provides strong evidence for

avoiding hospitalisation altogether through a home or ambulatory pathway for

children with moderate/severe cellulitis. This study provides the evidence for

policymakers and stakeholders to resource outpatient/ambulatory pathways that are

immediately responsive to children attending emergency departments. The design and

outcomes also act as a platform for the evaluation of outpatient pathways for other

acute infections.

205

Summary

Background

Outpatient parenteral antibiotic therapy (OPAT) following hospital admission is

increasingly popular, but its use to avoid admission to hospital altogether by treating

wholly as an outpatient, remains uncommon in children. One reason for this is the

lack of evidence for the cost-effectiveness of this strategy. We aimed to assess the

cost-effectiveness of an admission avoidance pathway compared to standard hospital

care for the intravenous treatment of moderate/severe cellulitis in children.

Methods

A cost-effectiveness analysis of home versus hospital treatment was undertaken for

180 children aged 6 months-18 years with moderate/severe cellulitis enrolled in

randomised controlled trial. Costs were included from two sources: institutional costs

at patient level and expenses incurred by families. Effectiveness was measured in two

ways: quality adjusted life years (QALYs) derived from the Child Health Utility 9D, a

validated quality of life assessment tool, and a clinical outcome of treatment failure

which was the primary outcome of the trial.

Findings

The institutional cost per patient per episode was significantly lower for the home

group compared to the hospital group (AUD1965 versus AUD3775, p<0·001). The

mean cost incurred per family was AUD182 for the home group and AUD593 for the

hospital group (p<0·001). Both measures of effectiveness were significantly better in

the home group than the hospital group. The utility score was higher in the home

group (0·86 versus 0·75, p<0·001), as were the QALYs (0·005 versus 0·004,

p<0·001). Treatment failure was lower in the home group (1% versus 7%, p=0·03).

206

OPAT was therefore less costly and more effective than standard hospital care and is

the dominant treatment choice.

Interpretation

Home intravenous antibiotic treatment for children with moderate/severe cellulitis is

more cost-effective compared to hospital admission, and costs to families are

substantially lower. These finding support institutions to develop this admission

avoidance pathway.

Funding

RCH Foundation

207

Introduction

Outpatient parenteral antibiotic therapy (OPAT) following a hospital admission has

become a widely endorsed model of care worldwide in the last decade.1-3 Its use

reduces hospital-acquired infections, negative psychosocial impact and the

inconvenience of hospital admission.4,5 There is increasing interest in its use to avoid

admission to hospital altogether by treating directly from the emergency department

(ED) or outpatient practice, but this has yet to gain traction in children. One reason for

this is concern regarding the acuity of infections in children and the potential for rapid

deterioration. Consequently, while OPAT has been shown to be less costly than

inpatient treatment,6 the lack of evidence for effectiveness in children and concern

about readmission has resulted in admission to hospital remaining the default

pathway.7,8 Additionally, widespread implementation has been limited by studies pre-

selecting patients for success, with no cost-effectiveness analysis in either adults or

children of an admission avoidance pathway on randomised patients.

The ideal cost-effectiveness analysis uses patient-level data, taking into account both

institutional costs and expenses incurred by patients and families, to inform a societal

perspective. In addition, for results to have impact, the economic analysis needs to

incorporate intervention outcomes that are meaningful to patients and clinicians, and

comparable for healthcare institutions. Effectiveness in economic evaluations is

commonly reported as quality adjusted life years (QALY).9 The advantage of using

the standardised measure of QALY is the ability to compare between the values of

different options for allocating healthcare resources. QALY are calculated using

utility scores that measure a health state over a specified period of time: the ‘time

horizon’. Despite QALY being the most widely used measure of disease burden in

208

assessing the value of medical interventions, the few studies to date of OPAT and

admission avoidance have relied on disaggregated measures of cost and effect and

without the use of QALY.10,11

One of the most common acute infections treated with OPAT is cellulitis2,12, a skin

infection with a rate in children of 20 per 1000 person years.13 Moderate/severe

cellulitis requiring intravenous antibiotics has been shown in a few previous studies to

be effectively and safely treated at home directly from the ED, although none have

evaluated cost-effectiveness.14,15 The first randomised controlled trial (RCT) to

compare efficacy and safety of OPAT versus hospital treatment in children was

undertaken in the management of moderate/severe cellulitis directly from the ED.16

An economic evaluation was planned for this trial, using patient-level costs and

QALY. The aim of this study was to analyse the cost-effectiveness of an admission

avoidance pathway versus hospital treatment for moderate/severe cellulitis requiring

intravenous antibiotics in children.

Methods

Setting and outcomes

The economic evaluation was undertaken for children enrolled in the Cellulitis at

Home Or Inpatient in Children from Emergency (CHOICE) RCT.17 The CHOICE

trial was a single centre, randomized, open label non-inferiority trial, at The Royal

Children’s Hospital Melbourne, Australia. The trial recruited children aged 6 months

to 18 years from the ED from January 2015 to June 2017, who were diagnosed with

moderate/severe uncomplicated cellulitis and excluded those with complicated

cellulitis, immunosuppression, toxicity or serious co-morbidities. Eligible children

209

who consented were randomised to either standard care in hospital or care at home

under the Hospital-In-The-Home (HITH) program, an alternative care pathway

provided for by the same hospital (figure 1). The primary outcome of the trial was

treatment failure defined as lack of clinical improvement of cellulitis or an adverse

event, resulting in a change of initial empiric antibiotics within 2 days (48 hours) of

treatment from the start of the first antibiotic dose given in the ED. The full details of

the trial protocol and outcomes have been published elsewhere.16,17 The intravenous

antibiotics used for the two arms were necessarily different: the empiric antibiotic at

our institution for moderate/severe cellulitis is flucloxacillin administered every six

hours, while for the home program the once daily antibiotic ceftriaxone is used.

The cost-effectiveness analysis of home versus hospital was conducted from a societal

perspective, taking into account the burden of costs to the healthcare institutions and

to patients and families, and the time horizon was from the initial ED presentation to

the point of discharge from medical care. All children in the per protocol analysis

were included, rather than the intention to treat population due to patients crossing

arms which would lead to a mismatch between resources used and outcomes

achieved.

Determining resources and costs

The costs of the home intervention and standard hospital care were obtained from the

hospital administrative costing unit, which included direct and indirect costs of

medical care including medications, staff time, and overheads. Drug costs were

obtained from the institutional pharmacy and costs of distance travelled were obtained

from the Australian Taxation Office, using figures for car expenses. In Australian

210

tertiary hospitals, the standard reporting of patient level cost data combines direct and

indirect costs associated with the hospital admission.18 The total cost for each

individual patient comprise the total sum of cost ‘buckets’ such as medical, nursing,

allied health, imaging, pathology, pharmacy, theatre, emergency department and

allied health.19 Costs to the patients and their families were collected using self-

reported questionnaires completed by parents or carers. These included the costs

incurred by families for food, transport or parking, medication or any other expenses

during treatment as well as number of days absent from paid or unpaid work from the

time they presented to ED to the end of treatment. The costs used to calculate the

earnings loss from work leave were obtained from the Australian Bureau of Statistics,

specifically the average weekly total earnings for all employees. All costs were

recorded in Australian dollars (AUD).

Measurement of effectiveness

Effectiveness was measured in two ways: the clinical primary outcome of treatment

failure, and QALY measurements derived from utility scores. The latter were

obtained from the Child Health Utility 9 (CHU9) questionnaire, a widely used

validated quality of life assessment tool for children20,21, which was collected within

24-48 hours of admission, reflecting the quality of life during treatment. For those

under 6 years of age these were parent-reported, for those above 6 years of age these

were child-reported. A second CHU9D was administered at 14 days after resolution

of the infection (cellulitis) and cessation of treatment reflecting the quality of life after

resolution of infection. For those with missing utility scores, a random score was

generated using the mean and standard error of available utility data. To obtain the

QALY figures during treatment, utility scores obtained from the questionnaires were

211

multiplied by two days (0·0056), the mean duration that study participants were in

receipt of the care intervention (home or hospital). To obtain the QALY figures after

resolution of infection, utility scores were multiplied by 14 days (0·04).

Analytic methods

The incremental cost-effectiveness ratio, defined as the difference in total cost (home

versus hospital) divided by the difference in effectiveness (home versus hospital), was

reported firstly as the cost per additional treatment failure observed in the OPAT

group compared to standard hospital care, and secondly as the cost per QALY gained.

Chi-square test and Student’s t-test (2-sided) were used to compare dichotomous and

continuous outcomes between groups respectively. Analysis was performed by

StataIC version 15·1.

Sensitivity analysis

To account for uncertainty, a series of one way and two-way sensitivity analyses were

conducted varying the costs and the effectiveness for four different scenarios: 1)

Double the distance of the actual catchment area from 50 to 100 kilometres from the

hospital; 2) Double the readmission rate using utility data from a previous study;22 3)

Inflation of doctors’ salaries by 50% to reflect applicability of this study to places

where doctors are paid at a higher rate; 4). Double the number of nursing visits to

twice daily, for a different medical condition. The results were presented in a

summary table and using cost-effectiveness planes.

The economic evaluation follows the International Society for Pharmacoeconomics

and Outcomes Research (ISPOR) guideline for trial-based cost-effectiveness

212

analysis23 and reports using the ISPOR consolidated health economic evaluation

reporting standards guideline.24 This trial was registered at ClinicalTrials.gov, registry

number NCT02334124. The trial and cost-effectiveness analysis were approved by

the institutional ethics committee.

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis,

data interpretation, or writing of the report. The first and corresponding author had

full access to all the data in the study and had final responsibility for the decision to

submit for publication.

Results

There were 180 children in the per protocol analysis, 89 assigned to the home group

and 91 to the hospital group (supplementary figure 1). There were no differences in

demographics or clinical features at presentation between the two groups (table 1).

Costs

The actual individual institutional cost was available for every patient in the trial. The

costs to family questionnaires were returned by 68/89 (76%) of the home group and

69/91 (76%) of the hospital group. The demographics, clinical features, outcomes and

Socioeconomic Index for Areas (SEIFA) scores for those who returned questionnaires

and those who did not showed no significant differences (table 1).

The mean cost to our institution of treating a patient with moderate/severe cellulitis at

home was AUD970 (GBP548) per day, compared to the cost of treating a patient in

213

an inpatient medical bed which was AUD2388 (GBP1348) per day (table 2). The

highest component of cost incurred was medical and nursing staff salaries. The mean

cost to the ED for a patient treated at home was AUD623 and for those treated as an

inpatient, the mean cost was AUD850 (-227 (95% CI -106 to -347), p=0·0003). The

total mean cost to families who had a child treated at home was AUD182 (GBP104)

per patient episode, compared to the cost of having a child treated in an inpatient bed

which was AUD593 (GBP338) per patient episode (table 3). The highest cost incurred

by families was attributed by absence from paid work which was a mean of 0·7 days

for the home group and a mean of 2·0 days for parents of hospitalised children,

p<0·001. The cost to families for absence from both paid and unpaid work, was

significantly less (AUD171 versus AUD542, p<0·001) for children in the home

group.

The total cost savings to our hospital for these 180 patients over the 29 months of the

study were AUD325,620. If all 252 patients who were eligible during that time

period16 had been treated via the home pathway, the potential cost savings would have

been AUD455,868 (AUD188,136 per year, 95%CI 137,696-238,680). For the

families of the 180 patients in this study the total savings were AUD73,800. If every

eligible child had been treated via the home pathway, the potential cost savings for

families would have been AUD103,320 (AUD42,640 per year, 95%CI 32,448-

52,832). This represents a potential total cost saving per year of AUD230,776 (95%CI

170,144-291,512).

Effectiveness

214

Of the patients in the home group, 1/89 (1%) had treatment failure, compared to 7/91

(8%) in the hospital group (risk difference [RD] -6·5 %; 95% confidence interval [CI]

-12·4 to -0·7, p=0·03). The home patient who had treatment failure was admitted to

hospital for 3 days. Length of stay under medical care and duration of intravenous

antibiotics were longer for the home group by half a day (table 1).

The CHU9D questionnaires were returned by 68/89 (76%) of the home group and

68/91 (75%) of the hospital group during treatment. Baseline characteristics and

clinical outcomes between those who returned the questionnaires and those who did

not, were the same (supplemental table 1). The mean utility score – the ability to carry

out activities of daily living – was higher in the home group (0.86) compared to the

hospital group (0·75)(p<0·001). When converted into QALY, the QALY for the

home group (0·005) was higher than the hospital group (0·004) (p<0·001). After 2

weeks, at the point of resolution of the cellulitis, the utility score was no different

between home (0·95) versus hospital (0·93) (difference -0·02; 95%CI -0·04 to 0·00,

p=0·06).

Cost-effectiveness

Treatment at home was therefore less costly (for the institution and families) and

more effective (using either the clinical outcome or QALY), which means it is

dominant in health economic terms: both cost saving and clinically superior.

Therefore, calculating the incremental cost-effectiveness ratio is redundant because

there is no extra cost for home treatment compared to hospital care to achieve the

reported effectiveness. The cost-effectiveness plane (figure 2a and 2b) shows that

treatment at home is cost-effective using either measure of effectiveness with a high

215

level of certainty – the proportion of data points in the bottom right quadrant. With

QALY there was 100% certainty of the findings, and with treatment failure there was

a 98·3% certainty (1·7% data points in the bottom left quadrant). In the sensitivity

analysis, despite varying different components of care to determine the effects of

making the travel or staff costs more expensive or the treatment failure rate worse, the

home intervention remained dominant (table 4, figure 3).

Discussion

In this first comprehensive economic evaluation of home versus hospital treatment for

any condition in children,25 home treatment for cellulitis was shown to be

convincingly dominant. There is published evidence that children with

moderate/severe cellulitis can be safely and effectively treated at home12,15,26 and this

study now provides the cost-effectiveness evidence. Our results are in contrast to the

findings of the only other cost comparison study in randomised children. In a United

Kingdom RCT of children requiring nursing observations in hospital versus home,

costs to the healthcare provider (NHS) were not significantly different (GBP870 per

patient at home versus GBP741 per hospitalised patient).25 This is likely explained by

patients in the home group in that study being initially hospitalised, incurring a

hospital cost in addition to the home cost, and the home service under-recruiting

patients resulting in a higher ratio of nurses to patients and higher costs per patient.

In considering the generalisability of the cost-effectiveness findings under different

care pathways and resource contexts, the sensitivity analyses were reassuring. Factors

were chosen that would adversely affect either a) costs of home treatment (catchment

distance, number of visits), b) costs and effectiveness of home treatment (readmission

216

rate from home during treatment), or c) costs of both treatment locations (medical

staff costs). The increase in catchment area (increasing nursing time and travel

resources) provides relevance to services in more rural areas where patients may live

further from the hospital. Doubling the readmission rate during treatment at home did

not affect the dominance of the outcome and reassures that even if a patient has to

return to hospital, there are benefits in initiating a home treatment pathway. Finally,

although increasing doctors’ salaries was somewhat tongue in cheek, it shows that the

cost-effectiveness benefits still stand even in differently-resourced situations.

Although all analyses were specific to management of cellulitis, they should be

broadly applicable to comparison of home versus hospital treatment of other medical

conditions. The findings of a dominant home intravenous pathway in our study was

similar to the only previous cost-effectiveness analysis of OPAT in children with

febrile neutropenia, supporting the generalisability of these results.22 The variation of

two visits per day was included to consider the home needs in other conditions such

as the management of a newly diagnosed diabetes mellitus where glucose monitoring

may be required twice a day. The benefits of treating infections at home in children

with underlying chronic conditions necessitating frequent admissions to hospital, such

as cystic fibrosis or cancer, may have even stronger benefits in terms of QALY.

These findings inform clinicians for the first time of the costs that families incur when

children are hospitalised for cellulitis: AUD593 per family for an admission lasting

two days, a substantial cost for the average family. This compares unfavourably to the

AUD182 for home treatment for the same condition. Most clinicians would likely not

consider this when admitting a child to hospital. Most of that cost is from parental or

carer’s absence from work, which was significantly higher in the hospital group by a

217

mean difference of AUD410 per admission. Two previous studies have also found

that parents/guardians of children treated with OPAT were less likely to have absence

from work.25,27 This may be attributed to parents being more likely to stay with their

child when their child is hospitalised, whereas other carers or extended family may

care for a child treated at home. Additionally, one parent may stay with a child in

hospital while the other looks after siblings at home, whereas if a child is treated at

home, one parent can do all child-caring activities. This would be an especially

important factor to consider for single parent families.

The economic implications across the whole of Australia are currently unrealised. In

2016 to 2017 there were 85,991 ED attendances at our hospital, and approximately

1,997,606 ED attendances in children aged 18 years and under across the whole of

Australia.28 Over the 29 months of the CHOICE trial, 252 children at our hospital

were eligible, ie 104/year.16 With a conservative estimate that a similar proportion of

paediatric attendances are due moderate/severe cellulitis across Australia (although it

is likely to be higher in tropical northern regions), this equates to 2,415 children

attending ED with this infection per year who would be eligible for ambulatory

intravenous treatment. The cost savings across Australia would therefore be

AUD4,368,735 (95%CI 3,197,460-5,542,425) per year for hospitals and AUD990,150

(95%CI 753,480-1,226,820) per year for families. Although the total potential societal

cost saving of AUD5,358,885 (95%CI 3,950,940-6,769,245) seems perhaps not

dramatic, this is for a two-day admission for the severe end of a single infection. If

this could be replicated in multiple infections needing antibiotics such as urinary tract

infection29 and febrile neutropenia4, and even viral infections needing nursing

observations30, then savings would rapidly accrue.

218

The strengths of this study include that children were randomised reducing the bias of

self-selection or a highly selected patient group, patient-level cost data with real

outcomes were used, and that the cost-effectiveness analysis was comprehensive. The

study has several limitations. Firstly, it was conducted in a single tertiary centre with

the largest paediatric home care team in Australia.3 This team has strong medical

oversight and skilled nurses, which contribute to low complication and readmission

rates. However, when the readmission rates were hypothetically increased, the home

treatment pathway was still dominant. Secondly, the questionnaires to families were

anonymous (to obtain candid answers from families), prohibiting the ability to relate

the burden of costs incurred by families to specific patient outcomes. The utility data

was provided by only 75% of families, although when compared the baseline

characteristics and clinical outcomes were the same.

Conclusion

Home intravenous antibiotic treatment for moderate/severe cellulitis directly from the

ED is cost-effective compared to standard care of admission to a hospital ward. These

findings, in addition to the RCT showing clinical efficacy, fewer adverse events and

higher patient/parent satisfaction, provide strong evidence to stakeholders and

policymakers in support of a direct-from-ED-to-home pathway for this condition. It

highlights the value of a comprehensive cost-effectiveness analysis in the allocation

of resources for developing new models of care, although each condition should be

analysed independently as there may be unrecognised differences.

219

Contributors' Statement

LFI conceptualized, designed and coordinated the study, carried out the initial and

subsequent data analysis, drafted the initial manuscript, revised subsequent drafts and

approved the final manuscript as submitted. PAB, FEB, and SMH, were involved in

the design of the study, provided input into data analysis, reviewed and revised the

manuscript and approved the final draft. LH was involved in the design of the study,

guided the statistical analysis, revised and approved the final manuscript as submitted.

KD was involved in the design of the family questionnaire part of the study, reviewed

and revised the manuscript and approved the final draft. All authors approved the

final manuscript.

Declaration of interests

All authors hereby declare there has been no support from any organisation for the

submitted work; no financial relationships with any organisations that might have an

interest in the submitted work in the previous three years; no other relationships or

activities that could appear to have influenced the submitted work.

Acknowledgements

We would like to acknowledge the participation of patients and families.

Funding

This study was funded in part by grants from the RCH Foundation, the Murdoch

Children's Research Institute (MCRI), the Victorian Department of Health,

Melbourne Australia. LFI was supported in part by a scholarship from AVANT

Mutual Group Ltd, Melbourne, the Melbourne Children’s Campus Postgraduate

220

Health Research Scholarship and the Doctor Nicholas Collins Fellowship. PAB was

in part supported by a Melbourne Campus Clinician Scientist Fellowship, Melbourne,

Australia. FEB was supported in part by a grant from the RCH Foundation and a

Melbourne Campus Clinician Scientist Fellowship, Melbourne, Australia and a

National Health and Medical Research Council (NHMRC) Practitioner Fellowship,

Canberra, Australia. The emergency research group, MCRI, is in part supported by an

NHMRC Centre for Research Excellence Grant for Paediatric Emergency Medicine,

Canberra, Australia and the Victorian government infrastructure support program.

1.   Fernandes  P,  Milliren  C,  Mahoney-­‐West  HM,  Schwartz  L,  Lachenauer  CS,  Nakamura  MM.  Safety  of  Outpatient  Parenteral  Antimicrobial  Therapy  in  Children.  Pediatr  Infect  Dis  J  2017.  2.   Madigan  T,  Banerjee  R.  Characteristics  and  outcomes  of  outpatient  parenteral  antimicrobial  therapy  at  an  academic  children's  hospital.  Pediatr  Infect  Dis  J  2013;  32(4):  346-­‐9.  3.   Hodgson  KA,  Huynh  J,  Ibrahim  LF,  et  al.  The  use,  appropriateness  and  outcomes  of  outpatient  parenteral  antimicrobial  therapy.  Archives  of  disease  in  childhood  2016;  101(10):  886-­‐93.  4.   Orme  LM,  Babl  FE,  Barnes  C,  Barnett  P,  Donath  S,  Ashley  DM.  Outpatient  versus  inpatient  IV  antibiotic  management  for  pediatric  oncology  patients  with  low  risk  febrile  neutropenia:  a  randomised  trial.  Pediatr  Blood  Cancer  2014;  61(8):  1427-­‐33.  5.   Balaguer  A,  Gonzalez  de  Dios  J.  Home  versus  hospital  intravenous  antibiotic  therapy  for  cystic  fibrosis.  Cochrane  Database  Syst  Rev  2012;  3:  CD001917.  6.   Bryant  PA,  Katz  NT.  Inpatient  versus  outpatient  parenteral  antibiotic  therapy  at  home  for  acute  infections  in  children:  a  systematic  review.  The  Lancet  Infectious  diseases  2017.  

221

7.   Chrysochoou  EA,  Hatziagorou  E,  Kirvassilis  F,  Tsanakas  J.  Home  intravenous  antibiotic  therapy  in  children  with  cystic  fibrosis:  clinical  outcome,  quality  of  life  and  economic  benefit.  Hippokratia  2016;  20(4):  279-­‐83.  8.   Wiernikowski  JT,  Rothney  M,  Dawson  S,  Andrew  M.  Evaluation  of  a  home  intravenous  antibiotic  program  in  pediatric  oncology.  The  American  journal  of  pediatric  hematology/oncology  1991;  13(2):  144-­‐7.  9.   IMPROVE  Trial  Investigators.  Comparative  clinical  effectiveness  and  cost  effectiveness  of  endovascular  strategy  v  open  repair  for  ruptured  abdominal  aortic  aneurysm:  three  year  results  of  the  IMPROVE  randomised  trial.  Bmj  2017;  359:  j4859.  10.   Chapman  AL,  Dixon  S,  Andrews  D,  Lillie  PJ,  Bazaz  R,  Patchett  JD.  Clinical  efficacy  and  cost-­‐effectiveness  of  outpatient  parenteral  antibiotic  therapy  (OPAT):  a  UK  perspective.  The  Journal  of  antimicrobial  chemotherapy  2009;  64(6):  1316-­‐24.  11.   Wai  AO,  Frighetto  L,  Marra  CA,  Chan  E,  Jewesson  PJ.  Cost  analysis  of  an  adult  outpatient  parenteral  antibiotic  therapy  (OPAT)  programme.  A  Canadian  teaching  hospital  and  Ministry  of  Health  perspective.  PharmacoEconomics  2000;  18(5):  451-­‐7.  12.   Gouin  S,  Chevalier  I,  Gauthier  M,  Lamarre  V.  Prospective  evaluation  of  the  management  of  moderate  to  severe  cellulitis  with  parenteral  antibiotics  at  a  paediatric  day  treatment  centre.  Journal  of  paediatrics  and  child  health  2008;  44(4):  214-­‐8.  13.   Ellis  Simonsen  SM,  van  Orman  ER,  Hatch  BE,  et  al.  Cellulitis  incidence  in  a  defined  population.  Epidemiology  and  infection  2006;  134(2):  293-­‐9.  14.   Ibrahim  LF,  Hopper  SM,  Babl  FE,  Bryant  PA.  Who  Can  Safely  Have  Antibiotics  at  Home?  A  Prospective  Observational  Study  in  Children  with  Moderate/Severe  Cellulitis.  Pediatr  Infect  Dis  J  2015.  15.   Ibrahim  LF,  Hopper  SM,  Connell  TG,  Daley  AJ,  Bryant  PA,  Babl  FE.  Evaluating  an  admission  avoidance  pathway  for  children  in  the  emergency  department:  outpatient  intravenous  antibiotics  for  moderate/severe  cellulitis.  Emergency  medicine  journal  :  EMJ  2017.  16.   Ibrahim  LF,  Hopper  SM,  Orsini  F,  Daley  AJ,  Babl  FE,  Bryant  PA.  Randomised  controlled  trial  of  intravenous  antibiotics  on  OPAT  versus  hospital  for  cellulitis  in  children:  comparison  of  efficacy  and  safety.  In  press  The  Lancet  Infectious  diseases  2018.  17.   Ibrahim  LF,  Babl  FE,  Orsini  F,  Hopper  SM,  Bryant  PA.  Cellulitis:  Home  Or  Inpatient  in  Children  from  the  Emergency  Department  (CHOICE):  protocol  for  a  randomised  controlled  trial.  BMJ  open  2016;  6(1):  e009606.  18.   Independent  Hospital  Pricing  Authority.  National  Hospital  Cost  Data  Collection:  Australian  Public  Hospitals  Cost  Report  2013-­‐2014  Round  18.  https://www.ihpa.gov.au/sites/g/files/net636/f/publications/nhcdc-round18.pdf.  (accessed  15  June  2018).  19.   Department  of  Health  and  Ageing.  Australian  Hospital  Patient  Costing  Standards,  version  2.0  –  1  March  2011.  https://www.ihpa.gov.au/publications/australianhospital-patient-costing-standards-version-20.  (accessed  26  April  2018).  20.   Stevens  K.  Valuation  of  the  Child  Health  Utility  9D  Index.  PharmacoEconomics  2012;  30(8):  729-­‐47.  

222

21.   Stevens  K,  Ratcliffe  J.  Measuring  and  valuing  health  benefits  for  economic  evaluation  in  adolescence:  an  assessment  of  the  practicality  and  validity  of  the  child  health  utility  9D  in  the  Australian  adolescent  population.  Value  in  health  :  the  journal  of  the  International  Society  for  Pharmacoeconomics  and  Outcomes  Research  2012;  15(8):  1092-­‐9.  22.   Teuffel  O,  Amir  E,  Alibhai  SM,  Beyene  J,  Sung  L.  Cost-­‐effectiveness  of  outpatient  management  for  febrile  neutropenia  in  children  with  cancer.  Pediatrics  2011;  127(2):  e279-­‐86.  23.   Ramsey  S,  Willke  R,  Briggs  A,  et  al.  Good  research  practices  for  cost-­‐effectiveness  analysis  alongside  clinical  trials:  the  ISPOR  RCT-­‐CEA  Task  Force  report.  Value  in  health  :  the  journal  of  the  International  Society  for  Pharmacoeconomics  and  Outcomes  Research  2005;  8(5):  521-­‐33.  24.   Husereau  D,  Drummond  M,  Petrou  S,  et  al.  Consolidated  Health  Economic  Evaluation  Reporting  Standards  (CHEERS)-­‐-­‐explanation  and  elaboration:  a  report  of  the  ISPOR  Health  Economic  Evaluation  Publication  Guidelines  Good  Reporting  Practices  Task  Force.  Value  in  health  :  the  journal  of  the  International  Society  for  Pharmacoeconomics  and  Outcomes  Research  2013;  16(2):  231-­‐50.  25.   Bagust  A,  Haycox  A,  Sartain  SA,  Maxwell  MJ,  Todd  P.  Economic  evaluation  of  an  acute  paediatric  hospital  at  home  clinical  trial.  Archives  of  disease  in  childhood  2002;  87(6):  489-­‐92.  26.   Brugha  RE,  Abrahamson  E.  Ambulatory  intravenous  antibiotic  therapy  for  children  with  preseptal  cellulitis.  Pediatric  emergency  care  2012;  28(3):  226-­‐8.  27.   Pena  A,  Zambrano  A,  Alvarado  M,  Cerda  J,  Vergara  R.  [Evaluation  of  the  effectiveness,  safety  and  costs  of  outpatient  intravenous  antimicrobial  treatment  (OPAT)  vs  hospitalized  in  urinary  infection  in  pediatrics].  Revista  chilena  de  infectologia  :  organo  oficial  de  la  Sociedad  Chilena  de  Infectologia  2013;  30(4):  426-­‐34.  28.   Australian  Institute  of  Health  Welfare.  Emergency  department  care  2016–17:  Australian  hospital  statistics.  https://www.aihw.gov.au/reports/hospitals/ahs-2016-17-emergency-department-care/contents/table-of-contents  (accessed  15  May  2018).  29.   Scanlan  BT,  Ibrahim  LF,  Hopper  SM,  Babl  FE,  Davidson  A,  Bryant  PA.  Selected  Children  with  Complicated  Acute  Urinary  Tract  Infection  May  be  Treated  with  Outpatient  Parenteral  Antibiotic  Therapy  at  Home  Directly  from  the  Emergency  Department.  Pediatr  Infect  Dis  J  2018.  30.   Sartain  SA,  Maxwell  MJ,  Todd  PJ,  et  al.  Randomised  controlled  trial  comparing  an  acute  paediatric  hospital  at  home  scheme  with  conventional  hospital  care.  Archives  of  disease  in  childhood  2002;  87(5):  371-­‐5.  

223

Tables Table 1. Demographics and clinical outcomes of randomised patients

Home n=89

no (%)

Hospital n=91

no (%)

Risk or mean

difference (%)

P value (95%CI)

Demographics and clinical features Age (years+/SD)

7.0+/-5.0 7.2+/-4.2

Female

36 (40) 48 (53)

Presence of co-morbidity

11 (12) 12 (13)

Presence of periorbital cellulitis

25 (28) 25 (27)

Systemic features

36 (40) 40 (44)

Primary outcome Treatment failure, n (%)

1 (1) 7 (8) -7 0.03 (-12.4 to -0.7)

Secondary outcomes Length of stay under hospital care (days), mean

2.5 2.0 0.4 0.03 (0.05 to 0.8)

Duration of IV antibiotics (days), mean

2.0 1.7 0.3 0.07 (-0.03 to 0.7)

Length of stay in ED (hours), mean

4.2 5.5 -1.3 0.001 (-2.0 to -0.5)

Adverse event during admission

1 (2) 10 (11) -13.1 0.04 (-25.7 to -0.4)

Complication during admission

5 (6) 7 (8) -2.1 0.59 (-9.5 to 5.3)

SD – standard deviation, CI – confidence interval

224

Table 2. Breakdown of institutional costs used for the two treatment locations

Mean cost per patient per day

Home

n=89

Hospital

n=91

Cost to healthcare institution

Medical doctor salaries

Nursing salaries

Admission process from the ED to ward*

ED costs including ED medical/nursing salaries Pathology

Pharmacy

Antibiotic (1g vial)

Antibiotic cost for a 30kg child at dose of 50mg/kg per day

Other institutional costs# Transport costs

Total cost including ED costs

$172

$201

$0

$623

$77

$13

$0.61

$0.61

$129 $0.68 per km

$970

$410

$66

$570

$850

$121

$22

$0.95

$7.60

$337

0

$2388

Cost to patient/families

Absence from paid work

Absence from unpaid work

Expenses during treatmentb

Total cost to family

$62

$7

$28

$73

$232

$38

$66

$297

ED – Emergency Department, *Includes: administrative, doctor/nurse salaries to clerk in admission and transfer of patient from ED to ward by healthcare assistant #Includes: administrative, imaging, nursing/medical supplies, allied health, overheads including travel time

225

Table 3. Mean cost and effectiveness outcomes Home

n=89

Hospital

n=91

Difference P value (95%CI)

Cost outcomes Mean cost to hospital per patient episodea Mean cost to hospital per patient per day

$1965

$970

$3775

$2388

-$1809 (A)

-$1419

<0.001 (-1324 to -2295)

<0.001

(-1120 to -1717)

Mean cost to family per patient episode Mean cost to family per patient per day

$182

$73

$593

$297

-$410

-$222

<0.001 (-312 to -508)

<0.001

(-210 to -235)

Effectiveness outcomes Treatment failure

0.01 0.08 -0.07 (B) 0.03 (-0.12 to -0.07)

Utility score during intervention Quality Adjusted Life Year

0.86

0.0047

0.75

0.0041

0.11

0.0006 (C)

<0.001

(0.07 to 0.14)

<0.001 (0.0004 to 0.0008)

Incremental cost-effectiveness Incremental cost-effectiveness ratio, cost per treatment failure avoided (A)/(B)

Dominant

Incremental cost-effectiveness ratio, (A)/(C)

Dominant

a Mean length of stay as per table 1

226

Table 4. One-way and two-way sensitivity analyses derived from hypothetical scenarios

Home (Total cost per patient episode)

Hospital (Total cost per patient episode)

Cost difference

Home versus

hospital QALY

QALY difference

ICER

RCT data with QALY

$1965 $3775 -$1809 0.0047 versus 0.0041

-0.0006 Dominant

Catchment distance doubled

$2967 $3775 -$807 0.0047 versus 0.0041

-0.0006 Dominant

Readmission from home doubled to 2%

$2102 $3775 -$1673 0.0046 versus 0.0041

-0.0005 Dominant

Doctors’ salaries increased by 50%

$2120

$4147

-$2027

0.0047 versus 0.0041

-0.0006 Dominant

Nurse visits twice daily

$3361 $3775 -$414 0.0047 versus 0.0041

-0.0006 Dominant

ICER - Incremental cost-effectiveness ratio

227

Figures Figure 1. Trial design, intervention and primary outcome (IV – intravenous)

228

Figure 2a. Cost-effectiveness plane using QALY to measure effectiveness

Figure 2b. Cost-effectiveness plane using clinical outcome of treatment failure to measure effectiveness

Home more costly but more effective

Home

Hospitaldominates

less costlybut lesseffective-1

000

05001000

Incr

emen

tal c

ost (

A$)

-.0001 0 .0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008Effectiveness QALY

Home dominates

Home more costly but more effectiveHospitaldominates

Homeless costlybut lesseffective

-1000

0500

1000

Incr

emen

tal c

ost (

A$)

-.04 -.02 0 .02 .04 .06 .08 .1 .12 .14Effectiveness per treatment failure avoided

Home dominates

229

Figure 3. Sensitivity analyses of cost-effectiveness data

-200

0-1

000

050

010

00In

crem

enta

l cos

t (A

$)

-.0002 0 .0002 .0004 .0006 .0008Effectiveness

RCT data with QALY Nurse visits twice dailyReadmission doubled to 2% Catchment distance doubled to 2 hoursDoctors salaries increased by 50%

230

Supplementary table 1. Comparison of baseline characteristics and clinical outcomes of patients who provided utility data and those who did not.  

Provided utility

n=136 n (%)

Did not provide utility n=44 n (%)

P value Mean or risk

difference (95%CI)

Age - years 6.8±4.7 7.7±4.3 0.21

Female 64 (50) 22 (42) 0.47

Prior oral antibiotics 69 (54) 28 (53) 0.83

Systemic features 57 (46) 22 (42) 0.93

Primary outcome - treatment failure

2 (2) 6 (4) 0.88 -3.7 (- 6.1 to 7.1)

Length of stay under medical care (days)

2.3±1.5 2.4±2.7 0.75 -0.1 (- 0.7 to 0.5)

Duration of intravenous antibiotic (days)

1.9±1.5 2.0±2.6 0.14 -0.14 (- 0.1 to 0.8)

Data are presented as mean+/- SD or n (%), unless otherwise stated. ED= Emergency Department, IV= intravenous.

231

Supplementary figure 1

Randomised  (n=190)  

Allocated  to  receive  home  with  ceftriaxone  (n=95)    

Assessed  for  eligibility  (n=1135)  

Allocated  to  receive  hospital  with  flucloxacillin  (n=95)      

Per-­‐protocol  analysis  (n=89)      

Per-­‐protocol  analysis  (n=91)  

Did  not  receive  allocated  intervention  (n=4):          Families  insisted  on              treatment  in  hospital                  after  randomisation  (n=2)          Unable  to  cannulate,  went                home  on  oral  antibiotic              (n=1)          Family  insisted  on  initial                  hospitalisation  then  home                treatment (n=1)

Did  not  receive  allocated  intervention  (n=4):        Families  refused              treatment  in  hospital            after  randomisation            (n=2)        Initially  refused  oral            antibiotics  then  after            randomisation  agreed  to            comply  with  oral                antibiotics  (n=1)        Child  hospitalised  but            did  not  receive  intravenous    

Intention-­‐to-­‐treat  analysis  (n=93)  

Intention-­‐to-­‐treat  analysis  (n=95)    

232

Legend Figure 1. Trial profile The intention-to-treat analysis included all randomised participants where outcome data were available, regardless of treatment received. The per-protocol analysis included all individuals that received treatment as per randomised allocation and did not encounter any major protocol violation such as: received treatment in the hospital if randomised to the home group, or received treatment at home if randomised to hospital group or did not receive any study treatment.

233

  234  

 

235  

 

6.4 Implications  of  the  cost-­‐effectiveness  analysis    

Previous  studies  suggest  that  children  and  their  families  benefit  from  avoiding  

hospital  admission  where  feasible.  A  number  of  non-­‐randomised  studies  suggest  

that  the  ambulatory  or  OPAT  pathway  is  less  costly  than  standard  hospital  

care.38,147  In  this  first  comprehensive  economic  evaluation  of  home  versus  

hospital  treatment  for  any  condition  in  children,30  home  treatment  for  cellulitis  

was  shown  to  be  convincingly  dominant.  There  is  published  evidence  that  

children  with  moderate/severe  cellulitis  can  be  safely  and  effectively  treated  at  

home1,2,115  and  this  study  now  provides  the  cost-­‐effectiveness  evidence.  

The  strength  of  this  study,  planned  meticulously  alongside  the  RCT,  are  that  the  

costs  to  the  institution  were  obtained  for  each  individual  patient  in  the  study,  

enabled  by  liaising  with  the  institutional  clinical  costing  unit.  Previous  studies  

have  used  the  method  of  diagnosis  related  grouping  (DRG)  to  calculate  costs  to  

the  institution.26,115  The  DRG  is  based  on  the  average  cost  for  a  number  of  

patients  with  a  particular  diagnosis,  in  this  case,  cellulitis.  However,  this  average  

is  likely  to  be  inaccurate  due  to  this  diagnosis  being  recorded  by  junior  clinicians  

or  by  non-­‐clinicians  in  many  places.  For  example  using  the  DRG  method  in  the  

foundation  cohort  study,  to  estimate  cost  to  the  institution  resulted  in  a  mean  

cost  for  the  home  group  to  be  AUD530  versus  AUD1297  for  the  hospital  group.  In  

contrast,  patient  level  data  reflect  the  real  costs  involved  during  the  intervention,  

resulting  in  a  mean  cost  for  the  home  group  to  be  AUD970  versus  AUD2388  for  

the  hospital  group.  The  45%  difference  in  costs  obtained  using  two  different  

methods,  particularly  when  extrapolating  for  a  larger  population  has  a  

substantial  impact.  The  same  is  true  for  modeling  studies.147  Cost-­‐modeling  

studies  estimate  costs  using  secondary  data,  whereas  real  individual  patient  level  

data  adds  to  the  precision  of  a  cost-­‐effectiveness  analysis.  

Of  equal  importance  in  this  study  was  obtaining  the  burden  of  costs  to  families  

usually  not  considered  in  previous  studies.31  This  may  be  because  of  an  

assumption  that  costs  of  home  or  hospital  treatment  is  no  different  for  families,  

  236  

that  these  data  are  considered  hard  to  gather  accurately,  or  because  this  is  not  

considered  important.  One  previous  study  on  children  with  cancer  receiving  

chemotherapy  infusions  at  home,  stated  that  data  on  parental  absence  from  

work  was  not  gathered  due  to  the  assumption  that  regardless  of  treatment  

location,  absence  from  work  would  not  differ.23  As  shown  in  our  study,  the  cost  

to  families  for  absence  from  both  paid  and  unpaid  work,  was  significantly  less  

(AUD171  versus  AUD542,  p<0·001)  for  children  in  the  home  group.  This  also  

highlights  how  much  less  disruption  there  is  to  daily  family  routine  with  home  

treatment,  previously  shown  in  the  RCT.142  We  were  thorough  with  measuring  

the  burden  of  costs  to  families,  taking  into  account  paid  and  unpaid  employment,  

medical  expenses  as  well  as  other  expenditure  such  as  childcare,  food,  

accommodation  and  travelling.    

To  measure  effectiveness  in  the  RCT,  the  CHU9D  was  chosen  due  to  this  

questionnaire  having  low  response  burden.153  This  quality  of  life  tool  was  

developed  using  research  in  children,  is  brief  and  simply  worded  and  is  available  

in  proxy  and  self-­‐report  forms.146  It  uses  a  shortened  reference  time  frame  

(‘today’)  suitable  for  an  acute  illness.  The  nine  domains  which  include  daily  

routine,  social  activities,  sleep  and  pain  are  relevant  in  comparing  home  versus  

hospital  care  and  the  tool  has  been  validated  in  Australia  and  the  UK.  Due  to  the  

many  appealing  features,  the  tool  has  been  used  widely  in  the  literature  in  many  

different  populations.154,155  This  tool  allows  rapid  conversion  of  the  answers  

obtained  to  utility  scores  by  using  an  algorithm.  Utility  scores  can  then  be  

conveniently  converted  to  QALY  by  multiplying  the  utility  scores  with  the  time  

horizon.  

QALY  are  considered  to  be  the  cornerstone  of  economic  analysis,  which  

combines  both  morbidity  gains  and  the  mortality  impact  of  a  treatment.145  QALY,  

through  the  incorporation  of  utilities  as  measured  using  the  CHU9,  aid  decision-­‐

making  in  healthcare  in  order  to  prioritise  limited  resources.  In  addition  to  use  

for  economic  evaluations,  quality  of  life  data  can  also  be  useful  in  monitoring  an  

individual  patient's  health  status,  the  measurement  of  population  health  or  the  

effect  of  therapies  in  clinical  studies.144  Although  health  economists  are  familiar  

  237  

with  terms  such  as  QALYs  and  ICER,  ultimately,  clinicians  would  interpret  

effectiveness  from  a  clinical  perspective.  Many  studies  present  the  effectiveness  

data  using  clinical  outcomes,  the  disadvantage  being  how  highly  specific  this  

outcome  is  to  the  disease.139  This  limits  the  ability  to  compare  the  ICER  with  

other  interventions.  Therefore,  to  be  relevant  to  all  stakeholders  and  to  provide  

robustness  to  the  results,  it  was  important  to  calculate  the  ICER  using  both  

effectiveness  measures:  the  clinical  outcome  from  the  RCT  and  QALY.    

This  is  the  first  time  that  a  cost-­‐effectiveness  analysis  has  been  performed  using  

a  randomised  cohort  in  the  literature  of  either  paediatric  or  adult  OPAT.  It  has  

the  potential  to  act  as  a  platform  for  societal  and  resource  analysis  for  all  

admission  avoidance  and  home  management.  In  addition  to  supporting  the  

hypothesis  that  treatment  at  home  is  cost-­‐effective  compared  to  hospital  care,  

we  found  that  families  incur  three-­‐fold  higher  costs  when  their  child  is  treated  in  

hospital  compared  to  at  home  –  a  factor  often  forgotten  when  deciding  to  admit  

patients  to  hospital.  These  findings  are  crucial  in  the  risk/benefit  conversation  of  

home  versus  hospital  management.    

   

  238  

Chapter  7 Discussion    

7.1 Introduction  to  key  findings  

This  thesis  was  driven  by  the  belief  that  home  is  a  better  place  to  treat  children  

than  hospital,  if  it  is  feasible  and  appropriate  to  deliver  care  there.  Unfortunately,  

a  lack  of  evidence  has  hampered  universal  implementation  of  this  practice,  as  it  

has  remained  unclear  for  which  children  and  which  treatments  this  is  a  suitable  

option.  This  evidence  vacuum  led  to  a  number  of  research  questions  addressed  

in  separate  phases  of  work,  represented  by  the  different  chapters  in  this  thesis.  

At  the  beginning  of  the  PhD  journey  was  a  detailed  interrogation  of  the  literature  

to  identify  the  current  evidence  for  the  use  of  intravenous  antibiotics  in  children  

outside  the  hospital  setting,  and  the  management  of  cellulitis  as  a  paradigm,  

including  efficacy,  safety,  quality  of  life,  cost,  hospital-­‐acquired  infections,  and  

antibiotic  resistance  (Chapter  1).  Identifying  the  gaps  led  to  the  research  aims  

outlined  at  the  beginning  of  this  thesis,  which  were:  1)  to  better  understand  

current  practice  in  the  management  of  moderate/severe  cellulitis;  2)  to  develop  

and  validate  a  system  for  determining  which  patients  with  cellulitis  need  

intravenous  antibiotics;  and  3)  most  importantly,  to  investigate  clinical  and  non-­‐

clinical  outcomes  of  home  versus  hospital  intravenous  treatment  in  children  

presenting  to  the  emergency  department  with  uncomplicated  moderate/severe  

cellulitis.  The  overarching  goal  was  to  improve  the  evidence  to  improve  the  

practice.  

The  research  encompassed  in  this  thesis  addressed  and  achieved  these  aims  in  

three  parts:  1)  studies  to  better  understand  current  practice  and  the  reasons  

behind  it  (Chapter  2);  2)  studies  to  assess  the  feasibility  and  inform  the  key  

design  elements  of  the  RCT  (Chapters  3  and  4);  and  3)  the  RCT  which  included  

outcomes  of  efficacy,  safety,  antibiotic  resistance,  quality  of  life  and  

incorporating  a  cost-­‐effectiveness  analysis  of  home  versus  hospital  care  (Chapter  

5  and  6).  

  239  

The  aim  of  this  chapter  is  to  summarise  the  overall  key  findings  of  the  work  in  

this  thesis  and  place  them  in  context  of  the  existing  literature,  and  then  to  

discuss  the  implications  of  these  findings  on  practice  and  future  research.  Each  

study  described  in  the  thesis  already  has  a  thorough  discussion  in  the  

manuscript  included  in  the  chapters.  This  discussion  chapter  is  exploring  a  

broader  perspective.  

7.2 Home  versus  hospital  for  intravenous  antibiotics    

The  RCT  that  forms  the  crux  of  this  thesis  remains  the  only  randomised  trial  in  

children  investigating  a  pathway  completely  avoiding  hospital  admission.  In  

addition  to  the  studies  described  at  the  beginning  of  this  thesis,  the  studies  that  

have  been  published  since  the  start  of  this  PhD  include  a  systematic  review  of  

OPAT  in  acute  infections.156  In  this  thorough  review,  the  authors  emphasised  the  

lack  of  randomised  trials  that  would  clarify  which  patient  populations  are  

amenable  to  OPAT.  Only  two  other  studies  of  home  versus  hospital  care  have  

been  published  since  Chapter  1  was  written:  both  of  these  studies  were  based  on  

OPAT  in  the  same  institutional  (hospital)  setting  as  this  thesis,  the  RCH,  and  

investigated  the  outcomes  of  patients  with  UTI  and  meningitis.157,158  In  addition,  

three  other  OPAT  studies  which  describe  the  patient  characteristics  and  

outcomes  of  those  treated  on  OPAT,  have  been  published  but  do  not  have  a  

hospital  comparison  group.12,13,159  The  following  sections  will  describe  the  key  

findings  of  this  thesis  in  the  context  of  the  literature  to  date.  

7.3 Is  home  treatment  as  efficacious  as  in  hospital?  

Efficacy  is  often  measured  by  the  proportion  of  treatment  failure  in  comparative  

home  versus  hospital  care  studies.31,115  In  the  three  studies  in  this  thesis  

(baseline:  Chapter  2,  foundation:  Chapter  3,  RCT:  Chapter  5)  comparing  home  

versus  hospital  for  the  treatment  of  moderate/severe  cellulitis,  ceftriaxone  at  

home  was  as  efficacious  as  in  hospital.  Efficacy  measured  by  the  rate  of  

treatment  failure  in  all  three  studies  was  no  different  between  home  and  hospital  

care.  In  the  first  baseline  study,  this  was  2/41  (5%)  versus  7/103  (7%)  

  240  

respectively,  OR  1.4,  (95%  CI  0.3  to  7.1),  p=0.67,  whereas  in  the  foundation  

cohort  study,  the  treatment  failure  rates  were  2/47  (4%)  versus  8/59  (14%),  OR  

0.28  (95%  CI  0.0  to  1.3),  p=0.10.  These  initial  findings,  despite  not  being  

randomised,  were  consistent  with  the  subsequent  findings  of  the  RCT  (Chapter  

5),  which  had  treatment  failure  rates  of  2/93  (2%)  versus  7/95  (7%)  

respectively,  risk  difference  5.3  (95%  CI  -­‐11.3  to  0.8),  p=0.09.  The  consistency  of  

these  findings  is  reassuring  and  adds  to  the  weight  of  the  evidence.    

The  findings  of  treatment  failure  in  these  three  studies  (baseline,  foundation,  

RCT)  cannot  be  directly  compared  with  other  studies  on  moderate/severe  

cellulitis  due  to  the  difference  in  the  definition  of  efficacy.  In  particular,  the  two  

other  studies  within  the  literature  on  moderate/severe  cellulitis  measured  

efficacy  by  the  rate  of  readmission  to  hospital  during  treatment  and  did  not  have  

a  comparator  group.1,2  Nevertheless,  in  the  Canadian  study,  the  rate  of  

readmission  to  hospital  during  treatment  was  quite  high  at  21%,  compared  to  

4%  in  the  foundation  cohort  study  and  1%  in  the  RCT.  There  were  no  

readmissions  during  home  treatment  in  the  baseline  study.  One  possible  reason  

for  this  is  the  ability  to  consult  other  specialist  teams  at  the  institution  where  the  

RCT  was  conducted.  For  example,  in  cases  where  there  was  suspicion  of  a  joint  

involvement,  orthopaedic  surgeons  were  contacted  to  obtain  an  opinion  or  

advice  over  the  phone  or  as  part  of  an  unscheduled  outpatient  review.  It  was  also  

possible  to  organise  imaging  such  as  ultrasonography  without  admission  to  

hospital.  This  represented  an  institutional  level  support  to  keep  children  out  of  

hospital  whenever  feasible.  Another  reason  to  explain  the  high  rate  of  

readmission  in  the  Canadian  study  was  the  location  of  the  day  treatment  centre  

which  being  close  to  or  even  a  part  of  the  hospital  potentially  makes  it  easier  for  

clinicians  to  decide  to  readmit  patients  whereas  when  the  patient  was  at  home,  

asking  patients  to  return  to  hospital  was  a  burden  to  families,  encouraging  

clinicians  to  consider  the  decision  to  readmit  only  when  absolutely  necessary.  In  

addition,  11%  of  those  treated  at  the  day  treatment  centre  lived  further  than  50  

kilometres  from  the  centre.  This  would  likely  lead  to  a  far  more  cautious  

approach  and  a  lower  threshold  to  direct  patients  to  hospitalisation.    

  241  

In  a  study  of  children  treated  for  pyelonephritis,  where  a  comparison  was  made  

between  OPAT  and  hospital  in  acute  conditions,  the  readmission  rate  was  no  

different  between  the  home  and  hospital  group.157  Other  comparative  studies  

had  different  measures  of  efficacy.  In  the  only  previous  randomised  study  of  

home  versus  hospital  care,  comparing  the  treatment  of  febrile  neutropenia  in  

children  with  cancer,  the  primary  outcome  was  not  efficacy  but  quality  of  life.  

With  only  36  patients  in  this  trial,  it  was  not  powered  for  clinical  outcomes7.  

Despite  the  majority  of  studies  showing  no  difference  in  efficacy  for  home  versus  

hospital  care  in  patients  with  cystic  fibrosis,  several  studies160,161  have  

documented  a  significantly  greater  clinical  improvement  in  the  hospital  group  

than  in  the  home  group,  even  though  all  studies  showed  an  improvement  in  

forced  expiratory  volume  in  1  second  (FEV1)  for  both  the  home  and  hospital  

patients.  The  reason  for  this  is  most  likely  due  to  the  hospital  group  receiving  

more  physiotherapy  due  to  increased  resources  and  adherence.  Another  possible  

explanation  may  be  that  hospital-­‐based  patients  may  have  had  access  to  a  

multidisciplinary  team  for  example,  a  dietitian  and  endocrinologist.  If  more  

resources  were  available  to  the  home  patients,  results  may  have  been  different.  

For  example,  physiotherapy  and  consultations  with  a  multidisciplinary  team  

could  be  delivered  virtually  via  telehealth  while  the  patient  is  at  home.162    

In  summary,  the  findings  of  treatment  at  home  being  as  efficacious  as  hospital  in  

this  thesis  may  be  extended  to  other  patient  populations.  

7.4 Is  home  treatment  as  safe  as  in  hospital?  

In  order  to  expand  and  increase  the  uptake  of  the  home  pathway,  it  is  equally  

important  to  document  safety,  with  hospital  treatment  being  the  standard  

against  which  OPAT  should  be  compared.  In  the  clinician  survey  (Chapter  3),  a  

quarter  of  clinicians  revealed  their  reluctance  to  use  OPAT  due  to  the  perceived  

risk  of  a  child  deteriorating  unnoticed.  If  anything,  treatment  at  home  needs  to  

be  safer  than  hospital  treatment  because  of  the  lack  of  clinical  support  available  

if  an  adverse  event  occurs  at  home.    

  242  

In  addition  to  adverse  events,  considerations  of  safety  also  include  complications  

of  the  disease  occurring  at  home.  In  the  survey,  20%  of  clinicians  expressed  

concern  with  the  risk  of  missing  a  complication  with  home  treatment.  

Complications  are  generally  disease-­‐specific,  and  for  cellulitis,  this  is  most  

commonly  development  of  an  abscess  that  requires  drainage.  For  the  baseline  

study,  there  were  no  complications  documented  for  those  who  received  home  

treatment.  In  the  subsequent  foundation  cohort  study,  the  combined  risk  of  

complications  and  adverse  events  were  no  different  between  home  and  hospital,  

3/47  (6%)  versus  6/59  (10%),  OR  0.74  (95%  CI  0.2  to  3.0),  p>0.05.  In  the  RCT,  

the  complication  rate  of  abscess  formation  was  no  different  between  the  home  

and  hospital  group  at  6%  in  each  arm.  This  finding  was  very  similar  to  a  previous  

Canadian  study  investigating  the  outcomes  for  the  treatment  of  moderate/severe  

cellulitis  at  a  day  treatment  centre  with  a  7%  abscess  formation  rate.  This  low  

overall  complication  rate  is  expected,  as  cellulitis  is  not  associated  with  major  

complications  compared  to  other  conditions,  for  instance,  post  complicated  

appendicectomy  or  febrile  neutropenia  where  complications  could  potentially  be  

more  serious.38,112    

In  a  study  of  antibiotic  treatment  post  complicated  appendicectomy,  there  were  

52/150  patients  treated  at  home  for  the  last  5  days  of  a  10-­‐day  piperacillin-­‐

tazobactam  course  through  a  peripherally  inserted  central  catheter  (PICC)  line.38  

After  treatment,  4/52  (8%)  patients  from  the  home  group  while  5/98  (5%)  from  

the  hospital  group  required  readmission  to  the  hospital  for  complications  

including  phlegmon,  abscess,  bowel  obstruction,  fever  or  abdominal  pain.  (no  

statistical  analysis  in  the  published  paper).38  Two  other  studies  on  complicated  

appendicectomy  described  either  the  absence  of  complications,  or  no  difference  

between  home  and  hospital-­‐based  patients  on  the  subsequent  development  of  an  

intraabdominal  abscess.32,163  However,  none  of  these  studies  are  completely  

reassuring  as  they  are  not  randomised  studies.  

In  a  randomised  trial  of  37  episodes  of  febrile  neutropenia  comparing  

intravenous  cefepime  administered  twice  per  day  in  hospital  or  at  home,  

complications  were  defined  as  a  change  in  antimicrobial  treatment.  Six  out  of  

  243  

eighteen  (33%)  home  patients  required  a  change  in  antimicrobial  treatment  

because  of  positive  blood  cultures,  prolonged  fever,  or  clinical  change,  whereas  

only  3/19  (16%)  inpatients  required  a  change  because  of  positive  blood  cultures  

or  clinical  change.  Although  the  proportion  was  higher  in  the  home  group,  the  

small  number  of  patients  in  this  trial  makes  it  difficult  to  interpret.  Additionally,  

there  was  no  specified  objective  way  to  decide  on  change  of  treatment,  with  

potentially  many  different  clinicians  involved  with  differing  management  

approaches.  With  the  parameters  for  treatment  change  being  subjective,  medical  

staff  might  have  been  more  cautious  with  home-­‐based  patients  resulting  in  the  

higher  proportion  of  change  in  antimicrobial  treatment.  

Regarding  adverse  events,  in  the  RCT  (Chapter  5),  an  unexpected  finding  was  

that  adverse  events  occurred  more  frequently  with  hospital  care  than  at  home:  

2/93  (2%)  versus  10/95  (11%),  OR  -­‐9.8,  (95%  CI  -­‐19.5  to  -­‐0.1),  p=0.048.  These  

comprised  the  following:  home:  rash  (1),  dosing  error  (1);  hospital;  diarrhea  or  

vomiting  (7),  headache  (1),  vasovagal  episode  (1),  and  hypotension  (1).  The  

patient  with  hypotension  had  intermittent  low  blood  pressure  and  looked  

clinically  well  throughout.  Of  note,  diarrhea  and  vomiting  occurred  only  in  the  

hospital  group.  This  may  have  been  attributed  to  treatment  location,  a  result  of  

hospital-­‐acquired  gastroenteritis  or  it  may  have  been  a  side  effect  of  the  

antibiotic  in  hospital,  flucloxacillin.  Regardless  of  the  cause,  this  did  not  occur  for  

those  assigned  home  treatment.  Another  unexpected  outcome  was  the  higher  

need  for  repeat  peripheral  cannula  insertion  in  the  hospital  group,  compared  to  

the  home  group.  A  concern  that  parents  have  previously  expressed  when  

receiving  home  treatment  is  that  the  peripheral  intravenous  cannula  could  be  

accidentally  pulled  out  at  home,  by  the  patient  or  siblings.  The  findings  in  this  

RCT  can  be  reassuring  to  the  parents  whose  children  are  treated  via  this  

pathway  in  future.  In  other  patient  populations,  adverse  events  were  assessed  in  

five  studies  on  cystic  fibrosis,  but  were  found  to  be  similarly  low  or  absent.26,164-­‐

167  In  the  RCT  of  children  with  febrile  neutropenia,  there  were  no  adverse  events  

due  to  cefepime  or  outpatient  management.7  

  244  

The  findings  from  studies  of  this  thesis  have  shown  that  the  risks  of  adverse  

events  and  complications  at  home  are  likely  to  be  similar  to  the  risks  in  hospital.  

Importantly,  there  have  been  no  serious  adverse  events  or  mortality  in  children  

treated  at  home,  although  these  studies  were  not  powered  for  these  safety  

outcomes.  Nevertheless,  this  finding  is  reassuring  that  even  when  patients  are  

not  pre-­‐selected  to  have  treatment  at  home,  as  was  the  case  in  the  RCT,  

treatment  at  home  appears  to  be  just  as  safe  as  standard  care.    

7.5 Do  home  intravenous  antibiotics  have  different  implications  on  acquisition  of  bacterial  resistance  than  in  hospital?  

There  is  no  other  study  to  date  investigating  the  impact  of  acquisition  or  

colonisation  of  bacterial  resistance  with  the  use  of  intravenous  ceftriaxone.  

Despite  the  almost  universal  concern  that  third  generation  cephalosporin  use  

induces  resistance  and  that  studies  of  paediatric  OPAT  invariably  show  that  the  

most  frequently  used  antibiotic  is  ceftriaxone,  this  association  has  never  been  

investigated.3,13,159  One  reason  for  this,  which  was  experienced  in  the  RCT,  may  

be  the  difficulty  in  collecting  stool  samples  from  children  who  are  continent,  

relying  on  both  parents  and  children,  and  the  rapid  processing  needed  to  ensure  

optimal  culture  results.168  There  may  also  be  reluctance  to  investigate  this  in  

case  ceftriaxone,  a  very  useful  OPAT  drug,  is  found  to  cause  a  major  problem.  We  

believed  that  it  was  important  to  be  informed  about  this  potential  risk  and  

therefore  be  able  to  balance  the  advantages  and  disadvantages  of  OPAT,  rather  

than  continue  to  ignore  the  issue.  The  findings  in  this  RCT  provide  the  most  

robust  evidence  to  date  that  short  course  ceftriaxone  at  home  is  not  associated  

with  an  increase  in  the  risk  of  ESBL,  VRE,  C.  difficile  and  MRSA  carriage,  

compared  to  treatment  with  flucloxacillin  in  hospital.  

There  is  in  fact  not  that  much  evidence  that  ceftriaxone  use  causes  an  increase  in  

antimicrobial  resistance  in  children.  Most  published  studies  on  this  topic  are  

time  associations,  without  strong  causal  links,  and  at  least  one  time  series  in  

neonates  showed  ESBL-­‐producing  bacteria  increased  despite  no  increase  in  third  

generation  cephalosporin  use.169  During  25  years  in  a  tertiary  neonatal  unit,  an  

increase  in  colonising  cephalosporin-­‐resistant  Gram-­‐negative  organisms  was  

  245  

documented,  despite  this  unit  intentionally  not  using  broad-­‐spectrum  antibiotics  

such  as  meropenem  and  third  generation  cephalosporins.  The  authors  propose  

that  their  finding  highlights  the  complex  relationship  between  antimicrobial  use  

and  drug  resistance,  with  other  factors  including  increasing  travel  by  families  

with  overseas  acquisition  of  resistant  organisms.    

Although  VRE  has  emerged  as  a  major  healthcare  problem  in  Australia,  with  

numbers  higher  than  in  any  European  country,  in  the  RCT,  there  were  no  

samples  that  cultured  VRE,  at  baseline  or  subsequently.170  This  is  in  keeping  with  

a  low  rate  of  colonisation  of  VRE  in  an  otherwise  healthy  community  cohort.87  

One  retrospective  study  described  a  direct  association  between  ceftriaxone  use  

and  VRE  bacteraemia  in  the  following  month  after  ceftriaxone  use,  in  a  

population  consisting  of  hospitalised  adults  with  multiple  co-­‐morbidities.  

However,  this  study  did  not  take  into  account  the  severity  of  illness  or  co-­‐

administration  of  antibiotics,  which  may  have  confounded  the  results.    

C.  difficile  colonisation  and  acquisition  in  our  RCT  was  also  not  different  between  

the  two  groups.  The  baseline  carriage  rate  for  C.  difficile  was  10/90  (11%)  of  

children  in  the  RCT.  In  the  literature,  colonisation  rates  in  healthy  children  from  

outpatient  settings  have  been  documented  to  be  3.5%  in  children  aged  more  

than  12  months  and  as  high  as  44%  in  children  aged  1  to  12  months.97,171  

Asymptomatic  C.  difficile  colonisation  can  be  detected  in  the  absence  of  

symptoms  of  infection.172  None  of  the  patients  in  the  trial  reported  symptoms  to  

suggest  C.  difficile  infection  (CDI).  However,  asymptomatic  C.  difficile  colonised  

patients  potentially  act  as  an  infection  reservoir  and  may  present  a  risk  to  

others.173,174  Hospitalisation  is  a  known  risk  factor  for  colonisation  with  C.  

difficile.175-­‐177  In  one  epidemiological  study  to  investigate  risk  factors  for  

healthcare-­‐associated  C.  difficile  colonisation,  hospitalisation  within  the  previous  

12  months,  exposure  to  corticosteroids,  history  of  CDI  and  presence  of  antibody  

against  toxin  B  were  significantly  associated  with  C.  difficile  colonisation.  In  the  

RCT,  neither  the  hospitalised  children  nor  those  treated  at  home  developed  an  

increased  risk  of  C.  difficile  colonisation  or  acquisition.  This  is  likely  due  to  the  

fact  that  children  in  the  hospital  group  had  a  mean  length  of  stay  of  only  1.7  days.  

  246  

Additionally  children  who  were  hospitalised  were  admitted  to  the  short  stay  

unit,  mainly  consisting  of  generally  healthy  children  with  short-­‐term  illnesses.    

Regarding  MRSA,  in  the  RCT,  the  baseline  risk  of  colonisation  in  those  who  

present  with  cellulitis  was  low  in  our  region.142  The  prevalence  of  MRSA  

colonisation  in  the  community  is  estimated  to  be  between  0.2%  and  7.4%.178  

Nasal  colonisation  with  MRSA  was  consistently  low  in  the  foundation  cohort  and  

the  RCT.  More  importantly,  there  was  no  increase  in  nasal  colonisation  after  

antibiotics  up  to  1  year  later,  as  investigated  in  the  foundation  nasal  colonisation  

study  (Chapter  3).  Several  studies  in  adults  have  shown  antibiotic  use  to  be  a  risk  

factor  for  colonisation  with  MRSA,179,180  but  in  our  nasal  colonisation  study  there  

were  no  cases  of  acquisition  in  either  antibiotic  group,  even  if  they  also  had  

additional  antibiotics  in  the  ensuing  12  months.142  The  prevalence  of  MRSA  in  

our  population  is  low  to  begin  with,  and  the  absence  of  new  acquisition  may  be  

related  to  the  relatively  short  antibiotic  duration  in  the  study.  In  a  study  of  

healthy  pre-­‐school  children,  antibiotic  use  in  the  previous  three  months  did  not  

increase  nasal  colonisation  with  MSSA  or  MRSA,  but  amoxicillin/clavulanate  use  

increased  the  proportion  of  MSSA  that  produced  penicillinase,  a  potential  early  

step  towards  resistance.111  In  our  studies,  short  course  ceftriaxone  use  at  home  

in  children  is  not  associated  with  acquiring  MRSA,  unlike  in  studies  in  

adults.69,181  

Nasal  colonisation  with  S.  aureus  plays  a  key  role  in  the  pathogenesis  of  invasive  

infection  including  cellulitis  and  bacteremia98-­‐100,182    Few  studies  explore  the  risk  

factors  for  methicillin-­‐sensitive  S.  aureus  (MSSA)  colonisation,  which  in  many  

settings  causes  a  higher  proportion  of  invasive  infections  than  MRSA  and  is  

associated  with  a  similar  mortality.183,184  Reported  risk  factors  for  colonisation  

by  both  MSSA  and  MRSA  in  children  include  prior  antibiotic  use  and  

hospitalisation.21,105-­‐107  However  these  findings  are  from  a  relatively  small  

number  of  studies,  relying  on  recollection  of  antibiotic  use,  predominantly  

screening  healthy  children,  and  there  is  conflicting  evidence  on  the  importance  

of  antibiotic  exposure  as  a  risk  factor.  For  the  first  time  the  effect  of  different  

antibiotics  was  investigated  prospectively,  which  found  that  reassuringly,  

  247  

ceftriaxone  at  home  did  not  increase  the  risk  of  nasal  colonisation.  Additionally,  

the  nasal  colonisation  study  showed  that  colonisation  was  not  significantly  

associated  with  the  severity  of  concurrent  infection.    

We  accept  that  considering  only  50%  of  patients  provide  samples  in  the  RCT,  the  

other  possibility  for  our  finding  is  that  the  results  were  biased  and  reflect  a  

skewed  sample  of  only  the  children  who  were  not  colonised  by  the  organisms  

discussed  above.  However,  a  detailed  analysis  comparing  demographics,  clinical  

features  and  outcomes  showed  that  the  tested  patients  were  for  the  most  part,  

clinically  indistinguishable  from  those  that  did  not  provide  a  sample.  In  fact,  the  

only  differences  was  that  those  who  provided  stool  samples  were  slightly  

younger  than  those  who  did  not  and  those  with  treatment  failure  were  less  likely  

to  provide  follow  up  stool  samples  than  those  without.  Previous  studies  

suggesting  the  role  of  third  generation  cephalosporin  in  the  rise  of  resistance  

have  been  in  hospitalised  adult  or  neonatal  patients  with  multiple  comorbidities  

and  risk  factors.80,82  None  of  the  previous  studies  in  the  literature  have  

investigated  healthy  children  treated  with  short  course  ceftriaxone.  It  is  likely  

that  ceftriaxone  can  cause  increase  in  resistance  but  that  short-­‐term  use  has  low  

risk  for  this.  Therefore  the  risk  benefit  ratio  needs  to  be  weighed  up  rather  than  

to  persist  with  dogmatic  assertions  that  ceftriaxone  use  will  universally  lead  to  

increased  resistance.  On  this  subject  it  is  important  to  know  the  risks  of  

treatment  in  hospital  compared  to  home  and  the  RCT  is  the  first  attempt  to  

provide  an  assessment  of  risks  of  home  treatment.  The  findings  from  this  thesis  

points  to  a  multifactorial  causation  for  bacterial  resistance  and  stresses  the  

importance  of  detailed  interrogation  of  the  literature  before  a  blanket  policy  on  

the  use  of  antibiotics.    

7.6 What  is  the  impact  of  home  treatment  on  satisfaction  and  quality  of  life?  

The  literature  on  OPAT  investigating  the  patient’s  or  family’s  perspective  

consists  of  three  aspects.  Firstly,  satisfaction  with  the  service  or  care  provided,  

secondly  preference  for  either  OPAT  or  hospital,  and  lastly,  quality  of  life  has  

been  addressed,  with  the  latter  rarely  assessed  in  studies.1,6,7,147  With  regards  to  

  248  

satisfaction,  parents  of  children  enrolled  in  the  RCT  rated  their  experience  with  

the  service  provided  on  a  scale  of  0  to  5.  A  higher  proportion  (95%)  of  parents  of  

children  in  the  home  group  reported  having  very  good  experience  during  

treatment  than  parents  of  children  in  the  hospital  group  (73%).  This  finding  is  

similar  to  a  Canadian  study  where  patients  with  cellulitis  were  treated  at  a  day  

treatment  centre,  where  95%  of  families  rated  their  experience  as  very  good  to  

excellent.1  However,  our  study  is  the  first  study  to  compare  satisfaction  between  

home  and  hospital  groups  in  non  pre-­‐selected  patients.  

In  the  clinician  survey  (Chapter  2),  the  majority  of  physicians  at  RCH  81/96  

(84%)  believed  that  more  than  60%  parents  would  prefer  treatment  at  home.  In  

the  foundation  cohort  study  (Chapter  3),  60%  of  all  parents,  regardless  of  where  

their  child  was  treated,  stated  that  they  would  prefer  home-­‐based  treatment,  and  

no  parents  of  children  treated  at  home  would  have  preferred  to  be  in  hospital.  

Sixteen  percent  of  parents  preferred  hospital  treatment  (all  of  whom  had  

received  treatment  in  hospital).  In  the  RCT,  when  patients  were  not  pre-­‐selected,  

97%  of  the  home  group  and  42%  of  the  hospital  group  would  choose  treatment  

for  their  child  in  the  same  location.  Preference  for  ambulatory  treatment  was  not  

limited  to  treatment  at  home.  In  the  Canadian  study  of  children  with  cellulitis,  

despite  having  to  travel  for  treatment  at  a  day  treatment  centre  for  daily  

ceftriaxone,  69%  would  prefer  future  treatments  via  the  same  pathway.1  In  a  

different  study  of  36  children  with  a  variety  of  acute  infections  such  as  cellulitis,  

UTI  and  lymphadenitis,  parents  travelled  daily  to  the  ED  for  medical  review  and  

intravenous  ceftriaxone.  Despite  having  to  travel,  94%  of  families  would  choose  

the  same  method  of  ambulatory  treatment  again.6  This  emphasises  the  fact  that  

parents  appear  to  be  willing  to  accept  some  degree  of  inconvenience,  in  order  to  

avoid  hospitalisation  for  their  child.  

Quality  of  life  for  both  parents  and  children  were  measured  in  the  RCT.  Parental  

quality  of  life  was  measured  using  a  modified  rating  scale  which  was  based  on  a  

two  previous  studies  comparing  home  to  hospital  care.7,23  Questions  were  

around  the  ability  for  parents  to  maintain  their  daily  routine,  despite  having  a  

child  who  requires  treatment  with  intravenous  antibiotics.  Parents  from  the  

  249  

home  group  were  significantly  more  able  to  keep  up  with  household  tasks,  spend  

time  with  their  partner  and  spend  time  with  their  children  compared  to  parents  

from  the  hospital  group.  Similar  to  our  finding,  in  another  randomised  study  of  

children  with  cancer  presenting  to  the  ED  with  febrile  neutropenia,  the  authors  

found  that  parents  in  the  home  group  were  significantly  more  able  than  those  in  

the  hospital  group,  to  keep  up  with  household  tasks  and  spend  time  with  their  

partner  and  children.  Although  the  patient  cohort  in  the  RCT  were  healthy  

children,  experiencing  acute  infection,  the  similar  findings  in  the  study  on  

children  with  cancer,  suggest  that  parental  perception  of  higher  quality  of  life  at  

home,  is  not  predicated  on  having  children  who  are  chronically  unwell  with  

frequent  hospitalisation  episodes.7  Even  in  acute  illness,  quality  of  life  is  better  

for  parents  with  treatment  at  home.  

There  are  no  previous  OPAT  or  ambulatory  care  studies  that  have  measured  

utility  scores  with  a  validated  quality  of  life  questionnaire.  In  the  RCT,  children’s  

quality  of  life  was  measured  using  the  CHU9D.  This  provides  an  objective  

measure  of  quality  of  life  that  provides  robust  evidence  to  support  the  widely  

held  perception  that  children  have  better  quality  of  life  with  treatment  at  home.  

Additionally,  this  questionnaire  allows  calculation  of  quality  of  life  in  terms  of  

utility  scores  for  conversion  to  cost-­‐effectiveness  measures,  such  as  QALY.  The  

CHU9D  has  been  validated  in  multiple  languages  and  in  various  medical  

conditions.185,186  This  tool  enables  a  single  score  to  be  given  to  a  combination  of  9  

domains  assessed,  which  are  sleep,  appetite,  routine,  pain,  schoolwork,  activities,  

worry,  tiredness  and  sadness.  The  difference  found  between  the  home  and  

hospital  group  was  highly  significant,  0.86  versus  0.75,  mean  difference  0.11,  

(95%  CI  0.07  to  0.14),  p<0.001.  There  is  one  previous  comparative  study  that  has  

measured  utility  scores  by  using  visual  analogue  scales.  Parents  of  children  with  

cancer  were  asked  to  imagine  a  scenario  where  their  child  had  febrile  

neutropenia  and  could  receive  one  of  four  possible  treatment  options.  In  this  

study,  the  utility  score  obtained  for  home  intravenous  treatment  was  0.70  

compared  to  0.67  for  treatment  in  hospital,  a  mean  difference  of  0.03  (OR  or  p  

value  not  reported  in  study).  Our  finding  of  a  larger  mean  difference  between  

home  and  hospital  treatment  is  more  likely  to  be  accurate  considering  the  fact  

  250  

that  we  measured  quality  of  life  in  patients  actually  undergoing  treatment  as  

opposed  to  a  hypothetical  cohort.    

The  RCT  as  well  as  the  preceding  foundation  cohort  study  contributes  to  the  

literature  by  showing  that  parents  and  children  have  a  significantly  higher  

satisfaction  and  quality  of  life  with  treatment  at  home.  If  given  the  choice,  most  

families  would  prefer  to  avoid  hospitalisation.  

7.7 Which  patients  with  cellulitis  need  intravenous  antibiotics?    

In  all  of  the  previous  studies  investigating  cellulitis,  the  criteria  for  diagnosis  of  

moderate/severe  cellulitis  requiring  intravenous  antibiotics  were  based  on  

‘clinical  judgement’.1,6,43  This  is  likely  due  to  the  absence  of  standardised  

guidelines.  The  implication  of  this  is  potential  unwarranted  variation  in  care,  

which  may  lead  to  over-­‐  or  under-­‐use  of  intravenous  antibiotics.    

The  RCT  in  this  thesis  similarly  relied  on  the  ED  doctor  to  make  a  clinical  

judgement  to  decide  who  needed  intravenous  antibiotics.  Although  senior  

clinicians  make  the  decisions  about  intravenous  antibiotic  use  in  the  ED  at  our  

institution,  and  we  have  relatively  low  rates  of  intravenous  antibiotic  use  for  

cellulitis  compared  to  other  centres,  differences  in  judgement  and  variation  in  

care  may  have  resulted  in  a  few  patients  being  enrolled  in  the  RCT  who  could  

have  been  treated  with  oral  antibiotics.43,120  Even  though  in  a  randomised  study  

these  patients  should  be  distributed  equally  in  both  groups,  we  realised  that  a  

more  objective  standardised  method  of  determining  the  need  for  intravenous  

antibiotics  would  be  useful  clinically  and  in  research  settings.  This  led  to  the  

derivation  and  validation  of  the  Melbourne  ASSET  score.  

When  appropriately  developed  and  validated,  clinical  risk  scores  such  as  the  

Melbourne  ASSET  score  likely  have  inherent  advantages  over  human  clinical  

decision-­‐making.  Firstly,  the  statistical  models  can  accommodate  many  more  

factors  than  the  human  brain  is  capable  of  taking  into  consideration.126  Secondly,  

if  given  identical  data,  a  statistical  model  will  always  give  the  same  result,  

whereas  human  clinical  judgment  has  been  shown  to  result  in  both  inconsistency  

  251  

and  disparity,  especially  with  less  experienced  clinicians  and  when  other  factors  

such  as  tiredness  are  involved.126,187  Of  the  trainee  doctors  in  the  clinician  survey  

(Chapter  3),  31/  40  (78%)  responded  that  a  clinical  score  would  be  useful.  

Finally,  and  perhaps  most  importantly,  several  prediction  models  have  been  

shown  to  be  more  accurate  than  clinical  judgment  alone.126,127,187,188  Despite  

these  advantages,  many  clinical  risk  scores  do  not  gain  traction.62,189  One  reason  

for  low  implementation  of  clinical  prediction  rules  is  the  sheer  number  of  models  

available,  for  instance  there  are  multiple  different  predictive  rules  for  paediatric  

head  injury.190  If  many  prediction  rules  exist  for  the  same  problem,  identifying  

the  best  one  is  difficult.190  Not  only  is  this  potentially  time  consuming  but  also  

differences  in  the  methods  used  in  the  studies  on  which  they  are  based,  may  

make  reliable  comparison  impossible.191,192  

The  Melbourne  ASSET  score  was  designed  with  applicability  in  mind.123  Firstly,  

the  acronym  ASSET  stands  for  the  features  required  to  make  the  assessment.  

Secondly,  the  five  features  that  make  up  this  score,  correlate  with  the  number  of  

fingers  on  one  hand,  making  it  easy  for  clinicians  to  check  the  number  of  features  

off  while  also  using  the  hand-­‐size  measure.  The  incorporated  hand-­‐size  method  

to  assess  the  contribution  of  the  area  of  cellulitis  to  the  score,  is  simple  and  

convenient.  Additionally  it  is  a  score  based  solely  on  clinical  features,  with  no  use  

of  invasive  or  delaying  tests.  All  of  these  features  ensure  that  a  child  with  

cellulitis  can  be  examined  rapidly  in  ED  or  primary  care  with  a  score  that  is  easy  

to  calculate.  In  the  clinician  survey,  when  asked  if  clinicians  believed  a  clinical  

score  would  be  helpful  to  guide  decision-­‐making  between  oral  or  intravenous  

antibiotics,  70/102  (67%)  physicians  believed  it  would  be  useful  to  decrease  

variation  in  practice.  Although  the  impact  of  this  score  is  yet  to  be  tested,  it  can  

already  be  used  in  the  research  setting  to  classify  patients  with  cellulitis.  Since  

the  development  of  the  Melbourne  ASSET  score,  the  same  methodology  has  been  

used  as  a  platform  to  develop  a  clinical  score  to  address  the  uncertainty  of  

intravenous  versus  oral  antibiotics  in  UTI.  Although  this  work  is  still  in  progress,  

it  aims  to  be  another  clinical  score  that  has  the  potential  to  standardise  practice  

and  assist  in  future  research  in  the  ED  and  primary  care.    

  252  

7.8 Cost-­‐effectiveness  of  home  versus  hospital  

Most  studies  on  OPAT  in  children  have  found  that  the  OPAT  pathway  is  less  

costly  to  the  healthcare  institution  than  standard  hospital  care.  Previous  studies  

have  documented  a  cost  saving  of  30–75%  with  home  treatment  compared  to  

standard  care  in  hospital,  although  there  are  differences  in  study  methodology  

and  patient  populations.32,33,38,157  Despite  the  heterogeneity  in  terms  of  the  

population  and  geographical  variation  in  the  studies  that  analysed  cost,  

differences  between  home  and  hospital  care  were  significant.  

In  the  foundation  cohort  study,  the  cost  per  patient  per  day  was  AUD580,  

compared  to  AUD1290,  a  55%  cost  saving  per  patient.  This  cost  was  based  on  

patients  who  received  a  diagnosis  of  cellulitis  in  the  hospital  administration  

system,  this  is  also  known  as  a  diagnosis  related  grouping  (DRG)  cost.  Although  

many  studies  use  DRG  costs  and  this  is  a  valid  method  of  obtaining  cost  

estimates,  inevitably  some  patients  who  do  not  actually  have  cellulitis  will  be  

included  in  this  group  introducing  inaccuracies.28  On  the  other  hand,  data  for  the  

cost-­‐effectiveness  analysis  within  the  RCT  was  obtained  for  actual  patients  in  the  

study  with  a  definite  diagnosis.  Using  these  costs,  home  treatment  cost  AUD940  

per  patient  per  day,  60%  less  than  standard  hospital  care,  which  cost  AUD2388  

patient  per  day,  with  medical  and  nursing  staff  salaries  being  the  predominant  

drivers  in  the  cost  differences.    

 For  the  first  time  in  a  paediatric  OPAT  study,  costs  to  families  were  investigated  

to  ensure  the  burden  of  cost  did  not  transfer  from  the  healthcare  institution  to  

families.  The  finding  that  families  incurred  a  significant  burden  if  their  child  has  

even  a  short  admission  to  hospital  with  a  mean  cost  of  AUD593  for  a  2-­‐day  stay  

in  hospital,  three-­‐fold  the  financial  cost  of  treatment  at  home,  was  unexpected.  

This  burden  to  families  is  driven  by  parental  or  carer’s  absence  from  work,  

which  was  significantly  higher  in  the  hospital  group,  by  a  mean  difference  of  

AUD371  per  admission.  Two  previous  studies  have  also  found  that  

parents/guardians  of  children  treated  with  OPAT  were  less  likely  to  have  

absence  from  work.30,193  Parents  may  be  more  comfortable  leaving  children  with  

  253  

other  carers  or  extended  family  with  treatment  at  home,  whereas  parents  are  

more  likely  to  stay  with  their  child  when  their  child  is  hospitalised.  Additionally,  

if  there  are  other  children  at  home,  having  the  patient  at  home  may  allow  one  

parent  to  do  all  the  child  care  rather  than  two  parents  needing  to  split  between  

hospital  and  home.  

With  regards  to  cost-­‐effectiveness,  only  one  other  OPAT  study  has  calculated  the  

aggregated  measure  of  cost  and  effectiveness,  the  ICER.29  In  this  cost-­‐modelling  

study  four  strategies  for  the  management  of  children  with  febrile  neutropenia  

were  compared,  namely:  hospital  with  intravenous  antibiotics,  home  with  

intravenous  antibiotics,  home  with  oral  antibiotics  and  hospital  followed  by  early  

discharge  on  oral  antibiotics.  Treatment  at  home  with  intravenous  antibiotics  

was  found  to  be  the  dominant  strategy,  meaning  it  was  more  effective  and  less  

costly.  The  model  predicted  that  the  costs  of  ‘home  with  intravenous  antibiotics’  

(USD2732/AUD3785  per  person  per  episode)  would  be  lowest  of  the  four  

strategies.  When  the  prevalence  of  treatment  failure  and  hospital  readmission  

was  taken  into  account,  home  with  intravenous  antibiotic  was  still  less  costly  

than  home  with  oral  antibiotics.  The  authors  found  an  81%  difference  in  the  cost  

between  hospital  with  intravenous  antibiotics  and  home  with  intravenous  

antibiotics.  As  far  as  it  is  possible  to  tell  in  the  published  study,  there  was  no  

medical  staff  salary  apportioned  to  the  home  intravenous  strategy,  driving  the  

cost  down.  Although  it  is  possible  to  have  a  home  intravenous  program  without  

medical  oversight,  studies  of  OPAT  treatment  of  febrile  neutropenia,  have  

described  medical  staff  involvement.7  In  the  setting  of  the  home  pathway  of  the  

RCT,  medical  oversight  is  a  prominent  feature  which  likely  contributed  to  low  

treatment  failure  rates  and  readmissions.  This  does,  however,  increase  the  costs  

of  this  service.  One  possible  way  to  reduce  the  cost  of  OPAT  is  to  apply  a  daily  

clinical  score,  such  as  the  Melbourne  ASSET  score,  which  may  result  in  less  need  

for  a  medical  review  and  consequently  reduce  the  cost  per  patient.  

  254  

7.9 Future  directions  

7.9.1 Management  of  cellulitis  –  impact  analysis  of  the  Melbourne  ASSET  

score  

The  Melbourne  ASSET  score  was  derived  and  validated  on  patients  attending  the  

RCH.123  The  objective  of  this  clinical  score  is  to  improve  consistency  of  care  for  

children  with  cellulitis,  ultimately  ensuring  the  best  possible  outcomes  for  

affected  children.  The  next  step  is  to  implement  the  score  in  the  RCH  ED  to  

determine  the  impact  of  applying  this  score  prospectively  at  our  institution  on  

the  proportion  of  children  commenced  on  intravenous  antibiotics.  An  impact  

analysis  will  assess  whether  the  implementation  of  this  clinical  score  in  clinical  

practice  is  better  than  usual  care  for  the  patient,  process  of  care  and  cost  

outcomes.194,195  

Once  the  impact  has  been  assessed,  refinement  of  this  score  may  be  needed.  The  

next  step  would  be  to  implement  the  Melbourne  ASSET  score  in  a  multi-­‐centre  

study.  The  prospectively-­‐validated  version  of  the  Melbourne  ASSET  score  could  

then  be  disseminated  and  used  internationally.  If  the  findings  from  the  original  

study  in  this  thesis  are  replicated,  the  impact  of  the  score  would  be  that  the  

proportion  of  children  treated  with  intravenous  antibiotics  could  be  reduced  

without  an  increased  number  of  complications  or  re-­‐presentations  to  ED.  

Implementation  of  the  Melbourne  ASSET  score  is  anticipated  to  improve  the  flow  

in  the  ED,  hospital  and  outpatient  management  through  improved  efficiency  in  

the  ED,  reduced  intravenous  antibiotic  use  and  cost-­‐effectiveness.    

Additionally,  the  introduction  and  subsequent  application  of  the  score  could  

contribute  to  the  development  of  risk  stratification  tools  to  standardise  

treatment  for  other  common  illnesses  such  as  UTI  and  set  the  agenda  and  

platform  for  future  projects.  

  255  

7.9.2 Microbiology  –  OPAT,  resistant  and  colonising  bacteria,  and  the  

microbiome  

Despite  concerns  about  resistance  as  a  result  of  broad  spectrum  antibiotic  use  

associated  with  OPAT,  the  RCT  is  the  first  study  of  OPAT  of  any  kind  in  either  

adults  or  children,  to  investigate  this  concern  by  collecting  microbiology  

samples.  Collecting  nasal  and  faecal  samples  longitudinally  was  challenging  and  

resulted  in  only  achieving  50%  sample  collection.142  In  future,  all  OPAT  studies  

should  incorporate  this  as  an  outcome  and  data  on  acquisition  and  colonisation  

of  the  organisms  of  concern,  ESBL,  VRE,  MRSA  and  C.  difficile  should  be  

considered  as  a  key  performance  indicator  for  all  OPAT  programs.  Although  this  

study  has  found  no  increased  risk  with  the  use  of  ceftriaxone  at  home,  we  would  

encourage  other  centres  with  different  baseline  resistance  patterns  to  

investigate  this  outcome.  

In  addition  to  the  above,  it  is  increasingly  being  understood  that  resistant  and  

commonly  invasive  bacteria  are  not  the  only  colonising  bacteria  that  have  

implications  on  the  long-­‐term  health  of  children.  The  community  of  

microorganisms  that  inhabit  our  bodies,  predominantly  the  gastrointestinal  

tract,  but  including  other  niches  such  as  the  nose  and  pharynx,  are  collectively  

known  as  the  microbiome.  The  way  that  these  microorganisms  interact  with  our  

body  can  affect  the  development  of  the  immune  system  in  infancy,  and  our  

metabolism.196  197Disruption  of  this  community  with  antibiotics  may  have  long-­‐

term  health  implications.  

Studies  in  adults  have  shown  that  treatment  with  antibiotics  can  be  followed  by  

substantial  changes  in  the  microbiome  that  may  influence  diseases  such  as  

colorectal  cancer  and  ulcerative  colitis.198,199  There  are  scarcely  any  microbiome  

studies  in  healthy  children.  The  only  study  to  assess  the  effect  of  prior  antibiotic  

use  on  the  healthy  childhood  microbiome  used  the  national  Finnish  prescription  

database  and  stool  samples  from  142  children  to  show  that  macrolide  use  in  the  

previous  6  months  was  associated  with  microbiome  changes.200,201  The  study  

also  showed  a  correlation  between  macrolide  use  under  the  age  of  2  years  and  

  256  

both  asthma  and  obesity.  There  is  only  one  study  that  has  prospectively  

evaluated  the  effect  of  antibiotics  on  the  microbiome.  This  compared  9  neonates  

treated  with  ampicillin  and  gentamicin  with  9  healthy  controls,  with  stool  

samples  collected  4  and  8  weeks  after  antibiotics  (although  not  at  baseline).201  

Both  of  these  studies  show  that  changes  occur  in  the  microbiome  of  children  

receiving  antibiotics  that  persist  long  after  antibiotics  have  ceased.  However  

patients  were  not  randomised  so  confounding  is  possible.  

There  have  been  no  studies  assessing  the  microbiome  in  children  colonised  with  

either  C.  difficile  or  ESBL-­‐producing  bacteria.  Stool  samples  collected  during  the  

RCT  had  their  DNA  extracted  and  stored.  These  samples  will  allow  the  

identification  of  the  longitudinal  effect  and  persistence  of  changes  of  short  term  

antibiotics  on  the  microbiome  over  12  months  to  determine  whether  there  is  a  

microbiome  signature  associated  with  colonisation  with  C.  difficile  and  resistant  

gastrointestinal  bacteria.  If  a  certain  pattern  or  signature  is  found  to  be  

associated  with  colonisation  or  acquisition  with  these  organisms,  future  

strategies  could  include  avoidance  of  risk  factors  or  preventative  treatment  for  a  

targeted  cohort.  

7.9.3 Hospital-­‐In-­‐The-­‐Home  –  future  RCTs  of  home  versus  hospital  using  

the  same  platform  

With  the  success  of  the  RCT  in  this  thesis,  other  acute  infections  amenable  to  

home  treatment  could  also  be  investigated.  Infections  amenable  for  home  

treatment  directly  from  ED  include  UTI,  pneumonia,  and  lymphadenitis.  

Although  cellulitis  was  used  as  a  model  in  the  RCT,  the  same  approach  can  be  

used  to  investigate  these  other  conditions.  We  would  propose  a  baseline  study  to  

understand  current  practice,  followed  by  preliminary  foundation  studies  to  

inform  key  aspects  of  a  subsequent  RCT  for  these  different  conditions.114,136,142  

We  would  hypothesize  that  quality  of  life  and  cost-­‐effectiveness  are  likely  to  be  

improved  at  home  for  these  other  infections  too,  but  efficacy  and  safety  would  

need  to  be  individually  compared  to  hospital  care.  

  257  

There  are  several  studies  on  the  ambulatory  treatment  of  UTI  in  children  

worldwide,  but  it  is  still  an  uncommon  practice.37,158,193  UTI  is  particularly  

suitable  for  OPAT  considering  the  antibiotic  commonly  used  for  treatment  in  

several  countries  including  Australia,  is  once  daily  gentamicin.158  One  reason  for  

this  maybe  because  of  vomiting  that  frequently  accompanies  this  condition,  but  

this  could  be  managed  for  instance  by  a  period  of  observation  in  the  ED  prior  to  

discharge  home  to  observe  oral  intake  after  administration  of  anti-­‐emetics.    

Other  conditions  amenable  for  home  treatment  may  be  children  diagnosed  with  

pneumonia  which  requires  intravenous  treatment.202  However,  patients  

potentially  need  oxygen  therapy  which  is  still  feasible  at  home  but  may  be  

perceived  as  too  complex  or  risky.  There  is  a  subgroup  of  patients  with  extensive  

disease  or  small  pleural  effusions  requiring  intravenous  antibiotics  but  not  

oxygen.  This  selected  population  could  be  amenable  to  OPAT.  Lymphadenitis  is  

another  condition  which  often  requires  several  days  of  intravenous  antibiotics.  

However,  clinicians  may  prefer  to  admit  patients  due  to  the  potential  

development  of  an  abscess  and  need  for  ultrasound  imaging.  A  way  to  avoid  this  

perceived  need  for  hospitalisation  would  be  to  ensure  easy  access  to  outpatient  

ultrasound  imaging  for  those  receiving  treatment  under  OPAT.  

Other  infections  that  are  not  commonly  documented  from  studies  describing  an  

OPAT  patient  cohort  are  those  with  surgical  infections,  such  as  post  complicated  

appendicitis  or  post-­‐mastoidectomy.3,12  OPAT  could  also  be  better  used  for  acute  

infections  after  a  short  hospital  admission  for  these  surgical  infections.  The  first  

study  on  antibiotic  treatment  at  home  for  post  complicated  appendicitis  was  

published  in  1994  and  yet  very  few  patients  in  this  category  are  treated  at  

home32.  The  reason  for  this  is  unclear  but  likely  attributable  to  the  complexity  of  

this  condition  and  the  lack  of  randomised  evidence.38    

The  challenges  faced  by  service  providers  to  treat  other  medical  condition  such  

as  UTI  or  post  complicated  appendicitis  at  home  include  the  lack  of  clear  

guidelines  with  regards  to  who  should  receive  intravenous  antibiotics  and  when  

the  right  time  is  to  be  transferred  home.    

  258  

7.9.4 Translating  evidence  into  practice  

The  research  described  in  this  thesis,  the  RCT  and  two  non-­‐randomised  studies,  

provides  evidence  for  the  treatment  of  moderate/severe  cellulitis  via  

OPAT.114,136,142  The  next  logical  step  is  translating  this  evidence  into  widespread  

practice.  However,  strong  evidence  alone  is  often  insufficient  for  change  in  

practice  and  getting  new  ideas  adopted  in  a  healthcare  service  is  often  

challenging  despite  being  shown  to  be  beneficial.203    

With  the  RCT  showing  the  efficacy,  safety  and  cost-­‐effectiveness  of  treating  

moderate/severe  cellulitis  at  home,  the  next  question  for  widespread  

implementation  is  whether  the  same  results  would  apply  if  implemented  in  a  

different  centre  and  in  a  different  population.  In  order  to  test  whether  the  results  

of  the  efficacy  trial  (RCT,  Chapter  5)  would  translate  on  a  larger  scale,  ideally  a  

“real-­‐world”  effectiveness  trial  would  be  conducted.  The  gold  standard  would  be  

a  multi-­‐centre  cluster  randomised  trial  of  home  versus  hospital  in  

moderate/severe  cellulitis  with  intravenous  ceftriaxone.  However,  this  would  be  

time  and  resource  consuming.  An  interrupted  time  series  analysis  is  arguably  the  

“next  best”  approach  for  dealing  with  interventions  when  randomisation  is  not  

possible.204  The  approach  usually  involves  constructing  a  time  series  of  

population-­‐level  rates  for  a  particular  quality  improvement  focus  (home  

treatment  of  moderate/severe  cellulitis  at  home)  and  testing  statistically  for  a  

change  in  the  outcome  rate  in  the  time  periods  before  and  time  periods  after  

implementation  of  a  policy/program  designed  to  change  the  outcome.205  

Multisite  with  capacity  for  a  home/ambulatory  service,  could  be  recruited  for  

this  next  phase.  Sites  could  be  identified  through  the  existing  emergency  

research  network.  These  sites  would  first  undergo  a  pre-­‐intervention  period  of  

data  collection  to  reflect  standard  practice.  Outcome  data  would  include  

treatment  failure  rate,  adverse  events,  complications,  quality  of  life  and  cost-­‐

effectiveness  measures.  Then  implementation  of  a  home  program  would  follow,  

with  data  collection  of  outcomes.  We  would  anticipate  the  efficacy  and  safety  of  

home  pathways  in  other  centres  to  still  be  non-­‐inferior  to  standard  care  in  

  259  

hospitals  but  the  risk  difference  may  not  be  as  large  as  the  results  of  the  RCT  

described  in  Chapter  5,  which  has  been  previously  shown  to  occur  when  

translating  single  centre  efficacy  trials  into  a  multicentre  effectiveness  trial.206  

Barriers  for  this  study  would  be  the  variation  in  practice  that  exists  in  multiple  

sites  and  a  need  to  engage  local  practitioners  to  change  attitudes  and  behaviours.  

However  with  careful  planning  and  the  experience  gained  during  the  PhD  

studies,  these  challenges  can  be  addressed.  

7.10 Conclusions  

The  literature  review  at  the  beginning  of  this  thesis  revealed  the  absence  of  any  

randomised  trial  of  home  versus  hospital  treatment  for  any  acute  infection  in  

childhood.  This  lack  of  crucial  evidence  in  an  increasingly  evidence-­‐hungry  world  

is  at  least  part  of  the  reason  why  hospitalisation  remains  the  standard  of  care  for  

many  children  with  infections  amenable  to  home  treatment.  This  is  despite  the  

fact  that  paediatricians  know  that  children  in  general  are  better  off  at  home  with  

their  families.  For  this  thesis,  cellulitis  was  the  acute  infection  chosen  as  a  

paradigm  to  answer  the  key  question  of  whether  intravenous  antibiotic  

treatment  at  home  is  as  good  as  hospital  treatment.  This  condition  is  common  

and  is  associated  with  low  morbidity  and  mortality  in  children.  Definitively  

confirming  the  findings  in  the  literature  and  from  the  studies  in  the  first  half  of  

this  thesis,  the  RCT  showed  that  home  treatment  with  ceftriaxone  is  as  good  as  

hospital  treatment  with  flucloxacillin  in  terms  of  efficacy,  complications  and  

microbiological  outcomes.  It  showed  that  treatment  was  in  favour  of  home  care  

in  terms  of  adverse  events,  child  quality  of  life,  parental  satisfaction  and  cost-­‐

effectiveness.  This  represents  a  significant  contribution  to  the  field,  but  should  

be  seen  as  a  first  step  of  many.  At  the  end  of  this  candidature,  this  remains  the  

only  RCT  to  compare  an  admission  avoidance  pathway  to  hospitalisation  in  

children.  In  addition  to  the  RCT,  the  derivation  and  validation  of  the  Melbourne  

ASSET  score  for  cellulitis  in  children,  has  the  potential  both  to  make  an  impact  on  

clinical  practice  and  on  future  research  in  cellulitis.  The  studies  contained  in  this  

thesis  will  act  as  a  platform  for  future  research  on  admission  avoidance  

pathways  in  children.  

  260  

 

  268  

Bibliography  

1.   Gouin  S,  Chevalier  I,  Gauthier  M,  Lamarre  V.  Prospective  evaluation  of  the  management  of  moderate  to  severe  cellulitis  with  parenteral  antibiotics  at  a  paediatric  day  treatment  centre.  Journal  of  paediatrics  and  child  health  2008;  44(4):  214-­‐8.  

2.   Brugha  RE,  Abrahamson  E.  Ambulatory  intravenous  antibiotic  therapy  for  children  with  preseptal  cellulitis.  Pediatric  emergency  care  2012;  28(3):  226-­‐8.  

3.   Madigan  T,  Banerjee  R.  Characteristics  and  outcomes  of  outpatient  parenteral  antimicrobial  therapy  at  an  academic  children's  hospital.  Pediatr  Infect  Dis  J  2013;  32(4):  346-­‐9.  

4.   Sartain  SA,  Maxwell  MJ,  Todd  PJ,  et  al.  Randomised  controlled  trial  comparing  an  acute  paediatric  hospital  at  home  scheme  with  conventional  hospital  care.  Archives  of  disease  in  childhood  2002;  87(5):  371-­‐5.  

5.   Rucker  RW,  Harrison  GM.  Outpatient  intravenous  medications  in  the  management  of  cystic  fibrosis.  Pediatrics  1974;  54(3):  358-­‐60.  

6.   Smith  JK,  Alexander  S,  Abrahamson  E.  Ambulatory  intravenous  ceftriaxone  in  paediatric  A&E:  a  useful  alternative  to  hospital  admission?  Emergency  medicine  journal  :  EMJ  2011;  28(10):  877-­‐81.  

7.   Orme  LM,  Babl  FE,  Barnes  C,  Barnett  P,  Donath  S,  Ashley  DM.  Outpatient  versus  inpatient  IV  antibiotic  management  for  pediatric  oncology  patients  with  low  risk  febrile  neutropenia:  a  randomised  trial.  Pediatr  Blood  Cancer  2014;  61(8):  1427-­‐33.  

8.   Svahn  BM,  Remberger  M,  Heijbel  M,  et  al.  Case-­‐control  comparison  of  at-­‐home  and  hospital  care  for  allogeneic  hematopoietic  stem-­‐cell  transplantation:  the  role  of  oral  nutrition.  Transplantation  2008;  85(7):  1000-­‐7.  

9.   Tiberg  I,  Katarina  SC,  Carlsson  A,  Hallstrom  I.  Children  diagnosed  with  type  1  diabetes:  a  randomized  controlled  trial  comparing  hospital  versus  home-­‐based  care.  Acta  paediatrica  2012;  101(10):  1069-­‐73.  

  269  

10.   Cunliffe  NA,  Booth  JA,  Elliot  C,  et  al.  Healthcare-­‐associated  viral  gastroenteritis  among  children  in  a  large  pediatric  hospital,  United  Kingdom.  Emerging  infectious  diseases  2010;  16(1):  55-­‐62.  

11.   Xu  M,  Doan  Q.  Outpatient  Parenteral  Antimicrobial  Therapy  and  Judicious  Use  of  Pediatric  Emergency  Resources.  Pediatric  emergency  care  2017.  

12.   Hodgson  KA,  Huynh  J,  Ibrahim  LF,  et  al.  The  use,  appropriateness  and  outcomes  of  outpatient  parenteral  antimicrobial  therapy.  Archives  of  disease  in  childhood  2016;  101(10):  886-­‐93.  

13.   Fernandes  P,  Milliren  C,  Mahoney-­‐West  HM,  Schwartz  L,  Lachenauer  CS,  Nakamura  MM.  Safety  of  Outpatient  Parenteral  Antimicrobial  Therapy  in  Children.  Pediatr  Infect  Dis  J  2017.  

14.   Fisher  D,  Cochran  KM,  Provost  LP,  et  al.  Reducing  central  line-­‐associated  bloodstream  infections  in  North  Carolina  NICUs.  Pediatrics  2013;  132(6):  e1664-­‐71.  

15.   Ortega  HW,  Cutler  G,  Dreyfus  J,  Flood  A,  Kharbanda  A.  Hospital-­‐acquired  pneumonia  among  pediatric  trauma  patients  treated  at  national  trauma  centers.  The  journal  of  trauma  and  acute  care  surgery  2015;  78(6):  1149-­‐54.  

16.   Sohn  AH,  Garrett  DO,  Sinkowitz-­‐Cochran  RL,  et  al.  Prevalence  of  nosocomial  infections  in  neonatal  intensive  care  unit  patients:  Results  from  the  first  national  point-­‐prevalence  survey.  The  Journal  of  pediatrics  2001;  139(6):  821-­‐7.  

17.   Kulkarni  H,  Smith  CM,  Lee  Ddo  H,  Hirst  RA,  Easton  AJ,  O'Callaghan  C.  Evidence  of  Respiratory  Syncytial  Virus  Spread  by  Aerosol.  Time  to  Revisit  Infection  Control  Strategies?  American  journal  of  respiratory  and  critical  care  medicine  2016;  194(3):  308-­‐16.  

18.   Jusot  JF,  Vanhems  P,  Benzait  F,  et  al.  Reported  measures  of  hygiene  and  incidence  rates  for  hospital-­‐acquired  diarrhea  in  31  French  pediatric  wards:  is  there  any  relationship?  Infection  control  and  hospital  epidemiology  2003;  24(7):  520-­‐5.  

  270  

19.   Ruuska  T,  Vesikari  T.  Rotavirus  disease  in  Finnish  children:  use  of  numerical  scores  for  clinical  severity  of  diarrhoeal  episodes.  Scandinavian  journal  of  infectious  diseases  1990;  22(3):  259-­‐67.  

20.   Hulten  KG,  Kaplan  SL,  Lamberth  LB,  et  al.  Hospital-­‐acquired  Staphylococcus  aureus  infections  at  Texas  Children's  Hospital,  2001-­‐2007.  Infection  control  and  hospital  epidemiology  2010;  31(2):  183-­‐90.  

21.   Datta  F,  Erb  T,  Heininger  U,  et  al.  A  multicenter,  cross-­‐sectional  study  on  the  prevalence  and  risk  factors  for  nasal  colonization  with  Staphylococcus  aureus  in  patients  admitted  to  children's  hospitals  in  Switzerland.  Clinical  infectious  diseases  :  an  official  publication  of  the  Infectious  Diseases  Society  of  America  2008;  47(7):  923-­‐6.  

22.   Cheng  S,  Teuffel  O,  Ethier  MC,  et  al.  Health-­‐related  quality  of  life  anticipated  with  different  management  strategies  for  paediatric  febrile  neutropaenia.  British  journal  of  cancer  2011;  105(5):  606-­‐11.  

23.   Close  P,  Burkey  E,  Kazak  A,  Danz  P,  Lange  B.  A  prospective,  controlled  evaluation  of  home  chemotherapy  for  children  with  cancer.  Pediatrics  1995;  95(6):  896-­‐900.  

24.   Sartain  SA,  Maxwell  MJ,  Todd  PJ,  Haycox  AR,  Bundred  PE.  Users'  views  on  hospital  and  home  care  for  acute  illness  in  childhood.  Health  Soc  Care  Community  2001;  9(2):  108-­‐17.  

25.   Hansson  H,  Kjaergaard  H,  Johansen  C,  et  al.  Hospital-­‐based  home  care  for  children  with  cancer:  feasibility  and  psychosocial  impact  on  children  and  their  families.  Pediatr  Blood  Cancer  2013;  60(5):  865-­‐72.  

26.   Chrysochoou  EA,  Hatziagorou  E,  Kirvassilis  F,  Tsanakas  J.  Home  intravenous  antibiotic  therapy  in  children  with  cystic  fibrosis:  clinical  outcome,  quality  of  life  and  economic  benefit.  Hippokratia  2016;  20(4):  279-­‐83.  

27.   Torrance  GW,  Feeny  D,  Furlong  W.  Visual  analog  scales:  do  they  have  a  role  in  the  measurement  of  preferences  for  health  states?  Med  Decis  Making  2001;  21(4):  329-­‐34.  

  271  

28.   Wiernikowski  JT,  Rothney  M,  Dawson  S,  Andrew  M.  Evaluation  of  a  home  intravenous  antibiotic  program  in  pediatric  oncology.  The  American  journal  of  pediatric  hematology/oncology  1991;  13(2):  144-­‐7.  

29.   Teuffel  O,  Amir  E,  Alibhai  SM,  Beyene  J,  Sung  L.  Cost-­‐effectiveness  of  outpatient  management  for  febrile  neutropenia  in  children  with  cancer.  Pediatrics  2011;  127(2):  e279-­‐86.  

30.   Bagust  A,  Haycox  A,  Sartain  SA,  Maxwell  MJ,  Todd  P.  Economic  evaluation  of  an  acute  paediatric  hospital  at  home  clinical  trial.  Archives  of  disease  in  childhood  2002;  87(6):  489-­‐92.  

31.   Raisch  DW,  Holdsworth  MT,  Winter  SS,  Hutter  JJ,  Graham  ML.  Economic  comparison  of  home-­‐care-­‐based  versus  hospital-­‐based  treatment  of  chemotherapy-­‐induced  febrile  neutropenia  in  children.  Value  in  health  :  the  journal  of  the  International  Society  for  Pharmacoeconomics  and  Outcomes  Research  2003;  6(2):  158-­‐66.  

32.   Stovroff  MC,  Totten  M,  Glick  PL.  PIC  lines  save  money  and  hasten  discharge  in  the  care  of  children  with  ruptured  appendicitis.  Journal  of  pediatric  surgery  1994;  29(2):  245-­‐7.  

33.   Warner  BW,  Kulick  RM,  Stoops  MM,  Mehta  S,  Stephan  M,  Kotagal  UR.  An  evidenced-­‐based  clinical  pathway  for  acute  appendicitis  decreases  hospital  duration  and  cost.  Journal  of  pediatric  surgery  1998;  33(9):  1371-­‐5.  

34.   Stevens  DL,  Bisno  AL,  Chambers  HF,  et  al.  Practice  guidelines  for  the  diagnosis  and  management  of  skin  and  soft  tissue  infections:  2014  update  by  the  Infectious  Diseases  Society  of  America.  Clin  Infect  Dis  2014;  59(2):  e10-­‐52.  

35.   Akar  A,  Singh  N,  Hyun  DY.  Appropriateness  and  safety  of  outpatient  parenteral  antimicrobial  therapy  in  children:  opportunities  for  pediatric  antimicrobial  stewardship.  Clinical  pediatrics  2014;  53(10):  1000-­‐3.  

36.   Sannier  N,  Le  Masne  A,  Sayegh  N,  Gaillard  JL,  Cheron  G.  Ambulatory  management  of  acute  pyelonephritis  in  children.  Acta  paediatrica  2000;  89(3):  372-­‐3.  

272  

37. Gauthier  M,  Chevalier  I,  Sterescu  A,  Bergeron  S,  Brunet  S,  Taddeo  D.Treatment  of  urinary  tract  infections  among  febrile  young  children  with  dailyintravenous  antibiotic  therapy  at  a  day  treatment  center.  Pediatrics  2004;114(4):  e469-­‐76.

38. Fishman  SJ,  Pelosi  L,  Klavon  SL,  O'Rourke  EJ.  Perforated  appendicitis:prospective  outcome  analysis  for  150  children.  Journal  of  pediatric  surgery  2000;35(6):  923-­‐6.

39. Australian  Institute  of  Health  Welfare.  Emergency  department  care  2016–2017:  Australian  hospital  statistics.https://www.aihw.gov.au/reports/hospitals/ahs-­‐2016-­‐17-­‐emergency-­‐department-­‐care/contents/table-­‐of-­‐contents  (accessed  15  May  2018).

40. Lopez  MA,  Cruz  AT,  Kowalkowski  MA,  Raphael  JL.  Trends  in  resourceutilization  for  hospitalized  children  with  skin  and  soft  tissue  infections.Pediatrics  2013;  131(3):  e718-­‐25.

41. Stevens  DL,  Bisno  AL,  Chambers  HF,  et  al.  Practice  guidelines  for  thediagnosis  and  management  of  skin  and  soft-­‐tissue  infections.  Clin  Infect  Dis  2005;41(10):  1373-­‐406.

42. Isaacs  D.  Evidence-­‐Based  Pediatric  Infectious  Diseases.  Victoria,  Australia:Blackwell  Publishing;  2007.

43. Khangura  S,  Wallace  J,  Kissoon  N,  Kodeeswaran  T.  Management  ofcellulitis  in  a  pediatric  emergency  department.  Pediatric  emergency  care  2007;23(11):  805-­‐11.

44. Trenchs  V,  Hernandez-­‐Bou  S,  Bianchi  C,  Arnan  M,  Gene  A,  Luaces  C.  BloodCultures  are  not  Useful  in  the  Evaluation  of  Children  with  UncomplicatedSuperficial  Skin  and  Soft  Tissue  Infections.  Pediatr  Infect  Dis  J  2015.

45. Malone  JR,  Durica  SR,  Thompson  DM,  Bogie  A,  Naifeh  M.  Blood  cultures  inthe  evaluation  of  uncomplicated  skin  and  soft  tissue  infections.  Pediatrics  2013;132(3):  454-­‐9.

273  

46. Corwin  P,  Toop  L,  McGeoch  G,  et  al.  Randomised  controlled  trial  ofintravenous  antibiotic  treatment  for  cellulitis  at  home  compared  with  hospital.Bmj  2005;  330(7483):  129.

47. Garrett  T,  Harbort  Y,  Trebble  M,  Docherty  T.  Once  or  twice-­‐daily,algorithm-­‐based  intravenous  cephazolin  for  home-­‐based  cellulitis  treatment.Emergency  medicine  Australasia  :  EMA  2012;  24(4):  383-­‐92.

48. Barr  DA,  Semple  L,  Seaton  RA.  Outpatient  parenteral  antimicrobialtherapy  (OPAT)  in  a  teaching  hospital-­‐based  practice:  a  retrospective  cohortstudy  describing  experience  and  evolution  over  10  years.  International  journal  ofantimicrobial  agents  2012;  39(5):  407-­‐13.

49. Pickering  LK  BC,  Kimberlin  DW,  Long  SS.  Red  Book:  2012  Report  of    theCommittee  on  Infectious  Diseases  Elk  Grove  Village,  IL:  American  Academy  ofPediatrics.

50. Moran  GJ,  Krishnadasan  A,  Mower  WR,  et  al.  Effect  of  Cephalexin  PlusTrimethoprim-­‐Sulfamethoxazole  vs  Cephalexin  Alone  on  Clinical  Cure  ofUncomplicated  Cellulitis:  A  Randomized  Clinical  Trial.  Jama  2017;  317(20):2088-­‐96.

51. Goldman  RD,  Dolansky  G,  Rogovik  AL.  Predictors  for  admission  ofchildren  with  periorbital  cellulitis  presenting  to  the  pediatric  emergencydepartment.  Pediatric  emergency  care  2008;  24(5):  279-­‐83.

52. Koerner  R,  Johnson  AP.  Changes  in  the  classification  and  management  ofskin  and  soft  tissue  infections.  The  Journal  of  antimicrobial  chemotherapy  2011;66(2):  232-­‐4.

53. The  Royal  Children's  Hospital  Melbourne  Clinical  Practice  Guideline:Cellulitis  and  skin  infections.https://www.rch.org.au/clinicalguide/guideline_index/cellulitis_and_skin_infections/  (accessed  7  June  2015).

54. Fleisher  G,  Ludwig  S,  Henretig  F,  Ruddy  R,  Henry  W.  Cellulitis:  initialmanagement.  Ann  Emerg  Med  1981;  10(7):  356-­‐9.

274  

55. Vu  BL,  Dick  PT,  Levin  AV,  Pirie  J.  Development  of  a  clinical  severity  scorefor  preseptal  cellulitis  in  children.  Pediatric  emergency  care  2003;  19(5):  302-­‐7.

56. Crosbie  RA,  Nairn  J,  Kubba  H.  Management  of  paediatric  periorbitalcellulitis:  Our  experience  of  243  children  managed  according  to  a  standardisedprotocol  2012-­‐2015.  International  journal  of  pediatric  otorhinolaryngology  2016;87:  134-­‐8.

57. Reynolds  DJ,  Kodsi  SR,  Rubin  SE,  Rodgers  IR.  Intracranial  infectionassociated  with  preseptal  and  orbital  cellulitis  in  the  pediatric  patient.  Journal  ofAAPOS  :  the  official  publication  of  the  American  Association  for  PediatricOphthalmology  and  Strabismus  /  American  Association  for  PediatricOphthalmology  and  Strabismus  2003;  7(6):  413-­‐7.

58. Westley  CR,  Cotton  EK,  Brooks  JG.  Nebulized  racemic  epinephrine  by  IPPBfor  the  treatment  of  croup:  a  double-­‐blind  study.  American  journal  of  diseases  ofchildren  1978;  132(5):  484-­‐7.

59. Ducharme  FM,  Chalut  D,  Plotnick  L,  et  al.  The  Pediatric  RespiratoryAssessment  Measure:  a  valid  clinical  score  for  assessing  acute  asthma  severityfrom  toddlers  to  teenagers.  The  Journal  of  pediatrics  2008;  152(4):  476-­‐80,  80e1.

60. Samuel  M.  Pediatric  appendicitis  score.  Journal  of  pediatric  surgery  2002;37(6):  877-­‐81.

61. Dunning  J,  Daly  JP,  Lomas  JP,  et  al.  Derivation  of  the  children's  head  injuryalgorithm  for  the  prediction  of  important  clinical  events  decision  rule  for  headinjury  in  children.  Archives  of  disease  in  childhood  2006;  91(11):  885-­‐91.

62. Mandeville  K,  Pottker  T,  Bulloch  B,  Liu  J.  Using  appendicitis  scores  in  thepediatric  ED.  The  American  journal  of  emergency  medicine  2011;  29(9):  972-­‐7.

63. Grayson  ML,  McDonald  M,  Gibson  K,  et  al.  Once-­‐daily  intravenouscefazolin  plus  oral  probenecid  is  equivalent  to  once-­‐daily  intravenousceftriaxone  plus  oral  placebo  for  the  treatment  of  moderate-­‐to-­‐severe  cellulitis  inadults.  Clin  Infect  Dis  2002;  34(11):  1440-­‐8.

  275  

64.   Bradley  JS.  Once-­‐daily  ceftriaxone  in  the  outpatient  treatment  of  paediatric  infections.  Chemotherapy  1991;  37  Suppl  3:  3-­‐6.  

65.   Chapman  AL.  Outpatient  parenteral  antimicrobial  therapy.  Bmj  2013;  346:  f1585.  

66.   Chapman  AL,  Dixon  S,  Andrews  D,  Lillie  PJ,  Bazaz  R,  Patchett  JD.  Clinical  efficacy  and  cost-­‐effectiveness  of  outpatient  parenteral  antibiotic  therapy  (OPAT):  a  UK  perspective.  The  Journal  of  antimicrobial  chemotherapy  2009;  64(6):  1316-­‐24.  

67.   Bamberger  DM,  Dahl  SL.  Impact  of  voluntary  vs  enforced  compliance  of  third-­‐generation  cephalosporin  use  in  a  teaching  hospital.  Arch  Intern  Med  1992;  152(3):  554-­‐7.  

68.   Bradley  SJ,  Wilson  AL,  Allen  MC,  Sher  HA,  Goldstone  AH,  Scott  GM.  The  control  of  hyperendemic  glycopeptide-­‐resistant  Enterococcus  spp.  on  a  haematology  unit  by  changing  antibiotic  usage.  The  Journal  of  antimicrobial  chemotherapy  1999;  43(2):  261-­‐6.  

69.   Washio  M,  Mizoue  T,  Kajioka  T,  et  al.  Risk  factors  for  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA)  infection  in  a  Japanese  geriatric  hospital.  Public  health  1997;  111(3):  187-­‐90.  

70.   Ambrose  NS,  Johnson  M,  Burdon  DW,  Keighley  MR.  The  influence  of  single  dose  intravenous  antibiotics  on  faecal  flora  and  emergence  of  Clostridium  difficile.  The  Journal  of  antimicrobial  chemotherapy  1985;  15(3):  319-­‐26.  

71.   Sturenburg  E,  Mack  D.  Extended-­‐spectrum  beta-­‐lactamases:  implications  for  the  clinical  microbiology  laboratory,  therapy,  and  infection  control.  The  Journal  of  infection  2003;  47(4):  273-­‐95.  

72.   Livermore  DM.  Defining  an  extended-­‐spectrum  beta-­‐lactamase.  Clinical  microbiology  and  infection  :  the  official  publication  of  the  European  Society  of  Clinical  Microbiology  and  Infectious  Diseases  2008;  14  Suppl  1:  3-­‐10.  

73.   Schwaber  MJ,  Carmeli  Y.  Mortality  and  delay  in  effective  therapy  associated  with  extended-­‐spectrum  beta-­‐lactamase  production  in  

  276  

Enterobacteriaceae  bacteraemia:  a  systematic  review  and  meta-­‐analysis.  The  Journal  of  antimicrobial  chemotherapy  2007;  60(5):  913-­‐20.  

74.   Fan  NC,  Chen  HH,  Chen  CL,  et  al.  Rise  of  community-­‐onset  urinary  tract  infection  caused  by  extended-­‐spectrum  beta-­‐lactamase-­‐producing  Escherichia  coli  in  children.  J  Microbiol  Immunol  Infect  2014;  47(5):  399-­‐405.  

75.   Kaarme  J,  Molin  Y,  Olsen  B,  Melhus  A.  Prevalence  of  extended-­‐spectrum  beta-­‐lactamase-­‐producing  Enterobacteriaceae  in  healthy  Swedish  preschool  children.  Acta  paediatrica  2013;  102(6):  655-­‐60.  

76.   Fernandez-­‐Reyes  M,  Vicente  D,  Gomariz  M,  et  al.  High  rate  of  fecal  carriage  of  extended-­‐spectrum-­‐beta-­‐lactamase-­‐producing  Escherichia  coli  in  healthy  children  in  Gipuzkoa,  northern  Spain.  Antimicrobial  agents  and  chemotherapy  2014;  58(3):  1822-­‐4.  

77.   Megged  O.  Extended-­‐spectrum  beta-­‐lactamase-­‐producing  bacteria  causing  community-­‐acquired  urinary  tract  infections  in  children.  Pediatric  nephrology  2014;  29(9):  1583-­‐7.  

78.   Tsai  MH,  Chu  SM,  Hsu  JF,  et  al.  Risk  factors  and  outcomes  for  multidrug-­‐resistant  Gram-­‐negative  bacteremia  in  the  NICU.  Pediatrics  2014;  133(2):  e322-­‐9.  

79.   de  Man  P,  Verhoeven  BA,  Verbrugh  HA,  Vos  MC,  van  den  Anker  JN.  An  antibiotic  policy  to  prevent  emergence  of  resistant  bacilli.  Lancet  2000;  355(9208):  973-­‐8.  

80.   Prevot  MH,  Andremont  A,  Sancho-­‐Garnier  H,  Tancrede  C.  Epidemiology  of  intestinal  colonization  by  members  of  the  family  Enterobacteriaceae  resistant  to  cefotaxime  in  a  hematology-­‐oncology  unit.  Antimicrobial  agents  and  chemotherapy  1986;  30(6):  945-­‐7.  

81.   Moellering  RC,  Jr.  Emergence  of  Enterococcus  as  a  significant  pathogen.  Clin  Infect  Dis  1992;  14(6):  1173-­‐6.  

  277  

82.   McKinnell  JA,  Kunz  DF,  Chamot  E,  et  al.  Association  between  vancomycin-­‐resistant  Enterococci  bacteremia  and  ceftriaxone  usage.  Infection  control  and  hospital  epidemiology  2012;  33(7):  718-­‐24.  

83.   Nourse  C,  Murphy  H,  Byrne  C,  et  al.  Control  of  a  nosocomial  outbreak  of  vancomycin  resistant  Enterococcus  faecium  in  a  paediatric  oncology  unit:  risk  factors  for  colonisation.  European  journal  of  pediatrics  1998;  157(1):  20-­‐7.  

84.   Iosifidis  E,  Evdoridou  I,  Agakidou  E,  et  al.  Vancomycin-­‐resistant  Enterococcus  outbreak  in  a  neonatal  intensive  care  unit:  epidemiology,  molecular  analysis  and  risk  factors.  American  journal  of  infection  control  2013;  41(10):  857-­‐61.  

85.   Edlund  C,  Barkholt  L,  Olsson-­‐Liljequist  B,  Nord  CE.  Effect  of  vancomycin  on  intestinal  flora  of  patients  who  previously  received  antimicrobial  therapy.  Clin  Infect  Dis  1997;  25(3):  729-­‐32.  

86.   Nourse  C,  Byrne  C,  Murphy  H,  Kaufmann  ME,  Clarke  A,  Butler  K.  Eradication  of  vancomycin  resistant  Enterococcus  faecium  from  a  paediatric  oncology  unit  and  prevalence  of  colonization  in  hospitalized  and  community-­‐based  children.  Epidemiology  and  infection  2000;  124(1):  53-­‐9.  

87.   Kaarme  J,  Hasan  B,  Rashid  M,  Olsen  B.  Zero  prevalence  of  vancomycin-­‐resistant  enterococci  among  Swedish  preschool  children.  Microbial  drug  resistance  2015;  21(1):  65-­‐8.  

88.   Hall  IC  OTE.  Intestinal  flora  in  new-­‐born  infants:  with  a  description  of  a  new  pathogenic  anaerobe,  Bacillus  difficilis.  Am  J  Dis  Child  1935;  49(2):  390-­‐402.  

89.   Rupnik  M,  Wilcox  MH,  Gerding  DN.  Clostridium  difficile  infection:  new  developments  in  epidemiology  and  pathogenesis.  Nat  Rev  Microbiol  2009;  7(7):  526-­‐36.  

90.   Riley  TV.  Nosocomial  diarrhoea  due  to  Clostridium  difficile.  Curr  Opin  Infect  Dis  2004;  17(4):  323-­‐7.  

  278  

91.   Crews  JD,  Koo  HL,  Jiang  ZD,  Starke  JR,  DuPont  HL.  A  hospital-­‐based  study  of  the  clinical  characteristics  of  Clostridium  difficile  infection  in  children.  Pediatr  Infect  Dis  J  2014;  33(9):  924-­‐8.  

92.   Kociolek  LK,  Gerding  DN.  Is  pediatric  Clostridium  difficile  infection  associated  with  prior  antibiotic  exposure?  Future  Microbiol  2014;  9(7):  825-­‐8.  

93.   Samady  W,  Bush  R,  Pong  A,  Andrews  A,  Fisher  ES.  Predictors  of  Clostridium  difficile  infections  in  hospitalized  children.  J  Hosp  Med  2014;  9(2):  94-­‐8.  

94.   de  Blank  P,  Zaoutis  T,  Fisher  B,  Troxel  A,  Kim  J,  Aplenc  R.  Trends  in  Clostridium  difficile  infection  and  risk  factors  for  hospital  acquisition  of  Clostridium  difficile  among  children  with  cancer.  The  Journal  of  pediatrics  2013;  163(3):  699-­‐705  e1.  

95.   Kim  J,  Shaklee  JF,  Smathers  S,  et  al.  Risk  factors  and  outcomes  associated  with  severe  clostridium  difficile  infection  in  children.  Pediatr  Infect  Dis  J  2012;  31(2):  134-­‐8.  

96.   Banaszkiewicz  A,  Kowalska-­‐Duplaga  K,  Pytrus  T,  Pituch  H,  Radzikowski  A.  Clostridium  difficile  infection  in  newly  diagnosed  pediatric  patients  with  inflammatory  bowel  disease:  prevalence  and  risk  factors.  Inflamm  Bowel  Dis  2012;  18(5):  844-­‐8.  

97.   Cooperstock  M,  Riegle  L,  Woodruff  CW,  Onderdonk  A.  Influence  of  age,  sex,  and  diet  on  asymptomatic  colonization  of  infants  with  Clostridium  difficile.  J  Clin  Microbiol  1983;  17(5):  830-­‐3.  

98.   von  Eiff  C,  Becker  K,  Peters  G.  Nasal  carriage  of  Staphylococcus  aureus.  Reply.  New  Engl  J  Med  2001;  344(18):  1400-­‐1.  

99.   Almeida  GC,  dos  Santos  MM,  Lima  NG,  Cidral  TA,  Melo  MC,  Lima  KC.  Prevalence  and  factors  associated  with  wound  colonization  by  Staphylococcus  spp.  and  Staphylococcus  aureus  in  hospitalized  patients  in  inland  northeastern  Brazil:  a  cross-­‐sectional  study.  BMC  infectious  diseases  2014;  14:  328.  

  279  

100.   Rocha  LA,  Marques  Ribas  R,  da  Costa  Darini  AL,  Gontijo  Filho  PP.  Relationship  between  nasal  colonization  and  ventilator-­‐associated  pneumonia  and  the  role  of  the  environment  in  transmission  of  Staphylococcus  aureus  in  intensive  care  units.  American  journal  of  infection  control  2013;  41(12):  1236-­‐40.  

101.   Davis  MF,  Peng  RD,  McCormack  MC,  Matsui  EC.  Staphylococcus  aureus  colonization  is  associated  with  wheeze  and  asthma  among  US  children  and  young  adults.  The  Journal  of  allergy  and  clinical  immunology  2015;  135(3):  811-­‐3  e5.  

102.   Lebon  A,  Labout  JA,  Verbrugh  HA,  et  al.  Role  of  Staphylococcus  aureus  nasal  colonization  in  atopic  dermatitis  in  infants:  the  Generation  R  Study.  Archives  of  pediatrics  &  adolescent  medicine  2009;  163(8):  745-­‐9.  

103.   Whymark  AD,  Crampsey  DP,  Fraser  L,  Moore  P,  Williams  C,  Kubba  H.  Childhood  epistaxis  and  nasal  colonization  with  Staphylococcus  aureus.  Otolaryngology-­‐-­‐head  and  neck  surgery  :  official  journal  of  American  Academy  of  Otolaryngology-­‐Head  and  Neck  Surgery  2008;  138(3):  307-­‐10.  

104.   Zervou  FN,  Zacharioudakis  IM,  Ziakas  PD,  Mylonakis  E.  MRSA  colonization  and  risk  of  infection  in  the  neonatal  and  pediatric  ICU:  a  meta-­‐analysis.  Pediatrics  2014;  133(4):  e1015-­‐23.  

105.   Rodriguez  EA,  Correa  MM,  Ospina  S,  Atehortua  SL,  Jimenez  JN.  Differences  in  epidemiological  and  molecular  characteristics  of  nasal  colonization  with  Staphylococcus  aureus  (MSSA-­‐MRSA)  in  children  from  a  university  hospital  and  day  care  centers.  PloS  one  2014;  9(7):  e101417.  

106.   Jimenez-­‐Truque  N,  Tedeschi  S,  Saye  EJ,  et  al.  Relationship  between  maternal  and  neonatal  Staphylococcus  aureus  colonization.  Pediatrics  2012;  129(5):  e1252-­‐9.  

107.   Fritz  SA,  Hogan  PG,  Hayek  G,  et  al.  Staphylococcus  aureus  colonization  in  children  with  community-­‐associated  Staphylococcus  aureus  skin  infections  and  their  household  contacts.  Archives  of  pediatrics  &  adolescent  medicine  2012;  166(6):  551-­‐7.  

  280  

108.   Lo  WT,  Wang  CC,  Lin  WJ,  et  al.  Changes  in  the  nasal  colonization  with  methicillin-­‐resistant  Staphylococcus  aureus  in  children:  2004-­‐2009.  PloS  one  2010;  5(12):  e15791.  

109.   Gesualdo  F,  Onori  M,  Bongiorno  D,  et  al.  Methicillin-­‐resistant  Staphylococcus  aureus  nasal  colonization  in  a  department  of  pediatrics:  a  cross-­‐sectional  study.  Ital  J  Pediatr  2014;  40:  3.  

110.   Wells  S,  Anderson  T,  Tiemieier  A,  et  al.  Methicillin-­‐resistant  Staphylococcus  aureus  in  patients  with  congenital  heart  disease  in  the  pediatric  intensive  care  unit.  World  J  Pediatr  Congenit  Heart  Surg  2013;  4(4):  344-­‐8.  

111.   Guillemot  D,  Bonacorsi  S,  Blanchard  JS,  et  al.  Amoxicillin-­‐clavulanate  therapy  increases  childhood  nasal  colonization  by  methicillin-­‐susceptible  Staphylococcus  aureus  strains  producing  high  levels  of  penicillinase.  Antimicrobial  agents  and  chemotherapy  2004;  48(12):  4618-­‐23.  

112.   Ellis  Simonsen  SM,  van  Orman  ER,  Hatch  BE,  et  al.  Cellulitis  incidence  in  a  defined  population.  Epidemiology  and  infection  2006;  134(2):  293-­‐9.  

113.   Drews  SJ,  Richardson  SE,  Wray  R,  et  al.  An  outbreak  of  vancomycin-­‐resistant  Enterococcus  faecium  in  an  acute  care  pediatric  hospital:  Lessons  from  environmental  screening  and  a  case-­‐control  study.  The  Canadian  journal  of  infectious  diseases  &  medical  microbiology  =  Journal  canadien  des  maladies  infectieuses  et  de  la  microbiologie  medicale  /  AMMI  Canada  2008;  19(3):  233-­‐6.  

114.   Ibrahim  LF,  Hopper  SM,  Babl  FE,  Bryant  PA.  Who  Can  Safely  Have  Antibiotics  at  Home?  A  Prospective  Observational  Study  in  Children  with  Moderate/Severe  Cellulitis.  Pediatr  Infect  Dis  J  2015.  

115.   Ibrahim  LF,  Hopper  SM,  Connell  TG,  Daley  AJ,  Bryant  PA,  Babl  FE.  Evaluating  an  admission  avoidance  pathway  for  children  in  the  emergency  department:  outpatient  intravenous  antibiotics  for  moderate/severe  cellulitis.  Emergency  medicine  journal  :  EMJ  2017.  

116.   Vinen  J,  Hudson  B,  Chan  B,  Fernandes  C.  A  randomised  comparative  study  of  once-­‐daily  ceftriaxone  and  6-­‐hourly  flucloxacillin  in  the  treatment  of  moderate  

  281  

to  severe  cellulitis  -­‐  Clinical  efficacy,  safety  and  pharmacoeconomic  implications.  Clinical  Drug  Investigation  1996;  12(5):  221-­‐5.  

117.   Ellis  MW,  Schlett  CD,  Millar  EV,  et  al.  Prevalence  of  nasal  colonization  and  strain  concordance  in  patients  with  community-­‐associated  Staphylococcus  aureus  skin  and  soft-­‐tissue  infections.  Infection  control  and  hospital  epidemiology  2014;  35(10):  1251-­‐6.  

118.   Wolf  J,  Daley  AJ,  Tilse  MH,  et  al.  Antibiotic  susceptibility  patterns  of  Staphylococcus  aureus  isolates  from  Australian  children.  Journal  of  paediatrics  and  child  health  2010;  46(7-­‐8):  404-­‐11.  

119.   Britton  PN,  Andresen  DN.  Paediatric  community-­‐associated  Staphylococcus  aureus:  a  retrospective  cohort  study.  Journal  of  paediatrics  and  child  health  2013;  49(9):  754-­‐9.  

120.   Kam  AJ,  Leal  J,  Freedman  SB.  Pediatric  cellulitis:  success  of  emergency  department  short-­‐course  intravenous  antibiotics.  Pediatric  emergency  care  2010;  26(3):  171-­‐6.  

121.   Hiscock  H,  Perera  P,  McLean  K,  et  al.  Variation  in  paediatric  clinical  practice:  A  review  of  care  in  inpatient,  outpatient  and  emergency  department  settings.  Journal  of  paediatrics  and  child  health  2016;  52(7):  691-­‐3.  

122.   Adams  ST,  Leveson  SH.  Clinical  prediction  rules.  Bmj  2012;  344:  d8312.  

123.   Ibrahim  LF,  Hopper  SM,  Donath  S,  Salvin  B,  Babl  FE,  Bryant  PA.  Development  and  Validation  of  a  Cellulitis  Risk  Score:  The  Melbourne  ASSET  Score.  Pediatrics  2019.  

124.   Michie  S,  Johnston  M.  Changing  clinical  behaviour  by  making  guidelines  specific.  Bmj  2004;  328(7435):  343-­‐5.  

125.   Grol  R,  Dalhuijsen  J,  Thomas  S,  Veld  C,  Rutten  G,  Mokkink  H.  Attributes  of  clinical  guidelines  that  influence  use  of  guidelines  in  general  practice:  observational  study.  Bmj  1998;  317(7162):  858-­‐61.  

  282  

126.   Liao  L,  Mark  DB.  Clinical  prediction  models:  are  we  building  better  mousetraps?  J  Am  Coll  Cardiol  2003;  42(5):  851-­‐3.  

127.   Bandiera  G,  Stiell  IG,  Wells  GA,  et  al.  The  Canadian  C-­‐spine  rule  performs  better  than  unstructured  physician  judgment.  Ann  Emerg  Med  2003;  42(3):  395-­‐402.  

128.   Ginsberg  MB.  Cellulitis:  analysis  of  101  cases  and  review  of  the  literature.  South  Med  J  1981;  74(5):  530-­‐3.  

129.   Miller  LG,  Daum  RS,  Creech  CB,  et  al.  Clindamycin  versus  trimethoprim-­‐sulfamethoxazole  for  uncomplicated  skin  infections.  N  Engl  J  Med  2015;  372(12):  1093-­‐103.  

130.   MacGregor  RR,  Graziani  AL.  Oral  administration  of  antibiotics:  a  rational  alternative  to  the  parenteral  route.  Clin  Infect  Dis  1997;  24(3):  457-­‐67.  

131.   Dillon  HC,  Derrick  CW.  Clinical  experience  with  clindamycin  hydrochloride:  I.  Treatment  of  streptococcal  and  mixed  streptococcal-­‐staphylococcal  skin  infections.  Pediatrics  1975;  55(2):  205-­‐12.  

132.   Buffie  CG,  Jarchum  I,  Equinda  M,  et  al.  Profound  alterations  of  intestinal  microbiota  following  a  single  dose  of  clindamycin  results  in  sustained  susceptibility  to  Clostridium  difficile-­‐induced  colitis.  Infect  Immun  2012;  80(1):  62-­‐73.  

133.   Gee  SC,  Hagemann  TM.  Palatability  of  liquid  anti-­‐infectives:  clinician  and  student  perceptions  and  practice  outcomes.  The  journal  of  pediatric  pharmacology  and  therapeutics  :  JPPT  :  the  official  journal  of  PPAG  2007;  12(4):  216-­‐23.  

134.   Steele  RW,  Russo  TM,  Thomas  MP.  Adherence  issues  related  to  the  selection  of  antistaphylococcal  or  antifungal  antibiotic  suspensions  for  children.  Clinical  pediatrics  2006;  45(3):  245-­‐50.  

135.   Smith  DH,  Neutel  JM,  Lacourciere  Y,  Kempthorne-­‐Rawson  J.  Prospective,  randomized,  open-­‐label,  blinded-­‐endpoint  (PROBE)  designed  trials  yield  the  

  283  

same  results  as  double-­‐blind,  placebo-­‐controlled  trials  with  respect  to  ABPM  measurements.  J  Hypertens  2003;  21(7):  1291-­‐8.  

136.   Ibrahim  LF,  Babl  FE,  Orsini  F,  Hopper  SM,  Bryant  PA.  Cellulitis:  Home  Or  Inpatient  in  Children  from  the  Emergency  Department  (CHOICE):  protocol  for  a  randomised  controlled  trial.  BMJ  open  2016;  6(1):  e009606.  

137.   Wang  S,  Gum  D,  Merlin  T.  Comparing  the  ICERs  in  Medicine  Reimbursement  Submissions  to  NICE  and  PBAC-­‐Does  the  Presence  of  an  Explicit  Threshold  Affect  the  ICER  Proposed?  Value  in  health  :  the  journal  of  the  International  Society  for  Pharmacoeconomics  and  Outcomes  Research  2018;  21(8):  938-­‐43.  

138.   Drummond  MF,  Mooney  GH.  Essentials  of  health  economics:  Part  V.  Assessing  the  cost  and  benefits  of  treatment  alternatives.  Br  Med  J  (Clin  Res  Ed)  1982;  285(6355):  1638-­‐9  contd.  

139.   Huang  L,  Roberts  CT,  Manley  BJ,  Owen  LS,  Davis  PG,  Dalziel  KM.  Cost-­‐Effectiveness  Analysis  of  Nasal  Continuous  Positive  Airway  Pressure  Versus  Nasal  High  Flow  Therapy  as  Primary  Support  for  Infants  Born  Preterm.  The  Journal  of  pediatrics  2018;  196:  58-­‐64  e2.  

140.   de  Bruin  M,  Oberje  EJM,  Viechtbauer  W,  et  al.  Effectiveness  and  cost-­‐effectiveness  of  a  nurse-­‐delivered  intervention  to  improve  adherence  to  treatment  for  HIV:  a  pragmatic,  multicentre,  open-­‐label,  randomised  clinical  trial.  The  Lancet  Infectious  diseases  2017;  17(6):  595-­‐604.  

141.   Petrou  S,  Gray  A.  Economic  evaluation  alongside  randomised  controlled  trials:  design,  conduct,  analysis,  and  reporting.  Bmj  2011;  342:  d1548.  

142.   Ibrahim  LF,  Hopper  SM,  Orsini  F,  Daley  AJ,  Babl  FE,  Bryant  PA.  Randomised  controlled  trial  of  intravenous  antibiotics  on  OPAT  versus  hospital  for  cellulitis  in  children:  comparison  of  efficacy  and  safety.  In  press  The  Lancet  Infectious  diseases  2018.  

143.   Briggs  A.  Economics  notes:  handling  uncertainty  in  economic  evaluation.  Bmj  1999;  319(7202):  120.  

  284  

144.   Kind  P.  Cost-­‐effectiveness  analysis:  a  view  into  the  abyss.  Appl  Health  Econ  Health  Policy  2015;  13(3):  269-­‐71.  

145.   Whitehead  SJ,  Ali  S.  Health  outcomes  in  economic  evaluation:  the  QALY  and  utilities.  Br  Med  Bull  2010;  96:  5-­‐21.  

146.   Stevens  K.  Valuation  of  the  Child  Health  Utility  9D  Index.  PharmacoEconomics  2012;  30(8):  729-­‐47.  

147.   Teuffel  O,  Amir  E,  Alibhai  S,  Beyene  J,  Sung  L.  Cost  effectiveness  of  outpatient  treatment  for  febrile  neutropaenia  in  adult  cancer  patients.  British  journal  of  cancer  2011;  104(9):  1377-­‐83.  

148.   Torrance  GW,  Blaker  D,  Detsky  A,  et  al.  Canadian  guidelines  for  economic  evaluation  of  pharmaceuticals.  Canadian  Collaborative  Workshop  for  Pharmacoeconomics.  PharmacoEconomics  1996;  9(6):  535-­‐59.  

149.   Weinstein  MC.  Economic  assessments  of  medical  practices  and  technologies.  Med  Decis  Making  1981;  1(4):  309-­‐30.  

150.   Fenwick  E,  Claxton  K,  Sculpher  M.  Representing  uncertainty:  the  role  of  cost-­‐effectiveness  acceptability  curves.  Health  Econ  2001;  10(8):  779-­‐87.  

151.   Cohen  DJ,  Reynolds  MR.  Interpreting  the  results  of  cost-­‐effectiveness  studies.  J  Am  Coll  Cardiol  2008;  52(25):  2119-­‐26.  

152.   Drummond  M,  Sculpher  M.  Common  methodological  flaws  in  economic  evaluations.  Med  Care  2005;  43(7  Suppl):  5-­‐14.  

153.   Ratcliffe  J,  Stevens  K,  Flynn  T,  Brazier  J,  Sawyer  M.  An  assessment  of  the  construct  validity  of  the  CHU9D  in  the  Australian  adolescent  general  population.  Qual  Life  Res  2012;  21(4):  717-­‐25.  

154.   Boyer  NR,  Miller  S,  Connolly  P,  McIntosh  E.  Paving  the  way  for  the  use  of  the  SDQ  in  economic  evaluations  of  school-­‐based  population  health  interventions:  an  empirical  analysis  of  the  external  validity  of  SDQ  mapping  algorithms  to  the  CHU9D  in  an  educational  setting.  Qual  Life  Res  2016;  25(4):  913-­‐23.  

  285  

155.   Furber  G,  Segal  L.  The  validity  of  the  Child  Health  Utility  instrument  (CHU9D)  as  a  routine  outcome  measure  for  use  in  child  and  adolescent  mental  health  services.  Health  Qual  Life  Outcomes  2015;  13:  22.  

156.   Bryant  PA,  Katz  NT.  Inpatient  versus  outpatient  parenteral  antibiotic  therapy  at  home  for  acute  infections  in  children:  a  systematic  review.  The  Lancet  Infectious  diseases  2017.  

157.   Hensey  CC,  Sett  A,  Connell  TG,  Bryant  PA.  A  Comparison  of  Hospital  Versus  Outpatient  Parenteral  Antibiotic  Therapy  at  Home  for  Pyelonephritis  and  Meningitis.  Pediatr  Infect  Dis  J  2017;  36(9):  827-­‐32.  

158.   Scanlan  BT,  Ibrahim  LF,  Hopper  SM,  Babl  FE,  Davidson  A,  Bryant  PA.  Selected  Children  with  Complicated  Acute  Urinary  Tract  Infection  May  be  Treated  with  Outpatient  Parenteral  Antibiotic  Therapy  at  Home  Directly  from  the  Emergency  Department.  Pediatr  Infect  Dis  J  2018.  

159.   Patel  S,  Burzio  V,  Green  H,  et  al.  The  Impact  of  Pediatric  Outpatient  Parenteral  Antibiotic  Therapy  Implementation  at  a  Tertiary  Children's  Hospital  in  the  United  Kingdom.  Pediatr  Infect  Dis  J  2018;  37(12):  e292-­‐e7.  

160.   Nazer  D,  Abdulhamid  I,  Thomas  R,  Pendleton  S.  Home  versus  hospital  intravenous  antibiotic  therapy  for  acute  pulmonary  exacerbations  in  children  with  cystic  fibrosis.  Pediatr  Pulmonol  2006;  41(8):  744-­‐9.  

161.   Collaco  JM,  Green  DM,  Cutting  GR,  Naughton  KM,  Mogayzel  PJ,  Jr.  Location  and  duration  of  treatment  of  cystic  fibrosis  respiratory  exacerbations  do  not  affect  outcomes.  American  journal  of  respiratory  and  critical  care  medicine  2010;  182(9):  1137-­‐43.  

162.   van  Egmond  MA,  van  der  Schaaf  M,  Vredeveld  T,  et  al.  Effectiveness  of  physiotherapy  with  telerehabilitation  in  surgical  patients:  a  systematic  review  and  meta-­‐analysis.  Physiotherapy  2018;  104(3):  277-­‐98.  

163.   Warner  BW,  Rich  KA,  Atherton  H,  Andersen  CL,  Kotagal  UR.  The  sustained  impact  of  an  evidenced-­‐based  clinical  pathway  for  acute  appendicitis.  Seminars  in  pediatric  surgery  2002;  11(1):  29-­‐35.  

286  

164. Donati  MA,  Guenette  G,  Auerbach  H.  Prospective  controlled  study  of  homeand  hospital  therapy  of  cystic  fibrosis  pulmonary  disease.  The  Journal  ofpediatrics  1987;  111(1):  28-­‐33.

165. Riethmueller  J,  Busch  A,  Damm  V,  Ziebach  R,  Stern  M.  Home  and  hospitalantibiotic  treatment  prove  similarly  effective  in  cystic  fibrosis.  Infection  2002;30(6):  387-­‐91.

166. Strandvik  B,  Hjelte  L,  Malmborg  AS,  Widen  B.  Home  intravenous  antibiotictreatment  of  patients  with  cystic  fibrosis.  Acta  paediatrica  1992;  81(4):  340-­‐4.

167. Proesmans  M,  Heyns  L,  Moons  P,  Havermans  T,  De  Boeck  K.  Real  lifeevaluation  of  intravenous  antibiotic  treatment  in  a  paediatric  cystic  fibrosiscentre:  outcome  of  home  therapy  is  not  inferior.  Respir  Med  2009;  103(2):  244-­‐50.

168. Heida  A,  Dijkstra  A,  Dantuma  SK,  van  Rheenen  PF.  A  Cross-­‐Sectional  Studyon  the  Perceptions  and  Practices  of  Teenagers  With  Inflammatory  Bowel  DiseaseAbout  Repeated  Stool  Sampling.  J  Adolesc  Health  2016;  59(4):  479-­‐81.

169. Carr  D,  Barnes  EH,  Gordon  A,  Isaacs  D.  Effect  of  antibiotic  use  onantimicrobial  antibiotic  resistance  and  late-­‐onset  neonatal  infections  over  25years  in  an  Australian  tertiary  neonatal  unit.  Archives  of  disease  in  childhood  Fetaland  neonatal  edition  2017;  102(3):  F244-­‐F50.

170. ACSQHC.  AURA  2017:  Second  Australian  report  on  antimicrobial  use  andresistance  in  human  health.  2017.  https://www.safetyandquality.gov.au/wp-­‐content/uploads/2018/01/AURA-­‐2017-­‐Second-­‐Australian-­‐report-­‐on-­‐Antimicrobial-­‐Use-­‐and-­‐Resistance-­‐in-­‐human-­‐health.pdf  (accessed  5  Dec  2018).

171. Vernacchio  L,  Vezina  RM,  Mitchell  AA,  Lesko  SM,  Plaut  AG,  Acheson  DW.Diarrhea  in  American  infants  and  young  children  in  the  community  setting:incidence,  clinical  presentation  and  microbiology.  Pediatr  Infect  Dis  J  2006;25(1):  2-­‐7.

172. Furuya-­‐Kanamori  L,  Marquess  J,  Yakob  L,  et  al.  Asymptomatic  Clostridiumdifficile  colonization:  epidemiology  and  clinical  implications.  BMC  Infect  Dis2015;  15:  516.

  287  

173.   Riggs  MM,  Sethi  AK,  Zabarsky  TF,  Eckstein  EC,  Jump  RL,  Donskey  CJ.  Asymptomatic  carriers  are  a  potential  source  for  transmission  of  epidemic  and  nonepidemic  Clostridium  difficile  strains  among  long-­‐term  care  facility  residents.  Clin  Infect  Dis  2007;  45(8):  992-­‐8.  

174.   McFarland  LV,  Mulligan  ME,  Kwok  RY,  Stamm  WE.  Nosocomial  acquisition  of  Clostridium  difficile  infection.  N  Engl  J  Med  1989;  320(4):  204-­‐10.  

175.   Loo  VG,  Bourgault  AM,  Poirier  L,  et  al.  Host  and  pathogen  factors  for  Clostridium  difficile  infection  and  colonization.  N  Engl  J  Med  2011;  365(18):  1693-­‐703.  

176.   Kong  LY,  Dendukuri  N,  Schiller  I,  et  al.  Predictors  of  asymptomatic  Clostridium  difficile  colonization  on  hospital  admission.  American  journal  of  infection  control  2015;  43(3):  248-­‐53.  

177.   Leekha  S,  Aronhalt  KC,  Sloan  LM,  Patel  R,  Orenstein  R.  Asymptomatic  Clostridium  difficile  colonization  in  a  tertiary  care  hospital:  admission  prevalence  and  risk  factors.  American  journal  of  infection  control  2013;  41(5):  390-­‐3.  

178.   Salgado  CD,  Farr  BM,  Calfee  DP.  Community-­‐acquired  methicillin-­‐resistant  Staphylococcus  aureus:  a  meta-­‐analysis  of  prevalence  and  risk  factors.  Clinical  infectious  diseases  :  an  official  publication  of  the  Infectious  Diseases  Society  of  America  2003;  36(2):  131-­‐9.  

179.   Hidron  AI,  Kourbatova  EV,  Halvosa  JS,  et  al.  Risk  factors  for  colonization  with  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA)  in  patients  admitted  to  an  urban  hospital:  emergence  of  community-­‐associated  MRSA  nasal  carriage.  Clinical  infectious  diseases  :  an  official  publication  of  the  Infectious  Diseases  Society  of  America  2005;  41(2):  159-­‐66.  

180.   Graffunder  EM,  Venezia  RA.  Risk  factors  associated  with  nosocomial  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA)  infection  including  previous  use  of  antimicrobials.  The  Journal  of  antimicrobial  chemotherapy  2002;  49(6):  999-­‐1005.  

  288  

181.   Schentag  JJ,  Hyatt  JM,  Carr  JR,  et  al.  Genesis  of  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA),  how  treatment  of  MRSA  infections  has  selected  for  vancomycin-­‐resistant  Enterococcus  faecium,  and  the  importance  of  antibiotic  management  and  infection  control.  Clinical  infectious  diseases  :  an  official  publication  of  the  Infectious  Diseases  Society  of  America  1998;  26(5):  1204-­‐14.  

182.   von  Eiff  C,  Becker  K,  Machka  K,  Stammer  H,  Peters  G.  Nasal  carriage  as  a  source  of  Staphylococcus  aureus  bacteremia.  Study  Group.  The  New  England  journal  of  medicine  2001;  344(1):  11-­‐6.  

183.   McMullan  BJ,  Bowen  A,  Blyth  CC,  et  al.  Epidemiology  and  Mortality  of  Staphylococcus  aureus  Bacteremia  in  Australian  and  New  Zealand  Children.  JAMA  pediatrics  2016;  170(10):  979-­‐86.  

184.   Dolapo  O,  Dhanireddy  R,  Talati  AJ.  Trends  of  Staphylococcus  aureus  bloodstream  infections  in  a  neonatal  intensive  care  unit  from  2000-­‐2009.  BMC  pediatrics  2014;  14:  121.  

185.   Stevens  K,  Ratcliffe  J.  Measuring  and  valuing  health  benefits  for  economic  evaluation  in  adolescence:  an  assessment  of  the  practicality  and  validity  of  the  child  health  utility  9D  in  the  Australian  adolescent  population.  Value  in  health  :  the  journal  of  the  International  Society  for  Pharmacoeconomics  and  Outcomes  Research  2012;  15(8):  1092-­‐9.  

186.   Poder  TG,  Carrier  N,  Mead  H,  Stevens  KJ.  Canadian  French  translation  and  linguistic  validation  of  the  child  health  utility  9D  (CHU9D).  Health  Qual  Life  Outcomes  2018;  16(1):  168.  

187.   Gandara  E,  Wells  PS.  Diagnosis:  use  of  clinical  probability  algorithms.  Clin  Chest  Med  2010;  31(4):  629-­‐39.  

188.   Gardner  W,  Lidz  CW,  Mulvey  EP,  Shaw  EC.  Clinical  versus  actuarial  predictions  of  violence  of  patients  with  mental  illnesses.  J  Consult  Clin  Psychol  1996;  64(3):  602-­‐9.  

189.   Gao  H,  McDonnell  A,  Harrison  DA,  et  al.  Systematic  review  and  evaluation  of  physiological  track  and  trigger  warning  systems  for  identifying  at-­‐risk  patients  on  the  ward.  Intensive  Care  Med  2007;  33(4):  667-­‐79.  

  289  

190.   Babl  FE,  Borland  ML,  Phillips  N,  et  al.  Accuracy  of  PECARN,  CATCH,  and  CHALICE  head  injury  decision  rules  in  children:  a  prospective  cohort  study.  Lancet  2017;  389(10087):  2393-­‐402.  

191.   Stiell  IG,  Wells  GA.  Methodologic  standards  for  the  development  of  clinical  decision  rules  in  emergency  medicine.  Ann  Emerg  Med  1999;  33(4):  437-­‐47.  

192.   Yealy  DM,  Auble  TE.  Choosing  between  clinical  prediction  rules.  N  Engl  J  Med  2003;  349(26):  2553-­‐5.  

193.   Pena  A,  Zambrano  A,  Alvarado  M,  Cerda  J,  Vergara  R.  [Evaluation  of  the  effectiveness,  safety  and  costs  of  outpatient  intravenous  antimicrobial  treatment  (OPAT)  vs  hospitalized  in  urinary  infection  in  pediatrics].  Revista  chilena  de  infectologia  :  organo  oficial  de  la  Sociedad  Chilena  de  Infectologia  2013;  30(4):  426-­‐34.  

194.   Wallace  E,  Uijen  MJ,  Clyne  B,  et  al.  Impact  analysis  studies  of  clinical  prediction  rules  relevant  to  primary  care:  a  systematic  review.  BMJ  open  2016;  6(3):  e009957.  

195.   Moons  KG,  Altman  DG,  Vergouwe  Y,  Royston  P.  Prognosis  and  prognostic  research:  application  and  impact  of  prognostic  models  in  clinical  practice.  Bmj  2009;  338:  b606.  

196.   Teo  SM,  Mok  D,  Pham  K,  et  al.  The  infant  nasopharyngeal  microbiome  impacts  severity  of  lower  respiratory  infection  and  risk  of  asthma  development.  Cell  host  &  microbe  2015;  17(5):  704-­‐15.  

197.   Vrieze  A,  Out  C,  Fuentes  S,  et  al.  Impact  of  oral  vancomycin  on  gut  microbiota,  bile  acid  metabolism,  and  insulin  sensitivity.  J  Hepatol  2014;  60(4):  824-­‐31.  

198.   Boursi  B,  Haynes  K,  Mamtani  R,  Yang  YX.  Impact  of  antibiotic  exposure  on  the  risk  of  colorectal  cancer.  Pharmacoepidemiol  Drug  Saf  2015;  24(5):  534-­‐42.  

199.   Koido  S,  Ohkusa  T,  Kajiura  T,  et  al.  Long-­‐term  alteration  of  intestinal  microbiota  in  patients  with  ulcerative  colitis  by  antibiotic  combination  therapy.  PloS  one  2014;  9(1):  e86702.  

  290  

200.   Korpela  K,  Salonen  A,  Virta  LJ,  et  al.  Intestinal  microbiome  is  related  to  lifetime  antibiotic  use  in  Finnish  pre-­‐school  children.  Nat  Commun  2016;  7:  10410.  

201.   Fouhy  F,  Guinane  CM,  Hussey  S,  et  al.  High-­‐throughput  sequencing  reveals  the  incomplete,  short-­‐term  recovery  of  infant  gut  microbiota  following  parenteral  antibiotic  treatment  with  ampicillin  and  gentamicin.  Antimicrob  Agents  Chemother  2012;  56(11):  5811-­‐20.  

202.   Glackin  L,  Flanagan  F,  Healy  F,  Slattery  DM.  Outpatient  parenteral  antimicrobial  therapy:  a  report  of  three  years  experience.  Ir  Med  J  2014;  107(4):  110-­‐2.  

203.   Doran  DM,  Sidani  S.  Outcomes-­‐focused  knowledge  translation:  a  framework  for  knowledge  translation  and  patient  outcomes  improvement.  Worldviews  Evid  Based  Nurs  2007;  4(1):  3-­‐13.  

204.   Kontopantelis  E,  Doran  T,  Springate  DA,  Buchan  I,  Reeves  D.  Regression  based  quasi-­‐experimental  approach  when  randomisation  is  not  an  option:  interrupted  time  series  analysis.  Bmj  2015;  350:  h2750.  

205.   Penfold  RB,  Zhang  F.  Use  of  interrupted  time  series  analysis  in  evaluating  health  care  quality  improvements.  Acad  Pediatr  2013;  13(6  Suppl):  S38-­‐44.  

206.   Costa  ML,  Griffin  XL,  Parsons  N,  et  al.  Efficacy  versus  effectiveness  in  clinical  trials.  Bone  Joint  J  2017;  99-­‐B(4):  419-­‐20.  

   

  291  

Appendix  1  RCT  Protocol  

 

This  supplement  contains  the  following  items:  1. Final  protocol and  summary  of  changes from original protocol2. Original  statistical  analysis  plan  which  has  never  been

changed

292

   

 

 

 

 PROTOCOL    

CHOICE  Trial:  Cellulitis  at  Home  Or  Inpatient  in  Children  from  ED      

Protocol  Number:  HREC34254  Date:  18/04/2017  

         Investigator/s:  Dr  Laila  Ibrahim,  Paediatric  Fellow,  PI  Dr  Penelope  Bryant,  Paediatric  Infectious  Diseases  and  HITH  Physician  Ms  Francesca  Orsini,  CEBU  Biostatistician  Murdoch  Children’s  Research  Institute  Dr  Franz  Babl,  Paediatric  Emergency  Physician,  Director  of  Emergency  Research  Dr  Sandy  Hopper,  Paediatric  Emergency  Physician          

                     

293

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  2  of  26  

CONFIDENTIAL    

This  document  is  confidential  and  the  property  of  The  Royal  Children’s  Hospital  Melbourne.  No  part  of  it  may  be  transmitted,  reproduced,  published,  or  used  without  prior  written  

authorization  from  the  institution.      

Statement  of  Compliance    

This  document  is  a  protocol  for  a  research  project.  This  study  will  be  conducted  in  compliance  with  all  stipulation  of  this  protocol,  the  conditions  of  the  ethics  committee  

approval,  the  NHMRC  National  Statement  on  ethical  Conduct  in  Human  Research  (2007)  and  the  Note  for  Guidance  on  Good  Clinical  Practice  (CPMP/ICH-­‐135/95).  

 

294

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  3  of  26  

TABLE  OF  CONTENTS  

Table  of  Contents   3  1.   Study  Sites   6  1.1   Study  Location   6  

2.   Funding  and  Resources   6  2.1   Sources  of  Funding   6  

3.   Introduction/Background  Information   6  3.1   Lay  Summary   6  3.2   Introduction  and  Background   7  

4.   Study  Objectives   8  4.1   Research  Question   8  4.2   Primary  Objective   10  4.3   Secondary  Objectives   10  4.4   Outcome  Measures   11  

5.   Study  Design   13  5.1   Study  Design  Diagram   13  5.2   Study  Type  &  Design  &  Schedule   14  5.3   Randomisation   16  5.4   Study  methodology   16  

6.   Study  Population   18  6.1   Recruitment  Procedure   18  6.2   Interventions   18  6.3   Inclusion  and  Exclusion  criteria   19  6.4   Consent   19  

7.   Participant  Safety  and  Withdrawal   20  7.1   Risk  Management  and  Safety   20  7.2   Handling  of  Withdrawals   20  7.3   Independent  Safety  and  Data  Monitoring  Committee   21  

8.   Statistical  Methods   21  8.1   Sample  Size  Estimation  &  Justification   21  8.2   Statistical  Methods   21  

9.   Storage  of  Blood  and  Tissue  Samples   22  10.   Data  Security  &  Handling   23  10.1  Details  of  where  records  will  be  kept  &  How  long  will  they  be  stored   23  10.2  Confidentiality  and  Security   23  10.3  Ancillary  data   23  

11.   References   23      

295

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  4  of  26  

 

Glossary  Of  Abbreviations  &  Terms  

Abbreviation   Description  (using  lay  language)  

IV   Intravenous;  antibiotic  through  a  ‘drip’  directly  into  a  vein  

HITH  Hospital-­‐In-­‐The-­‐Home;  a  patient  on  this  program  is  considered  admitted  to  a  hospital  bed  (on  inpatient  list)  but  receives  their  treatment  at  home  from  visiting  nurses  and  doctors  

OPAT   Outpatient  Parenteral  Antibiotic  Therapy  

Uncomplicated  cellulitis   Not  fulfilling  criteria  for  complicated  cellulitis  

Complicated  cellulitis  

Cellulitis  with  concurrent  one  or  more  of:  

orbital  cellulitis  or  strong  possibility  of  orbital  cellulitis,    

penetrating  injury/bites,  suspected  fasciitis  or  myositis,  toxicity  (tachycardia  when  afebrile,  hypotension  –  as  per  the  limits  set  out  by  RCH  Resuscitation  Card,  poor  central  perfusion-­‐capillary  refill>2  seconds),  immunosuppression,  varicella,  suspected/confirmed  foreign  body,  abscess  not  drained,  dental  abscess,  concurrent  sinusitis  or  otitis  or  lymphadenitis  necessitating  different  antibiotic  treatment  to  flucloxacillin  monotherapy  or  ceftriaxone  monotherapy,  liver  co-­‐morbidities,  aged<6  months  old,  other  medical  diagnoses  warranting  admission  to  hospital  for  observation  or  treatment  relating  to  the  known  medical  condition,  difficult  intravenous  access.  

Clinical  improvement  of  cellulitis  

Response  to  the  antibiotics  with  a  reduction  in  fever  (only  if  source  of  fever  from  cellulitis  not  concurrent  illness,  reduction  in  frequency  or  intensity/height  of  temperature)  a  reduction  in  the  cellulitis  area  (longest  length  axis  multiply  by  the  longest  perpendicular  axis  measured  in  cm2),  a  reduction  in  the  severity  of  swelling  (judged  by  clinician  as  any  one  of  the  following:  mild,  moderate  or  severe)  and  a  reduction  in  the  intensity  of  erythema  (judged  by  clinician  from  a  scale  of  0  to  5,  0=no  erythema  and  5=severe  erythema).  See  attached  case  record  form  of  daily  assessment.  

Clinical  resolution  of  cellulitis   Complete  resolution  of  fever  in  the  child,  erythema,  warmth  and  swelling  of  the  previously  affected  area  

RCH     Royal  Children’s  Hospital  

ED   Emergency  Department  

296

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  5  of  26  

CRF   Case  Record  Form  

RA   Research  Assistant  

ISDMC   An  Independent  Safety  and  Data  Monitoring  Committee    

SD   Standard  Deviation  

 

   

297

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  6  of  26  

1. STUDY  SITES  

1.1 STUDY  LOCATION    Site   Address   Contact     Phone   Email  

RCH  Melbourne  

50  Flemington  Rd  Parkville  3052  

Dr  Laila  Ibrahim  

0401765546   [email protected]  

2. FUNDING  AND  RESOURCES  

2.1 SOURCES  OF  FUNDING  • RCH  Foundation  • Murdoch  Children’s  Research  Institute  Infection  and  Immunity  grant  

3. INTRODUCTION/BACKGROUND  INFORMATION  

3.1 LAY  SUMMARY  Background:  Many  children  every  year  present  to  the  Emergency  Department  (ED)  at  The  Royal  Children’s  Hospital  (RCH)  with  cellulitis  (skin  infection).  If  it  is  mild,  they  can  go  home  with  oral  antibiotic  treatment.  If  it  is  complicated  and  severe,  they  are  admitted  to  hospital  for  intravenous  (IV,  through  a  drip)  antibiotic  treatment.  There  is  a  middle  group  with  uncomplicated  moderate/severe  cellulitis  who  require  IV  antibiotics  but  who  are  not  acutely  unwell.  Based  on  the  literature,  we  implemented  a  pathway  for  some  of  these  children  to  be  discharged  from  the  ED  to  receive  IV  antibiotic  treatment  at  home  under  the  care  of  the  Hospital-­‐in-­‐the-­‐home  (HITH)  program:  treating  in  the  right  place  at  the  right  time.  We  have  prospectively  collected  data  on  this  non-­‐randomised  pilot  program;  children  treated  by  HITH  have  very  low  complication  rates  (1.4%).  In  order  to  determine  whether  it  is  just  as  effective  for  children  with  uncomplicated  moderate  to  severe  cellulitis  to  receive  antibiotic  treatment  at  home  (via  HITH)  as  it  is  to  receive  antibiotic  treatment  in  hospital,  we  need  to  conduct  a  larger  study  and  randomly  assign  children  to  receive  either  HITH  or  hospital  ward  care.        

Aims:  Our  aim  is  to  determine  whether  treating  children  with  uncomplicated  moderate/severe  cellulitis  at  home  is  as  effective  as  treatment  in  a  hospital  ward.  

Methods:  All  children  aged  6  months  to  18  years  who  present  to  the  RCH  ED  with  uncomplicated  moderate/severe  cellulitis  are  eligible.  Children  with  complicated  cellulitis  or  with  other  underlying  conditions  will  be  excluded  (see  exclusion  criteria  7.3).  Consent  will  be  sought  from  the  parent  and  (where  applicable)  the  child.  The  child  will  then  be  randomly  assigned  to  receive  either  a)  IV  antibiotics  at  home  once  daily  under  the  care  of  HITH  with  a  nurse  visiting  home  each  day  or  b)  standard  care  which  is  IV  antibiotics  in  hospital  four  times  daily.  The  first  dose  of  antibiotics  will  be  given  in  ED  for  those  patients  assigned  to  HITH  treatment  before  being  sent  home  or  started  in  ED  for  those  assigned  to  the  hospital  ward  group.  The  treating  doctor  in  the  HITH  or  hospital  will  review  the  child  daily  in  person  or  via  a  video  link  or  via  photographs  taken  of  the  affected  area  (as  per  routine  clinical  practice  in  HITH)  and  will  decide  when  to  change  to  oral  antibiotics  depending  on  clinical  improvement.  Patients  on  HITH  have  24-­‐hour  access  to  clinical  staff.  Seven  to  fourteen  days  (within  2  weeks)  after  starting  treatment,  the  parents  will  be  offered  a  clinic  appointment  to  check  the  status  of  their  child’s  cellulitis  (completely  resolved  or  not).  If  parents  decline,  they  will  

298

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  7  of  26  

be  called.  At  the  same  time,  parents  will  be  asked  to  complete  an  anonymous  satisfaction/quality  of  life  (QOL)  questionnaire.  

What  this  trial  adds:  We  will  (i)  determine  for  the  first  time  whether  treating  children  at  home  with  IV  antibiotics  (after  commencement  of  treatment  in  ED)  is  as  effective  as  providing  in  hospital  ward  treatment  and  (ii)  investigate  parent  and  child  experiences  and  preferences  for  treatment.      

The  cost  of  a  day  of  care  with  HITH  is  about  a  quarter  of  the  cost  of  a  day  of  care  in  a  hospital  ward,  so  if  the  duration  of  treatment  is  equivalent,  there  will  be  significant  cost  savings.  If  the  study  outcomes  show  that  it  is  as  effective  to  treat  children  with  uncomplicated  moderate/severe  cellulitis  at  home,  this  will  change  how  RCH,  and  other  hospitals  in  Australia  and  worldwide,  care  for  children  with  this  condition.    

We  would  then  plan  to  study  other  conditions  where  children  presenting  to  the  ED  may  be  able  to  receive  care  at  home  and  avoid  hospital  admission.  

 

3.2 INTRODUCTION  AND  BACKGROUND  Adults  with  cellulitis  commonly  have  IV  antibiotics  administered  as  outpatients,  whereas  most  children  are  admitted  to  hospital.  Various  reasons  have  been  cited  including  potential  parental  anxiety  and  the  acute  nature  of  the  infection  in  children.  Based  on  a  small  amount  of  literature,  we  know  that  some  children  with  moderate/severe  cellulitis  can  also  be  safely  be  treated  at  home.(1-­‐5)  However,  as  these  are  not  randomised  trials,  an  assumption  can  be  made  that  only  well  children  without  systemic  symptoms  can  be  treated  at  home.  This  study  will  include  all  children  with  uncomplicated  moderate/severe  cellulitis  and  will  therefore  demonstrate  whether  all  children  with  uncomplicated  moderate/severe  cellulitis  can  be  effectively  treated  at  home.  

If  the  study  demonstrates  that  it  is  just  as  effective  to  treat  these  children  in  the  home,  it  has  the  potential  to  impact  on  the  child  and  family’s  quality  of  life  (QOL)  as  well  as  hospital  resource  management.    

Impact  on  patients/families:  Studies  have  shown  that  in  comparison  to  hospital  admission,  children  treated  at  home:  do  better  psychologically  and  physically;  have  fewer  investigations;  are  at  decreased  risk  of  hospital-­‐acquired  infections;  and  have  subsequent  decreased  use  of  healthcare  resources.(6,  7)  It  is  also  less  expensive  (eg.  parents  do  not  have  to  take  time  off  work  and  transport  costs)  and  psychologically  better  for  their  families,  so  the  benefits  to  both  the  child  and  parents  are  significant.(6,  8)  

Impact  on  hospital  resources:  The  incentive  to  give  the  right  treatment  in  the  right  place  at  the  right  time,  in  addition  to  constant  pressure  on  hospital  beds  and  ED  targets,  makes  transfer  to  home-­‐based  treatment  an  attractive  option.  A  HITH  bed  attracts  the  same  WIES  (Weighted  Inlier  Equivalent  Separation)  return  at  quarter  the  cost  of  an  hospital  ward  bed  (~$1000  vs.  ~$250).    

When  intravenous  treatment  is  required  for  cellulitis,  a  semi-­‐synthetic  penicillin  such  as  flucloxacillin  or  first  generation  cephalosporin  such  as  cephazolin  are  the  usual  choices  because  they  are  effective  against  Staphylococcus  aureus  and  Group  A  Streptococci  (GAS),  

299

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  8  of  26  

the  main  pathogens  causing  cellulitis.  (13)  However  they  are  not  suitable  for  OPAT  due  to  their  frequent  dosing  with  the  majority  of  paediatric  Outpatient  Parenteral  Antibiotic  Therapy  (OPAT)  services  only  able  to  deliver  once  daily  interventions.  Whilst  probenecid  can  overcome  this  problem  for  adults  on  cephazolin,  there  are  no  pharmacokinetic  studies  of  the  use  of  probenecid  with  cephazolin  in  children,  and  the  side  effect  of  vomiting  may  prevent  probenecid  use.(14)  Ceftriaxone  has  anti-­‐staphylococcal  activity  and  can  be  administered  once  daily.(15)  There  are  only  a  few  studies  in  children  in  which  ceftriaxone  has  been  used  to  treat  cellulitis  either  in  hospital  or  OPAT,  but  none  have  compared  outcomes  to  children  treated  with  other  recommended  antibiotics.(5,  15-­‐18)  There  are  no  studies  in  children  with  cellulitis  who  require  intravenous  treatment  comparing  administration  at  home  and  in  hospital.  In  a  study  of  224  children  with  moderate/severe  cellulitis,  92  were  treated  with  ceftriaxone  at  a  day  treatment  centre  with  an  80%  success  rate,  but  no  contrast  was  made  with  the  group  treated  in  hospital.(5)  Other  studies  that  have  included  ceftriaxone  for  the  treatment  of  cellulitis  in  children  have  had  cure  rates  of  91-­‐96%,  but  have  had  small  numbers,  no  comparison  group  and/or  unclear  methodology.(16,  17)  The  only  study  comparing  ceftriaxone  with  flucloxacillin  has  been  in  adults,  and  while  ceftriaxone  resulted  in  a  higher  success  rate  than  flucloxacillin  (96%  vs  70%),  numbers  were  not  clinically  significant.(19)  The  differential  effect  of  ceftriaxone  and  flucoxacillin  on  the  microbiome  of  children  has  also  never  previously  been  described.  One  of  the  secondary  aims  of  this  study  is  to  investigate  whether  there  is  any  effect  of  antibiotics  on  the  identification  of  resistant  organisms  in  stool  samples  of  children  in  both  groups.  None  of  the  studies  described  above  have  used  home-­‐based  treatment.  

Increasing  numbers  of  hospitals  are  developing  programs  where  patients  who  have  traditionally  been  treated  as  hospital  ward  patients  are  treated  at  home  under  the  care  of  hospital  doctors  and  nurses  in  HITH  programs.  While  attractive  in  terms  of  resource  use,  it  is  unclear  to  what  extent  HITH  care  is  efficacious  and  safe.  The  Royal  Children’s  Hospital  (RCH)  Melbourne  has  the  largest  paediatric  HITH  program  in  Australia.  As  an  alternative  to  admission  for  intravenous  flucloxacillin,  RCH  HITH  developed  a  direct-­‐from-­‐the  Emergency  Department  (ED)  pathway  for  cellulitis  based  on  ED  clinician  assessment  and  decision,  using  once  daily  ceftriaxone  and  medical  review  at  home.  Since  September  2012  to  date  at  RCH,  more  than  70  children  with  moderate/severe  cellulitis  have  been  treated  successfully  at  home.(1-­‐4)  The  outcomes  of  these  children  are  similar  to  the  children  treated  in  hospital.  We  now  plan  to  randomly  assign  patients  with  cellulitis  requiring  IV  antibiotics  to  either  be  treated  at  home  (iv  ceftriaxone)  or  to  the  hospital  ward  (iv  flucloxacillin)  and  compare  the  success/failure  rates  in  the  two  groups.  The  plan  for  this  randomized  trial  has  been  discussed  extensively  with  the  Melbourne  Clinical  Trials  Centre  (MCTC)  and  presented  at  the  MCTC  forum  attended  by  established  researchers.  The  response  to  the  trial  was  overwhelmingly  positive  with  many  experienced  clinicians  agreeing  to  the  pragmatic  approach  and  the  need  to  find  evidence  for  a  pathway  that  is  becoming  routine  practice.  

 

4. STUDY  OBJECTIVES  

4.1 RESEARCH  QUESTION  The  primary  research  question  to  be  addressed  is:  

300

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  9  of  26  

• In  children  with  moderate/severe  uncomplicated  cellulitis,  is  the  failure  rate  at  2  days  following  the  first  dose  of  antibiotic  non-­‐inferior  for  children  treated  with  IV  antibiotics  at  home  compared  to  the  failure  rate  at  2  days  following  the  first  dose  for  children  treated  with  IV  antibiotics  in  hospital?    

The  secondary  research  questions  to  be  addressed  are:  • In  children  with  moderate/severe  uncomplicated  cellulitis,  is  time  to  non-­‐  

progression  of  cellulitis  in  children  treated  with  iv  antibiotics  at  home  at  least  the  same  as  the  time  to  non-­‐progression  of  cellulitis  in  children  treated  with  iv  antibiotics  in  the  hospital?  

• In  children  with  moderate/severe  uncomplicated  cellulitis,  is  time  to  discharge  of  children  treated  with  iv  antibiotics  at  home  at  least  the  same  as  the  time  to  discharge  of  cellulitis  children  treated  with  iv  antibiotics  in  the  hospital?  

• In  children  with  moderate/severe  uncomplicated  cellulitis,  is  the  rate  of  readmission  of  children  treated  with  iv  antibiotics  at  home  different  from  the  rate  to  readmission  of  children  treated  with  iv  antibiotics  in  the  hospital?  

• In  children  with  moderate/severe  uncomplicated  cellulitis,  is  the  rate  of  re-­‐presentation  to  ED  of  children  treated  with  iv  antibiotics  at  home  different  from  the  rate  of  re-­‐presentation  of  children  treated  with  iv  antibiotics  in  the  hospital?  

• In  children  with  moderate/severe  uncomplicated  cellulitis,  is  the  duration  of  iv  antibiotics  administration  of  children  treated  with  iv  antibiotics  at  home  at  least  the  same  as  duration  of  iv  antibiotics  administration  to  children  treated  with  iv  antibiotics  in  the  hospital?  

• Is  treating  children  with  cellulitis  with  iv  antibiotics  at  home  at  least  the  same  as  treating  them  with  iv  antibiotics  in  the  hospital,  in  terms  of  rates  of  complications,  adverse  events  and  allergic  reactions?  

• In  children  with  moderate/severe  uncomplicated  cellulitis,  is  the  rate  of  resistant  organisms  in  children  at  home  the  same  as  children  treated  in  hospital?  

• Are  quality  of  life  indicators  of  children  treated  with  iv  antibiotics  at  home  at  least  the  same  as  quality  of  life  indicators  of  children  treated  with  iv  antibiotics  in  the  hospital?  

• Is  the  assessment  of  cellulitis  features  in  terms  of  :  § presence  of  systemic  features  § surface  area  affected  (longest  length  axis  multiply  by  the  longest  

perpendicular  axis  measured  in  cm2)  § severity  of  swelling  (judged  by  clinician  as  any  one  of  the  following:  mild,  

moderate  or  severe)    § intensity  of  erythema  (judged  by  clinician  from  a  scale  of  0  to  5,  0=no  

erythema  and  5=severe  erythema)  § impairment  of  function  of  affected  area    § tenderness  of  cellulitis  area  (judged  by  clinician  from  a  scale  of  0  to  5,  0=not  

tender  and  5=very  tender)  helpful  in  tracking  the  progress  of  all  children  with  uncomplicated  moderate/severe  cellulitis?  See  attached  case  record  form  of  daily  assessment.  

301

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  10  of  26  

4.2 PRIMARY  OBJECTIVE  To  compare  the  failure  rate  of  IV  antibiotic  treatment  of  children  treated  at  home  (iv  ceftriaxone)  with  those  treated  in  hospital  (iv  flucloxacillin)  in  the  first  2  days  of  treatment  following  the  first  dose  given  in  the  ED  in  children  with  moderate/severe  cellulitis  (Moderate/severe:  defined  in  this  study,  as  those  assessed  by  ED  doctor  to  need  iv  antibiotics)    

4.3 SECONDARY  OBJECTIVES  To  compare:  1. Time  to  no  progression  of  cellulitis    2. Time  to  discharge  3. Readmission  rate    4. Representation  to  ED  rate  5. Length  of  stay  in  ED  6. Duration  of  iv  antibiotics  administration,    7. Rates  of  IV  cannula  needing  at  least  one  resiting  8. Complications  9. Adverse  events  10. Microbiology  and  microbiome  11. HITH  and  hospital  patient  costs      12. Quality  of  life  indicators    13. The  clinical  assessment  in  terms  of  presence  of  systemic  features,  surface  area  affected  

(longest  length  axis  multiply  by  the  longest  perpendicular  axis  measured  in  cm2),  severity  of  swelling  (judged  by  clinician  as  any  one  of  the  following:  mild,  moderate  or  severe),  intensity  of  erythema  (judged  by  clinician  from  a  scale  of  0  to  5,  0=no  erythema  and  5=severe  erythema),  impairment  of  function  of  affected  area,  tenderness  of  cellulitis  area  (judged  by  clinician  from  a  scale  of  0  to  5,  0=not  tender  and  5=very  tender)      In  children  treated  with  iv  antibiotics  at  home  (iv  ceftriaxone)  with  children  treated  with  iv  antibiotics  (iv  flucloxacillin)  in  the  hospital  during  the  study  period.      

302

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  11  of  26  

4.4 OUTCOME  MEASURES  Primary  outcome:  The  primary  outcome  is  treatment  failure  defined  as  lack  of  clinical  improvement  of  cellulitis  or  an  adverse  event,  resulting  in  a  change  of  initial  empiric  antibiotics  within  2  days  (48  hours)  of  treatment  from  the  start  of  the  first  antibiotic  dose  given  in  the  ED.  The  features  contributing  to  clinical  improvement  are  assessed  and  recorded  daily  in  the  CRF  by  the  treating  clinician  and  include:  reduction  in  fever  (reduction  in  fever  frequency  or  degree  of  temperature,  if  fever  source  is  cellulitis  and  not  concurrent  illness),  reduction  in  the  cellulitis  area  (measured  by  largest  diameter  of  erythema),  reduction  in  the  severity  of  swelling  (judged  as  mild,  moderate  or  severe)  and  a  reduction  in  the  intensity  of  erythema  (judged  on  a  scale  of  0  to  5,  0=no  erythema  and  5=severe  erythema).  

Secondary  outcomes:  1. Time  to  no  progression  of  cellulitis:  number  of  days  (including  fractions  of  days)  elapsed  

from  the  start  of  the  first  dose  in  ED  (Day  1)  to  the  time  at  which  the  cellulitis  stops  spreading  past  the  marked  area,  judged  during  daily  assessment  of  cellulitis  

2. Time  to  discharge:  number  of  days  (including  fractions  of  days)  elapsed  from  the  time  of  arrival  in  ED  to  the  moment  the  patient  is  discharged.  (Discharge  is  defined  as  when  patients  admitted  to  hospital  are  deemed  not  to  require  any  hospital  funded  care/intervention  from  a  hospital  based  nurse/doctor.  The  time  and  date  is  registered  on  the  electronic  hospital  database  IBA.  Admission  to  hospital  is  defined  as  patients  who  are  deemed  to  need  hospital  funded  care/intervention  from  a  hospital  based  nurse/doctor)  

3. Readmission  rate:  Number  of  children  readmitted  to  hospital  within  14  days  of  discharge  date  due  to  the  same  cellulitis  

4. Representation  to  ED:  Number  of  children  representing  to  ED  within  14  days  of  discharge  and  diagnosed  to  have  incomplete  resolution  or  recurrence  of  same  cellulitis  

5. Length  of  stay  in  ED  (from  first  presentation  in  ED  to  time  the  patient  leaves  ED  to  go  either  home  or  to  ward)  

6. Duration  of  iv  antibiotics  7. Rates  of  iv  cannula  needing  at  least  one  resiting  8. Complications  of  cellulitis:  development  of  abscess  requiring  drainage  after  starting  IV  

antibiotics  and  bacteremia  9. Adverse  events:  occurrences  of  anaphylaxis,  allergic  reaction  (suspected  or  confirmed)  

necessitating  change  of  empiric  antibiotic,  sepsis,  death  10. Microbiology:    

a. Any  cultured  isolate  (bacteria)  from  a  skin  swab  of  the  affected  area  will  have  susceptibility  testing  performed  against  ceftriaxone  to  document  the  rate  of  organism  susceptibility  to  ceftriaxone  

b. Rate  of  Staphylococcus  aureus  nasal  carriage  collected  within  48  hours,  14  days,  3  months  and  1  year  of  initial  presentation  to  hospital  

c. Any  cultured  isolate  (bacteria)  from  a  nasal  swab  will  have  susceptibility  testing  performed  against  ceftriaxone  to  document  the  rate  of  organism  susceptibility  to  ceftriaxone  

d. Any  resistant  bacteria  present  in  stool  sample  collected  within  48  hours,  14  days,  3  months    and  1  year  of  initial  presentation  to  hospital  (This  outcome  may  be  published  separately  as  require  longer  follow  up.)  

303

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  12  of  26  

e. Any  microbiome  changes  in  the  nasal  and  stool  sample  collected  within  48  hours,  14  days,  3  months    and  1  year  of  initial  presentation  to  hospital  (This  outcome  may  be  published  separately  as  require  longer  follow  up.)  

11. Hospital  ward  patient  costs  and  HITH  patient  costs  12. Quality  of  life  (QOL)  indicators  (through  survey  asking  parents  how  much  admission  to  

hospital  or  HITH  disrupt  their  routine  as  well  as  a  validated  Quality  of  Life  tool  -­‐Child  Health  Utility  9)  

13. Clinical  assessment  in  all  study  participants  in  terms  of  presence  of  systemic  features,  surface  area  affected  (longest  length  axis  multiply  by  the  longest  perpendicular  axis  measured  in  cm2),  severity  of  swelling  (judged  by  clinician  as  any  one  of  the  following:  mild,  moderate  or  severe),  intensity  of  erythema  (judged  by  clinician  from  a  scale  of  0  to  5,  0=no  erythema  and  5=severe  erythema),  impairment  of  function  of  affected  area,  tenderness  of  cellulitis  area  (judged  by  clinician  from  a  scale  of  0  to  5,  0=not  tender  and  5=very  tender).  

   

304

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  13  of  26  

5. STUDY  DESIGN  

5.1 STUDY  DESIGN  DIAGRAM    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

All  presentation  to  ED  with  cellulitis

Complicated  cellulitis  and  co-­‐morbidities  

Excluded

 Moderate/Severe  cellulitis Requiring  IV  antibiotics

Mild  cellulitis    Excluded

HITH Admit  to  HITH   Administer  1st  dose  of  ceftriaxone  50mg/kg  Continue  ceftriaxone  50mg/kg  Once  Daily  HITH  team  to  make  treatment  decisions

Ward Admit  to  ward  as  usual  (contact  admitting  medical  team) Start  1st  dose  of  flucloxacillin  50mg/kg  Continue  flucloxacillin  50mg/kg  6  hourly    Medical  team  to  make  treatment  decisions

Recruit  to  study  and  Inform  Consent  signed-­‐off

Randomisation

305

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  14  of  26  

5.2 STUDY  TYPE  &  DESIGN  &  SCHEDULE  Study  design:    This  study  is  a  pragmatic,  prospective,  single-­‐centre,  open  label  non-­‐inferiority  randomised  controlled  trial  with  economic  analysis.  This  pragmatic  trial  aims  to  determine  whether  cellulitis  treatment  given  at  home  is  non-­‐inferior  to  (at  least  as  good  as)  cellulitis  treatment  in  the  hospital,  to  inform  decisions  about  practice.  It  will  incorporate  a  two-­‐arm,  non-­‐inferiority  design  with  parallel  groups  and  1:1  allocation  of  children  with  moderate/severe  cellulitis  presenting  to  the  RCH  ED.  

   

306

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  15  of  26  

Study  Schedule  

proced

ures  

 

Assessment/  Procedure  

ED  presentation  

Day  1  

Day  2   Day  3    until  

discharge  

Day  7-­‐14    after  discharge    (after  finishing  oral  antibiotic  or  at  resolution  of  cellulitis)  

3  months  after  initial  ED  presentation  

1  year  after  initial  ED  presentation  

Informed  Consent   X            

Demographic  Information   X            

Clinical  assessment   X   X   X        

Blood  culture   X            

Skin  swab   X            

Nasal  swab    (optional)   X       X   X   X  

Stool  sample  (optional)   X       X   X   X  

Photo  on  parent’s  phone   X   X   X        

IV  antibiotics   X   X   X        

Anonymous  questionnaire     X          

Anonymous  QOL  questionnaire   X       X      

Final  review  method  option  1:  RCH  clinic  (where  parents  willing)  

     

 

X  

 

 

   

Final  review  method  option  2:  by  telephone  (where  parents  unwilling  to  attend  clinic)    

 Parents  to  email  photo  of  previously  affected  area  if  not  seen  in  clinic  

     

X  

 

X  

 

   

   

307

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  16  of  26  

5.3 RANDOMISATION  After  a  baseline  assessment  is  performed,  the  parent/guardian  will  be  given  information  about  the  study  and  have  the  opportunity  to  discuss  the  study  with  the  researcher/clinician.  After  a  written  consent  is  obtained,  children  will  be  randomised  to  either  HITH  group  or  treatment  at  hospital  group  with  an  allocation  ratio  of  1:1,  using  a  web-­‐based  randomisation  procedure.  The  randomisation  schedule  and  web-­‐based  service  will  be  provided  by  the  Clinical  Epidemiology  and  Biostatistics  Unit  (CEBU)  at  the  Murdoch  Childrens  Research  Institute.  The  randomisation  will  be  in  randomly  permuted  blocks  of  variable  length,  stratified  by  age  (6  months  to  <9  years  and  9  to  18  years)  and  presence  of  periorbital  cellulitis.  Web  randomisation  will  be  enabled  through  the  Redcap  (Research  electronic  Data  Capture)  web  based  application.  A  study  icon  labelled  ‘Choice  Trial’  will  be  visible  on  all  desktops  in  both  the  ED  pods.  This  will  take  clinicians  directly  to  the  Redcap  log  in  page.  Any  ED  clinician  can  use  a  generic  username  and  password  which  can  be  found  on  a  lanyard  stuck  onto  to  the  desktops.  Then  the  clinician  will  enter  the  child’s  date  of  birth  and  whether  or  not  the  area  affected  is  periorbital  (stratification  factors).  This  will  then  generate  a  randomisation  assignment  which  will  be  displayed  as  ‘HITH’  or  ‘Ward’  along  with  a  randomisation  sequential  number.    

 

5.4 STUDY  METHODOLOGY    Clinical  management  after  randomization  is  as  per  routine  clinical  practice.    In  addition,  we  will  take  a  nasal  swab  to  determine  the  rate  of  nasal  carriage  of  Staphylococcus  aureus  in  patients  with  cellulitis  and  to  identify  methicillin  resistant  S.  aureus  (MRSA)  carriers.  This  may  be  used  to  guide  treatment  if  the  patient  is  not  clinically  improving  and  MRSA  is  present:  if  a  patient  fails  treatment  and  they  are  found  to  have  a  positive  skin  or  nasal  swab  with  MRSA  the  treating  doctor  may  change  their  treatment  appropriately.  If,  in  addition,  they  have  had  multiple  infections  with  MRSA  patients  will  be  offered  the  current  usual  practice  in  this  situation  which  is  to  decolonize  (eradicate  MRSA)  all  household  members  with  the  explanation  that  it  is  only  50%  effective  at  3  months.  Decolonization  or  eradication  process  involves  using  an  antiseptic  body  wash,  a  mouthwash  and  nasal  ointment  for  5  days.  Parents  who  are  interested  in  submitting  a  stool  specimen  are  provided  with  a  standard  hospital  stool  collection  jar.  They  are  advised  to  place  a  disposable  container  in  the  toilet  bowl  to  catch  a  stool  specimen.    In  addition,  they  are  instructed  to  use  the  spatula  that  forms  part  of  the  lid  to  obtain  a  small  pea-­‐sized  stool  sample  for  testing  and  the  remaining  stool  can  be  disposed  of.  Once  stool  samples  are  available,  parents  can  notify  a  research  team  member  (phone  number  provided  on  the  information  statements)  for  the  stool  specimen  to  be  transported  to  the  pathology  lab.  The  jar  containing  the  stool  sample  should  be  kept  in  the  fridge  or  freezer  until  a  member  of  the  study  team  collects  the  sample.  

If  there  is  skin  breakdown,  a  skin  swab  would  be  done  as  per  routine  clinical  practice.  Prior  to  commencing  IV  antibiotics.  In  addition,  the  researcher  or  ED  clinician  will  ask  parents  to  take  2  photos  of  the  cellulitis  area  using  their  own  camera/phone  (if  available)  after  the  affected  area  is  demarcated  with  indelible  ink  (Sharpie)  with  a  tape  measure  placed  along  side  the  area  affected.  If  parents  do  not  have  a  camera/phone,  permission  will  be  sought  by  researcher/clinician  to  use  a  HITH  tablet  to  photograph  the  lesion.  This  tablet  will  be  stored  in  the  ED  research  drawer  in  the  main  ED  pod  and  is  available  24  hours  a  day.  This  will  be  

308

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  17  of  26  

helpful  for  the  reviewing  doctor  the  following  day  to  judge  whether  there  is  an  improvement.      Prior  to  starting  this  study,  the  ED  physicians  have  been  deciding  whether  patients  are  admitted  to  ward  or  HITH  based  on  ill-­‐defined  factors  including  time  of  day  and  familiarity  with  the  HITH  program.  In  our  data  collection  to  date  all  of  the  patients  admitted  to  hospital  could  have  been  admitted  to  HITH  and  would  not  have  been  excluded  from  this  study.  The  only  new  intervention  is  randomization  process  and  data  collection.    Data  collection  will  begin  once  consent  has  been  obtained  in  ED.  The  ED  clinician  will  be  asked  to  fill  in  a  CRF  and  then  the  treating  clinician  (HITH  or  Ward  clinician)  will  record  the  assessment  findings  on  the  CRF  on  a  daily  basis  (CRF  will  be  available  in  the  ED  research  drawers,  these  are  clearly  marked  as  ‘Research  drawer-­‐blank  CRF’  .ED  clinicians  will  be  informed  of  where  these  can  be  found  in  education  sessions).  A  member  of  the  research  team  will  obtain  the  CRF  from  the  research  drawer  and  ask  the  treating  clinician  to  fill  in  the  daily  assessment  details.  They  will  be  reminded  on  a  daily  basis.  Other  information  collected  will  be  from  the  medical  records.  In  the  first  2  days  of  admission,  the  parent  and  where  applicable  the  child  will  be  given  a  parental/patient  satisfaction  questionnaire  and  a  quality  of  life  questionnaire.  The  questionnaires  will  be  given  on  the  ward  or  at  home  after  recruitment.  The  questionnaires  would  remain  anonymous  by  de-­‐identification  and  providing  a  stamped  envelope  to  conceal  answers  when  returned  to  the  investigators.  A  child  aged  7  years  old  or  older  will  be  given  the  ‘child  complete’  version  and  if  younger,  the  parent  will  be  given  the  ‘parent  complete’  version  of  the  quality  of  life  questionnaire  (Child  Health  Utility  9).    As  per  normal  practice,  patients  will  be  switched  to  oral  therapy  after  2-­‐4  days  of  IV  antibiotics,  when  there  is  clinical  improvement  of  the  cellulitis.  Based  on  the  current  prospective  study,  both  HITH  patients  and  ward  patients  are  switched  to  oral  antibiotics  when  there  is  a  reduction  in  fever,  swelling,  erythema  and  improvement  of  function  of  affected  area  (eg.  Previously  limping,  now  walking).  Once  changed  to  oral  antibiotics  (as  per  RCH  clinical  practice  guidelines;  cephalexin  25mg/kg  6  hourly,  total  dose  may  be  combined  and  divided  to  twice  daily),  patients  are  usually  discharged  from  hospital  care  and  normally  not  followed  up  any  further  in  hospital.  In  this  study,  we  would  like  to  offer  all  participants  a  follow  up  in  clinic  7-­‐14  days  (by  the  RA  who  is  a  paediatric  registrar)  after  discharge  from  hospital.  Parents  will  be  requested  to  bring  a  stool  sample  from  the  patient  to  the  clinic  review  but  this  is  not  mandatory.  A  separate  consent  will  not  be  sought  for  attendance  at  clinic  or  provision  of  stool  sample  as  consent  will  be  implied  with  parents’  attendance  at  clinic  and  provision  of  stool  sample.  If  parents  decline  the  follow-­‐up  visit  at  clinic,  a  follow  up  review  will  be  conducted  by  telephone  and  the  parent  will  be  requested  to  email  photos  of  the  area  previously  affected  with  cellulitis  (to  ensure  clinical  resolution).  Photos  will  be  identified  only  by  the  subject  unique  identifier  assigned  for  the  study  and  will  be  stored  in  a  password  protected  database  accessible  only  to  the  researchers.  If  parents  are  unable  to  provide  photographic  evidence  of  clinical  resolution,  as  per  routine  practice  parental  verbal  report  will  be  accepted  .The  same  parental/patient  satisfaction  and  quality  of  life  questionnaires  will  be  posted  out  to  the  parents  at  Day  7-­‐14  after  discharge  for  completion  by  the  parent  and,  where  applicable,  the  child.  At  about  3  months  and  1  year  after  initial  admission  to  hospital,  parents  will  be  contacted  and  asked  if  interested  in  providing  a  nasal  swab  and  stool  sample.    

309

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  18  of  26  

6. STUDY  POPULATION  

6.1 RECRUITMENT  PROCEDURE  Prior  to  the  study  commencing,  ED  clinicians  will  have  education  sessions  to  inform  them  about  the  study.  These  education  sessions  will  be  integrated  into  a  pre-­‐existing  ED  staff  education  morning  which  usually  takes  place  every  fortnight.  A  member  of  the  research  team  will  explain  the  study  in  detail  to  ED  doctors.  These  education  sessions  will  continue  every  fortnight  until  all  doctors  in  ED  have  attended  a  session.  Names  of  those  already  attended  will  be  obtained  and  stored  in  the  study  binder.  Participation  is  voluntary.  

ED  clinicians  (senior  doctors,  junior  doctors  or  nurse  practitioners)  will  identify  patients  with  moderate/severe  cellulitis  presenting  to  RCH  ED,  at  the  point  of  triage  or  during  clinical  assessment.  At  this  stage,  the  ED  clinician  may  decide  to  enrol  the  patient  or  if  uncertain,  the  clinicians  are  encouraged  to  make  contact  with  a  member  of  the  research  team.  The  parents  of  patients  (and  where  applicable  the  patient)  in  the  moderate/severe  group  meeting  inclusion  criteria  will  be  invited  by  the  researcher  or  treating  ED  clinician  to  provide  their  consent  to  participate  in  the  study.  The  consent  will  be  for  randomization,  data  collection  and  follow  up  which  is  not  part  of  routine  practice.  In  addition,  patients  will  be  asked  for  their  consent  to  provide  a  nasal  swab  sample  and  a  stool  sample.  Both  of  these  samples  (nasal  swab  and  stool)  will  be  requested  at  four  different  time  points,  firstly  in  the  first  48  hours  of  admission,  secondly  a  week  to  14  days  after  starting  antibiotics,  thirdly  about  3  months  after  initial  ED  presentation  and  lastly  a  year  after  initial  presentation  to  ED.  At  these  time  points,  parents  will  be  asked  if  there  have  there  been  any  recent  antibiotic  use,  any  other  recent  infections,  GP  visits  or  hospital  admissions  to  correlate  with  findings  of  nasal  swabs  and  stool  samples.  These  samples  are  optional  and  does  not  affect  participation  in  the  study.  Randomisation  to  the  location  of  treatment  is  the  essential  difference  from  normal  clinical  practice.  The  researcher  or  ED  clinician  will  give  the  appropriate  information  sheet  to  parent  and/or  child,  explain  the  study  and  request  written  consent.  These  will  be  stored  at  the  research  office  (RCH@home  department)  in  a  locked  storage  cabinet.  Where  parents  do  not  give  consent,  the  ED  clinician  will  make  the  decision  on  where  the  patient  should  be  treated.    

 

6.2 INTERVENTIONS  Patients  who  are  randomised  to  HITH  will  be  prescribed  IV  ceftriaxone  (50mg/kg  once  daily)  as  per  current  practice  and  those  randomised  to  the  ward  will  be  prescribed  IV  flucloxacillin  (50mg/kg  6  hourly).  On  insertion  of  the  IV  cannula,  the  ED  clinician  will  obtain  a  blood  culture.    

The  first  dose  of  antibiotics  will  be  commenced  in  ED.  For  children  assigned  to  hospital  ward  treatment,  the  child  will  be  transferred  to  the  ward  and  the  IV  infusion  continued.    Children  assigned  to  the  HITH  will  complete  their  first  dose  in  ED  before  going  home.  The  management  after  this  point  will  be  as  per  usual  practice.  The  responsible  ward  doctor  will  review  and  make  all  management  decisions  for  patients  admitted  to  the  ward  whereas  the  HITH  registrar  will  review  the  patients  on  HITH.  The  research  assistant  (RA)  (a  paediatric  registrar)  will  meet  with  the  child  and  their  parent(s)  within  24  hours  of  consent  being  obtained  to  answer  any  further  questions  parents  or  participants  may  have  about  the  study.    

310

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  19  of  26  

Currently,  there  are  no  guidelines  on  when  to  start  IV  antibiotic  in  cellulitis.  The  authors’  recommendation  is  provided  under  Section  6.3  (Inclusion  criteria)  and  this  reflects  consensus  among  RCH  ED  clinicians.  Some  patients  who  did  not  require  IV  antibiotics  may  be  recruited  but  they  will  exist  in  both  groups.  This  randomised  study  will  determine  whether  treatment  at  home  is  effective  for  children  with  uncomplicated  moderate/severe  cellulitis  and  therefore  applicable  to  all  children  with  uncomplicated  moderate/severe  cellulitis.  

 

6.3 INCLUSION  AND  EXCLUSION  CRITERIA    

Inclusion  Criteria  1. Children  aged  6  months  to  18  years    2. Children  presenting  to  RCH  ED  with  moderate/severe  cellulitis  3. Moderate/severe:  defined  in  this  study,  as  those  assessed  by  ED  clinician  to  

need  IV  antibiotics    4. Reasons  for  starting  IV  antibiotics  include:  

a. Failed  oral  therapy  (not  improving  despite  24h  of  oral  therapy)        b. Rapidly  spreading  redness  (from  patient/parent  history)  c. Significant  swelling/redness/pain    d. Systemic  symptoms/signs  (eg.  fever,  lethargy)  e. Difficult  to  treat  areas  (eg.  face,  ear,  toe)  

Exclusion  Criteria  

1. With  orbital  cellulitis  or  unable  to  exclude  orbital  cellulitis,    2. With  penetrating  injury/bites,    3. With  suspected  fasciitis  or  myositis,    4. With  toxicity:  tachycardia  when  afebrile  or  hypotension  (both  as  per  the  

limits  set  out  by  RCH  Resuscitation  Card),  poor  central  perfusion  (capillary  refill  >2  seconds)  

5. With  immunosuppression,    6. With  varicella,    7. With  suspected/confirmed  foreign  body,    8. With  abscess  not  drained,    9. With  dental  abscess,    10. With  concurrent  sinusitis  or  otitis  media  or  lymphadenitis  necessitating  

different  antibiotic  treatment  to  flucloxacillin  monotherapy  or  ceftriaxone  monotherapy,  

11. With  liver  co-­‐morbidities    12. With  other  medical  diagnoses  warranting  admission  to  hospital  for  

observation  or  treatment  relating  to  the  known  medical  condition  13. With  difficult  intravenous  access,  14. Age  <6  months  old,  15. 15.    Who  could  be  managed  on  oral  antibiotics  (ie  assessed  as  mild  cellulitis)  

6.4 CONSENT    

311

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  20  of  26  

Parents  will  be  given  a  parent/guardian  information  sheet  (PGIS)  and  participants  will  be  given,  where  applicable,  a  participant  information  sheet  (PIS).  Participation  in  the  study  will  be  discussed  with  any  members  of  the  research  team  who  will  be  available  24  hours  a  day,  7  days  a  week.  The  contact  details  can  be  found  on  the  CRF.  This  will  happen  in  the  ED.  The  principal  investigator,  associate  investigators  and  research  officer  may  be  involved  in  the  clinical  care  of  the  patient.  Parents/participants  will  be  assured  that  if  they  do  not  wish  to  participate  this  will  in  no  way  affect  their  care.  This  is  also  stated  in  the  PIS  and  PGIS.  

 

7. PARTICIPANT  SAFETY  AND  WITHDRAWAL    

7.1 RISK  MANAGEMENT  AND  SAFETY  There  are  no  foreseeable  additional  risks  to  patients  or  their  families  by  participating  in  this  study.  HITH  has  been  shown  to  be  a  safe  program  under  which  children  can  be  treated  at  home  for  many  conditions,  and  there  will  be  daily  medical  review  of  all  patients.  Families  on  the  HITH  program  have  direct  access  via  telephone  to  an  experienced  nurse  who  is  available  24  hours  a  day  every  day  and  this  nurse  is  supported  by  a  medical  team.  Only  1  out  of  70  children  (1.4%)  with  uncomplicated  moderate/severe  cellulitis  treated  on  the  HITH  program  developed  an  abscess.  This  child  was  assessed  at  home  by  a  HITH  clinician  to  have  developed  an  abscess  and  appropriately  referred  to  ED  for  drainage  of  the  abscess.  After  drainage  was  completed,  this  child  continued  treatment  at  home.  This  compares  to  3  out  of  130  children  (2.3%)  treated  on  the  hospital  ward  who  developed  abscesses  requiring  drainage.    

Adverse  Event  Reporting  For  the  purposes  of  this  study  the  treating  clinician  is  responsible  for  recording  in  the  medical  record  and  following  up  on  all  Adverse  Events.  For  patients  at  home  this  will  be  the  HITH  consultant  and  registrar;  for  hospital  ward  patients  it  will  be  the  treating  medical  team.    The  investigators  will  also  record  and  report  adverse  events  in  the  database.  

The  adverse  effects  possible  in  this  study  would  be  an  allergic  reaction  to  either  of  the  registered  drugs  used  (flucloxacillin  or  ceftriaxone).  Serious  adverse  events  such  as  overwhelming  sepsis  or  death  are  not  expected  in  this  study  as  cellulitis  in  children  is  a  condition  not  associated  with  such  morbidity  and  mortality.  Patients  may  develop  an  abscess  (pus  under  skin)  while  on  treatment  which  would  require  drainage  but  this  would  be  the  natural  progression  of  this  medical  condition  in  some  cases.  

 

7.2 HANDLING  OF  WITHDRAWALS    Participants  will  be  informed  at  the  time  of  obtaining  consent  that  they  may  withdraw  from  the  study  at  any  stage  and  that  this  will  not  affect  the  treatment  or  management  of  their  medical  condition  or  their  relationship  with  RCH.  Once  consent  is  withdrawn,  no  more  data  or  samples  will  be  collected.  Data,  photos  and  samples  collected  prior  to  withdrawal  of  consent  will  be  retained.  Withdrawals  will  not  be  replaced.  Patients  who  are  found  to  not  meet  the  inclusion/exclusion  criteria  after  being  randomised  (randomised  in  error)  will  be  replaced  by  further  recruitment  to  maintain  the  required  sample  size.  

312

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  21  of  26  

 

7.3 INDEPENDENT  SAFETY  AND  DATA  MONITORING  COMMITTEE  An  Independent  Safety  and  Data  Monitoring  Committee  (ISDMC)  will  be  established.  The  ISDMC  will  consist  of  three  independent  clinicians  and/or  biostatisticians  that,  collectively,  have  experience  in  the  management  of  paediatric  patients  with  cellulitis  and  in  the  conduct  and  monitoring  of  randomised  controlled  trials.    The  ISDMC  will  function  independently  of  all  other  individuals  and  bodies  associated  with  the  conduct  of  the  study.  The  ISDMC  will  review  all  data  by  treatment  arm  every  six  months.  At  each  meeting  a  report  will  be  prepared  by  the  trial  statistician  based  on  the  participants  recruited  so  far  which  will  be  presented  to  the  ISDMC  by  the  trial  statistician.  A  descriptive  summary  of  status  of  accrual,  reasons  for  not  randomising,  withdrawals,  protocol  violations,  serious  adverse  events  and  non-­‐serious  adverse  events  thought  to  be  related  to  the  study  drugs  will  be  provided.  The  first  meeting  of  the  ISDMC  will  be  after  6  months.  The  interim  report  at  this  time  will  present  a  descriptive  analysis  of  primary  outcome  data  only,  with  no  formal  comparison  of  the  treatment  groups.  Subsequent  reports  will  include  a  formal  interim  analysis  of  the  primary  outcome.  All  information  presented  in  the  interim  report  will  be  by  presented  by  study  arm,  but  will  be  labelled  treatment  “X”  and  “Y”  to  ensure  that  the  trial  statistician  remains  blinded  to  treatment  allocation.    The  key  to  identify  the  treatment  regimen  will  be  supplied  separately  by  an  independent  statistician  if  requested  by  the  ISDMC.  

 

8. STATISTICAL  METHODS  

8.1 SAMPLE  SIZE  ESTIMATION  &  JUSTIFICATION      The  retrospective  data  collected  in  2013  and  the  prospective  data  in  2014  showed  a  failure  rate  of  treatment  in  hospital  of  approximately  5%.  We  have  determined  based  on  the  literature  and  discussion  with  clinicians    that  the  maximum  amount  by  which  the  failure  rate  in  the  HITH  group  could  exceed  the  failure  rate  in  the  hospital  treatment  group  before  it  is  considered  to  be  inferior  is  15%  ie.  clinical  acceptability  if  80%  of  children  can  be  successfully  treated  at  home.  With  a  study  design  of  a  ‘non-­‐inferiority’  trial,  and  assuming  the  failure  rate  in  the  Hospital-­‐In-­‐The-­‐Home  group  is  equal  to  10%  and  the  failure  rate  in  the  treatment  at  hospital  group  is  equal  to  7%,  if  the  maximum  amount  by  which  the  failure  rate  in  the  Hospital-­‐In-­‐The-­‐Home  group  could  exceed  the  failure  rate  in  the  hospital  treatment  group  before  it  is  considered  to  be  inferior  is  15%,  89  subjects  in  each  treatment  group  gives  a  power  to  the  study  of  approximately  81%.    Thus,  allowing  for  5%  dropout  and  cross  over  between  treatments  rates,  a  total  of  188  are  required  (94  in  each  treatment  arms).  Based  on  the  retrospective  and  prospective  study,  we  would  be  able  to  recruit  this  number  over  a  2  year  period  if  this  study  remains  within  RCH.  However,  once  this  study  commences  in  RCH,  we  would  look  to  expand  this  study  to  other  centers  which  would  shorten  length  of  time  to  complete  this  study.  

 

8.2 STATISTICAL  METHODS    

313

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  22  of  26  

Data  analysis  for  the  study  will  be  performed  by  CEBU  at  MCRI.  Statistical  analysis  will  follow  both  intention  to  treat  (ITT)  and  per-­‐protocol  (PP)  approaches,  which  is  common  for  non-­‐inferiority  randomised  controlled  trials.  If  both  approaches  support  non-­‐inferiority  is  the  trial  considered  positive.    

The  ITT  population  will  include  all  randomised  participants  where  outcome  data  are  available.  

Baseline  characteristics  (such  as  patient  demographics,  underlying  diagnosis,  presence  of  systemic  symptoms,  site  of  cellulitis,  characteristics  of  the  cellulitis)  will  be  presented  separately  for  participants  in  the  groups  using  means  and  standard  deviations  (SD)  for  continuous  data  (or  medians  and  inter-­‐quartile  ranges  for  non-­‐normal  data)  and  proportions  for  categorical  data.  

 Primary  analysis  The  number  and  proportion  of  participants  who  will  be  assessed  as  treatment  failures  by  the  treating  clinician  within  two  days  from  the  first  dose  will  be  summarized  by  treatment  group,  using  frequency  tabulations.  Pearson’s  Chi-­‐Square  test  will  be  used  to  compare  the  proportion  of  participants  who  fail  treatment  at  2  days  from  the  first  dose.  Non-­‐inferiority  will  determined  by  calculating  the  risk  difference  and  its  one-­‐sided  97.5%  confidence  interval  [CI]  (or  equivalently  a  95%  two-­‐sided  confidence  interval)  between  the  failure  rates  in  the  HITH  and  in  hospital  groups.  We  have  pre-­‐specified  the  margin  of  non-­‐inferiority  for  HITH  as  15%  above  the  treatment  in  hospital  failure  rate.  For  the  HITH  to  be  non-­‐inferior  to  treatment  in  the  hospital,  the  upper  limit  of  the  95%  CI  must  be  less  than  15%.    

 Secondary  analyses  As  a  secondary  analysis  on  the  primary  outcome  a  logistic  regression  model  will  be  used  to  investigate  whether  inclusion  of  the  stratification  factor  (age  at  randomisation)  as  predictor  modifies  the  estimated  effect  (and  95%CI)  of  treatment  group  on  the  primary  outcome.  

Secondary  continuous  outcomes  will  be  compared  between  the  two  groups  using  unadjusted  linear  regression  whilst  binary  outcomes  will  be  compared  using  unadjusted  logistic  regression.  Furthermore,  as  explorative  analyses,  regression  models  (or  logistic  models  according  to  the  nature  of  the  outcome)  will  also  be  fitted  to  the  primary  and  secondary  outcomes  adjusting  for  age  (as  used  in  the  randomisation),  presence  of  fever  at  baseline  and  any  other  baseline  and  demographic  variables  where  an  imbalance  is  found.  The  appropriate  survival  analysis  models  will  be  used  to  compare  time  to  event  outcomes  between  the  treatment  groups.  

 

9.    STORAGE  OF  BLOOD  AND  TISSUE  SAMPLES  Samples  taken  may  include  a  blood  culture  and  a  skin  swab  which  would  all  be  directed  to  the  microbiology  lab.  As  written  above,  a  blood  culture  would  be  obtained  on  insertion  of  the  IV  cannula.  This  will  be  sent  for  culture  and  sensitivity  testing  to  ensure  children  do  not  have  any  bacteremia.  All  samples  would  then  be  processed  as  per  routine  practice  as  follows:  for  blood  cultures,  if  the  sample  is  culture-­‐negative,  it  will  be  discarded  after  7  days.  If  the  sample  is  culture-­‐positive,  the  organism  will  be  purified  and  frozen  and  kept  for  1  month  after  the  collection  date.  For  skin  swabs,  all  swabs  are  discarded  after  1  week  of  the  

314

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  23  of  26  

finalized  report.  Process  of  discarding  samples  is  in  line  with  routine  laboratory  practice.  Samples  will  not  be  entered  into  a  biobank  and  consent  to  use  samples  will  only  be  for  this  study.  None  of  the  samples  will  be  used  for  genetic  testing.  

10.    DATA  SECURITY  &  HANDLING  

10.1 DETAILS  OF  WHERE  RECORDS  WILL  BE  KEPT  &  HOW  LONG  WILL  THEY  BE  STORED  All  study  participants  will  be  assigned  a  unique  study  number  (Subject  ID)  for  the  study.  The  document  linking  the  Subject  ID  with  personal  identifiers  will  be  accessible  only  to  the  researchers.  The  unique  study  identifier  will  be  used  to  identify  all  CRFs.  It  will  also  be  used  to  identify  the  clinical  and  laboratory  data  entered  into  the  password  protected  study  database  from  RCH  clinical  and  laboratory  databases.  

Consent  forms  along  with  Subject  ID  coded  paper  study  records  will  be  stored  in  locked  storage  in  the  RCH@home  department.  All  electronic  participant  study  records  will  be  stored  in  the  password  protected  study  database,  accessible  to  the  researchers  only.    

As  per  guidelines,  all  health  information  will  be  kept  until  a  participant  reaches  25  years  of  age.  

 

10.2 CONFIDENTIALITY  AND  SECURITY    Confidentiality  will  be  ensured  by  storing  data  in  a  password-­‐protected  database  for  which  only  the  research  team  will  have  the  password.  

The  questionnaire  will  be  completely  anonymous.  Any  patient  data  published  will  not  allow  personal  identification.    

Group  data  only  will  be  published.  

 

10.3 ANCILLARY  DATA  Images  will  be  stored  in  a  password  protected  database  in  the  RCH@Home  department  local  drive  and  will  be  identified  by  the  unique  subject  identifier  only.  Only  the  researchers  will  have  access  to  the  photos.  

 

 

11. REFERENCES  1.   Ibrahim  LF,  Hodgson  KA,  Sacks  B,  Golshevsky  D,  Layley  M,  Spagnolo  M,  Bryant  PA.  Once  daily  ceftriaxone  for  moderate/severe  cellulitis  at  home  in  children  referred  from  the  Emergency  Department.  World  Society  for  Pediatric  Infectious  Diseases  Congress,  Cape  Town,  Nov  2013  

315

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  24  of  26  

2.   Ibrahim  L,  Hopper  S,  Babl  F,  Bryant  PA.  A  comparison  of  treatment  at  home  or  in  hospital  for  the  treatment  of  moderate/severe  cellulitis  in  children.  Australasian  Society  of  Infectious  Diseases  Conference,  Adelaide,  Mar  2014  3.   Ibrahim  L,  Hopper  S,  Babl  F,  Bryant  PA.  Ceftriaxone  at  home  versus  flucloxacillin  in  hospital  for  moderate/severe  cellulitis.  Emergency  Medicine  Journal  under  review,  Oct  2014.  4.   Ibrahim  L,  Bryant  PA,  Babl  F,  Hopper  S.  A  prospective  comparison  of  home  versus  hospital  IV  treatment  for  cellulitis.  Submitted  to  Australasian  College  for  Emergency  Medicine  Annual  Conference,  Melbourne,  Dec  2014  5.   Gouin  S,  Chevalier  I,  Gauthier  M,  Lamarre  V.  Prospective  evaluation  of  the  management  of  moderate  to  severe  cellulitis  with  parenteral  antibiotics  at  a  paediatric  day  treatment  centre.  Journal  of  paediatrics  and  child  health.  2008;44(4):214-­‐8.  6.   Svahn  BM,  Remberger  M,  Heijbel  M,  Martell  E,  Wikstrom  M,  Eriksson  B,  et  al.  Case-­‐control  comparison  of  at-­‐home  and  hospital  care  for  allogeneic  hematopoietic  stem-­‐cell  transplantation:  the  role  of  oral  nutrition.  Transplantation.  2008;85(7):1000-­‐7.  7.   Small  F,  Alderdice  F,  McCusker  C,  Stevenson  M,  Stewart  M.  A  prospective  cohort  study  comparing  hospital  admission  for  gastro-­‐enteritis  with  home  management.  Child:  care,  health  and  development.  2005;31(5):555-­‐62.  8.   Balaguer  A,  Gonzalez  de  Dios  J.  Home  versus  hospital  intravenous  antibiotic  therapy  for  cystic  fibrosis.  The  Cochrane  database  of  systematic  reviews.  2012;3:CD001917.  9.   Tiberg  I,  Katarina  SC,  Carlsson  A,  Hallstrom  I.  Children  diagnosed  with  type  1  diabetes:  a  randomized  controlled  trial  comparing  hospital  versus  home-­‐based  care.  Acta  paediatrica.  2012;101(10):1069-­‐73.  10.   Hansson  H,  Kjaergaard  H,  Johansen  C,  Hallstrom  I,  Christensen  J,  Madsen  M,  et  al.  Hospital-­‐based  home  care  for  children  with  cancer:  feasibility  and  psychosocial  impact  on  children  and  their  families.  Pediatric  blood  &  cancer.  2013;60(5):865-­‐72.  11.   Laupland  KB,  Valiquette  L.  Outpatient  parenteral  antimicrobial  therapy.  The  Canadian  journal  of  infectious  diseases  &  medical  microbiology  =  Journal  canadien  des  maladies  infectieuses  et  de  la  microbiologie  medicale  /  AMMI  Canada.  2013;24(1):9-­‐11.  12.   Rucker  RW,  Harrison  GM.  Outpatient  intravenous  medications  in  the  management  of  cystic  fibrosis.  Pediatrics.  1974;54(3):358-­‐60.  13.   Stevens  DL,  Bisno  AL,  Chambers  HF,  Everett  ED,  Dellinger  P,  Goldstein  EJ,  et  al.  Practice  guidelines  for  the  diagnosis  and  management  of  skin  and  soft-­‐tissue  infections.  Clinical  infectious  diseases  :  an  official  publication  of  the  Infectious  Diseases  Society  of  America.  2005;41(10):1373-­‐406.  14.   Grayson  ML,  McDonald  M,  Gibson  K,  Athan  E,  Munckhof  WJ,  Paull  P,  et  al.  Once-­‐daily  intravenous  cefazolin  plus  oral  probenecid  is  equivalent  to  once-­‐daily  intravenous  ceftriaxone  plus  oral  placebo  for  the  treatment  of  moderate-­‐to-­‐severe  cellulitis  in  adults.  Clinical  infectious  diseases  :  an  official  publication  of  the  Infectious  Diseases  Society  of  America.  2002;34(11):1440-­‐8.  15.   Nelson  SJ,  Boies  EG,  Shackelford  PG.  Ceftriaxone  in  the  treatment  of  infections  caused  by  Staphylococcus  aureus  in  children.  Pediatric  infectious  disease.  1985;4(1):27-­‐31.  16.   Frenkel  LD.  Once-­‐daily  administration  of  ceftriaxone  for  the  treatment  of  selected  serious  bacterial  infections  in  children.  Pediatrics.  1988;82(3  Pt  2):486-­‐91.  17.   Kulhanjian  J,  Dunphy  MG,  Hamstra  S,  Levernier  K,  Rankin  M,  Petru  A,  et  al.  Randomized  comparative  study  of  ampicillin/sulbactam  vs.  ceftriaxone  for  treatment  of  soft  

316

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  25  of  26  

tissue  and  skeletal  infections  in  children.  The  Pediatric  infectious  disease  journal.  1989;8(9):605-­‐10.  18.   Brugha  RE,  Abrahamson  E.  Ambulatory  intravenous  antibiotic  therapy  for  children  with  preseptal  cellulitis.  Pediatric  emergency  care.  2012;28(3):226-­‐8.  19.   Vinen  J,  Hudson  B,  Chan  B,  Fernandes  C.  A  randomised  comparative  study  of  once-­‐daily  ceftriaxone  and  6-­‐hourly  flucloxacillin  in  the  treatment  of  moderate  to  severe  cellulitis  -­‐  Clinical  efficacy,  safety  and  pharmacoeconomic  implications.  Clin  Drug  Invest.  1996;12(5):221-­‐5.  

 

   

317

Study  Name:  CHOICE  trial  Protocol  Number:  HREC34254E  Date:  18April2017   Page  26  of  26  

   

318

Summary  of  protocol  amendments    Primary  outcome:  no  changes    Secondary  outcomes:    -­‐  majority  no  changes  -­‐  one  secondary  outcome  (microbiology  follow  up)  was  expanded  twice:  1)  June  2015  (ClinicalTrials.gov  updated  Aug  2015):  inclusion  of  nasal  swab  collection  (skin  swabs  already  being  collected)  and  clarification  of  time  points  for  stool  sample  collection  (already  being  collected  for  analysis  of  resistant  bacteria)  2)  Dec  2016  (ClinicalTrials.gov  updated  Dec  2016)  to  include  microbiome  analysis  of  stored  stool  and  nasal  swabs  after  we  received  competitive  funding  to  do  this    Personnel  change:  April  2017:  The  Principal  Investigator  was  amended  from  the  supervising  researcher  and  senior  author  Dr.  Penelope  Bryant  to  Dr.  Laila  Ibrahim,  the  PhD  student  undertaking  this  RCT  for  her  thesis.  This  was  specifically  to  allow  a  competitive  scholarship  application,  but  it  was  also  appropriate  for  Dr  Ibrahim  to  take  on  this  responsibility  at  this  stage  in  the  trial  which  she  had  been  co-­‐ordinating  since  the  outset.      Other  changes  were  minor  and  included  clarification  of  the  type  of  QOL  instrument  being  used  and  reordering  of  outcomes  to  align  with  order  of  objectives.    

319

HREC34254E CHOICE Statistical Analysis Plan Page 1 of 15                

 

 HREC34254E  

 CHOICE  Trial:    

Cellulitis  at  Home  Or  Inpatient  in  Children  from  ED    

Investigator/s:  Dr  Laila  Ibrahim,  Paediatric  Fellow,  PI  Dr  Penelope  Bryant,  Paediatric  Infectious  Diseases  and  HITH  Physician  Ms  Francesca  Orsini,  CEBU  Biostatistician  Murdoch  Children’s  Research  Institute  Dr  Franz  Babl,  Paediatric  Emergency  Physician,  Director  of  Emergency  Research  Dr  Sandy  Hopper,  Paediatric  Emergency  Physician  

     

320

HREC34254E CHOICE Statistical Analysis Plan Page 2 of 15

                     

TABLE  OF  CONTENTS        

 

LIST  OF  ABBREVIATIONS .......................................................................................................... 4  1.   STUDY  OBJECTIVES ....................................................................................................... 5  1.1.   PRIMARY  OBJECTIVE ..................................................................................................... 5  1.2.   SECONDARY  OBJECTIVES ............................................................................................... 5  

2.   BACKGROUND/INTRODUCTION .................................................................................... 5  2.1.   STUDY  DESIGN ............................................................................................................. 5  2.2.   TREATMENT  GROUPS .................................................................................................... 6  2.3.   STUDY  POPULATION ..................................................................................................... 7  2.4.   SAMPLE  SIZE ................................................................................................................ 8  2.5.   STUDY  PROCEDURE ...................................................................................................... 8  

3.   DEFINITION  OF  PROTOCOL  VIOLATIONS,  STUDY  POPULATIONS  AND  STATISTICAL  ANALYSIS ............................................................................................................................... 9  3.1.   MISRANDOMISATION ................................................................................................... 9  3.2.   HANDLING  OF  STRATIFICATION  ERROR ........................................................................... 9  3.3.   PROTOCOL  VIOLATIONS ................................................................................................ 9  3.4.   DEFINITIONS  OF  STUDY  POPULATIONS  AND  ANALYSIS  SETS ............................................. 9  

4.   OUTCOME  VARIABLES ................................................................................................ 10  4.1.   PRIMARY  OUTCOME ................................................................................................... 10  4.2.   SECONDARY  PARAMETERS  OUTCOMES ........................................................................ 10  4.3.   OTHER  PARAMETERS .................................................................................................. 11  

5.   STATISTICAL  METHODOLOGY ...................................................................................... 12  5.1.   GENERAL  METHODOLOGY ........................................................................................... 12  5.2.   PRIMARY  DATA  ANALYSES ........................................................................................... 13  5.3.   SECONDARY  DATA  ANALYSES ...................................................................................... 14  

321

HREC34254E CHOICE Statistical Analysis Plan Page 3 of 15  

322

HREC34254E CHOICE Statistical Analysis Plan Page 4 of 15

(FORM-STAT-04A-01/Version 1.0)

LIST  OF  ABBREVIATIONS      

AE     Adverse  Event  

CRF     Case  Report  Form  

ED     Emergency  Department  

GCP     Good  Clinical  Practice  

HITH    Hospital-­‐In-­‐The-­‐Home;   a   patient   on   this   program   is   considered   admitted   to   a  hospital   bed   (on   inpatient   list)   but   receives   their   treatment  at  home   from  visiting  nurses  and  doctors  

ITT     Intent-­‐To-­‐Treat  

IV     Intravenous;  antibiotic  through  a  ‘drip’  directly  into  a  vein  

OPAT     Outpatient  Parenteral  Antibiotic  Therapy  

PP     Per  Protocol  

RA     Research  Assistant  

RCH     Royal  Children’s  Hospital  

SAE     Serious  Adverse  Event  

SD     Standard  Deviation  

     

323

HREC34254E CHOICE Statistical Analysis Plan Page 5 of 15

(FORM-STAT-04A-01/Version 1.0)

1. STUDY  OBJECTIVES  This  study  is  a  prospective,  open  label  non-­‐inferiority  randomised  controlled  trial  of  intravenous  treatment  for  children  with  moderate/severe  cellulitis.  Participants  are  randomised  to  receive  treatment  either  at  home  or  in  hospital.    1.1. PRIMARY  OBJECTIVE  

To  compare  the  failure  rate  of  IV  antibiotic  treatment  of  children  treated  at  home  (IV  ceftriaxone)  with  those  treated  in  hospital  (IV  flucloxacillin)  in  the  first  48  hours  of  treatment  following  the  first  dose  given  in  the  ED  in  children  with  moderate/severe  cellulitis  (moderate/severe  defined  in  this  study  as  those  assessed  by  a  senior  ED  physician  to  need  IV  antibiotics)    

1.2. SECONDARY  OBJECTIVES  To  compare:  § time  to  no  progression  of  cellulitis    § duration  of  IV  antibiotic  administration  § time  to  discharge  i.e.  length  of  stay  under  clinical  care  § length  of  stay  in  ED  at  initial  presentation  § rate  of  re-­‐presentation  to  ED  within  14  days  § rate  of  readmission  within  14  days  § rate  of  at  least  one  re-­‐siting  of  IV  cannula  during  treatment  § rates  of  complications,  adverse  events  and  allergic  reactions  § clinical  features  of  cellulitis  at  initial  presentation  in  the  ED    § microbiology  results  at  baseline,  1  week  and  3  months  

 in  children  treated  with  IV  antibiotics  at  home  (IV  ceftriaxone)  with  children  treated  with  IV  antibiotics  (IV  flucloxacillin)  in  the  hospital  during  the  study  period.        

2. BACKGROUND/INTRODUCTION                  

2.1. STUDY  DESIGN  This  study  is  a  pragmatic,  prospective,  single-­‐centre,  open  label  non-­‐inferiority  randomised  controlled  trial  (RCT)  with  economic  analysis.  This  pragmatic  trial  aims  to  determine  whether  cellulitis  treatment  administered  at  home  is  non-­‐inferior  to  (at  least  as  good  as)  cellulitis  treatment  in  the  hospital,  to  inform  decisions  about  practice.  It  will  incorporate  a  two-­‐arm,  non-­‐inferiority  design  with  parallel  groups  and  1:1  allocation  of  children  with  moderate/severe  cellulitis  presenting  to  the  RCH  ED.  A  total  of  188  children  aged  6  months  to  <18  years  will  be  recruited  over  2  years  from  the  Emergency  Department  (ED)  at  the  Royal  Children’s  Hospital  (RCH)  and  followed  up  for  one  year  after  initial  ED  presentation.  

       

324

HREC34254E CHOICE Statistical Analysis Plan Page 6 of 15

(FORM-STAT-04A-01/Version 1.0)

2.2. TREATMENT  GROUPS    Types  of  treatment  Patients  who  are  randomised  to  the  treatment  in  the  Hospital-­‐in-­‐the-­‐Home  (HITH)  group  will  be  prescribed  IV  ceftriaxone  (50  mg/kg  once  daily)  and  those  randomised  to  the  hospital  ward  will  be  prescribed  IV  flucloxacillin  (50  mg/kg  6  hourly).  The  first  dose  of  antibiotics  will  be  administered  in  the  Emergency  Department  (ED)  before  the  child  goes  either  home  or  to  the  ward.  After  randomisation,  treatment  decisions  for  the  patient  will  be  made  by  the  appropriate  treating  physician,  as  per  usual  practice:  if  at  home  by  the  HITH  paediatrician  and  if  on  the  ward  by  the  ward  general  paediatrician.  Patients  will  be  switched  to  oral  antibiotics  when  there  is  clinical  improvement  of  the  cellulitis  as  judged  by  the  treating  clinician  and  discharged  as  per  usual  clinical  practice.  Oral  antibiotics  will  be  cephalexin  25  mg/kg  6  hourly  (as  per  RCH  guidelines),  or  the  most  appropriate  antibiotic  based  on  microbiology  results  (e.g.  if  methicillin-­‐resistant  Staphylococcus  aureus  is  subsequently  isolated).  All  participants  will  be  followed  up  post-­‐discharge  as  per  the  following  schedule:    - 7–14  days  after  starting  antibiotics;    - 3  months  after  starting  antibiotics;    - 1  year  after  starting  antibiotics.  At  each  time  point,  the  following  information  will  be  collected  regarding  the  interim  period  since  the  previous  time  point:  overseas  travel,  primary  care  or  hospital  visits,  hospital  admissions,  other  antibiotic  use,  other  infections,  household  member  who  has  been  admitted  to  hospital  overseas.      Randomisation  process  After  a  baseline  assessment  to  ensure  eligibility,  the  parent/guardian  and/or  child  if  adolescent  will  be  given  information  about  the  study  and  have  the  opportunity  to  discuss  the  study  with  the  researcher/clinician.  After  written  consent  is  obtained,  children  will  be  randomised  to  either:    - Hospital-­‐in-­‐the-­‐Home  (HITH)  group,  IV  ceftriaxone  (50  mg/kg  once  daily)    - Hospital  ward  group,  IV  flucloxacillin  (50  mg/kg  6  hourly)  

 with  an  allocation  ratio  of  1:1,  using  a  web-­‐based  randomisation  procedure.  The  randomisation  schedule  and  web-­‐based  service  will  be  provided  by  the  Clinical  Epidemiology  and  Biostatistics  Unit  (CEBU)  at  the  Murdoch  Children’s  Research  Institute.  The  randomisation  will  be  in  randomly  permuted  blocks  of  variable  length,  stratified  by  age  (6  months  to  <9  years  and  9  to  <18  years)  and  periorbital  cellulitis  (absent  and  present).  Web  randomisation  will  be  enabled  through  the  REDCap  (Research  Electronic  Data  Capture)  web-­‐based  application.  Clinical  management  after  randomisation  is  as  per  usual  practice.      Participants  will  be  informed  at  the  time  of  obtaining  consent  that  they  may  withdraw  from  the  study  at  any  stage  and  that  this  will  not  affect  the  treatment  or  management  of  their  medical  condition  or  their  relationship  with  RCH.  Once  consent  is  withdrawn,  no  more  data  or  samples  will  be  collected.  Data,  photos  and  samples  collected  prior  to  withdrawal  of  consent  will  be  retained.  Patients  who  withdraw  will  not  be  replaced.  

325

HREC34254E CHOICE Statistical Analysis Plan Page 7 of 15

(FORM-STAT-04A-01/Version 1.0)

Patients  who  are  determined  after  being  randomised  either  not  to  have  met  inclusion  criteria  or  to  have  met  exclusion  criteria  will  be  replaced  by  further  recruitment  to  maintain  the  required  sample  size.  They  will  be  clearly  described.      

2.3. STUDY  POPULATION  Inclusion  Criteria  • Children  aged  6  months  to  <18  years.  • Children  presenting  to  RCH  ED  with  moderate/severe  cellulitis,  that  is,  those  assessed  

as  needing  intravenous  antibiotics.  Currently,  there  is  no  validated  scoring  system  on  which  to  base  the  choice  between  intravenous  or  oral  antibiotics,  therefore  clinician  judgement  is  the  current  gold  standard.  Although  reasons  may  differ  between  clinicians,  this  will  be  accounted  for  by  randomisation.  Reasons  for  starting  intravenous  antibiotics  include:  

A.  Failed  oral  antibiotics  (no  improvement  despite  24  h  oral  antibiotics).  B.  Rapidly  spreading  redness  (patient/parent  history).  C.  Significant  swelling/redness/pain.  D.  Systemic  symptoms/signs  (eg,  fever,  lethargy).  E.  Difficult  to  treat  areas  (eg,  face,  ear,  toe).    

 Exclusion  Criteria  Children  will  be  excluded  if  they  have:  • Complicated  cellulitis  defined  as  follows:  orbital  cellulitis  or  unable  to  exclude  orbital  

cellulitis,  penetrating  injury/bites,  suspected/confirmed  foreign  body,  suspected  fasciitis  or  myositis,  varicella,  undrained  abscess  including  dental  abscess.  

• Toxicity:  tachycardia  when  afebrile  or  hypotension  (both  as  per  the  limits  from  the  ‘Development  of  heart  and  respiratory  rate  percentile  curves  for  hospitalised  children’14),  poor  central  perfusion  (capillary  refill  >2  s).  

• Underlying  comorbidities:  immunosuppression,  liver  disease.  • Any  concurrent  infection  necessitating  different  antibiotic  treatment  to  intravenous  

flucloxacillin  or  ceftriaxone  monotherapy,  for  example,  concurrent  sinusitis  or  otitis  media  or  lymphadenitis.    

• Other  medical  diagnoses  necessitating  admission  to  hospital  for  observation  or  treatment  relating  to  the  known  medical  condition.  

• Unable  to  obtain  intravenous  access.  • Age  <6  months  old.  • With  mild  cellulitis  (ie,  can  be  treated  with  oral  antibiotics).  

Non-­‐English  speakers  will  be  included  so  long  as  at  the  time  of  obtaining  consent,  an  interpreter  is  available.  At  our  centre,  an  interpreter  is  available  in  person  during  normal  working  hours  Monday  to  Friday  and  via  telephone  24  h  a  day.  An  interpreter  service  will  also  be  used  for  subsequent  phone  calls  and  clinic  visits  similar  to  routine  clinical  practice  involving  non-­‐English  speakers.  

326

HREC34254E CHOICE Statistical Analysis Plan Page 8 of 15

(FORM-STAT-04A-01/Version 1.0)

2.4. SAMPLE  SIZE  Previous  data  from  children  at  RCH  with  moderate/severe  cellulitis  showed  a  failure  rate  of  treatment  in  hospital  of  approximately  5-­‐7%.  For  patients  treated  out  of  the  hospital  and  therefore  less  regularly  reviewed  we  predicted  a  slightly  increased  failure  rate  of  up  to  10%.  Based  on  the  literature  and  discussion  with  clinicians,  the  maximum  amount  by  which  the  failure  rate  in  the  HITH  group  could  exceed  the  failure  rate  in  the  hospital  treatment  group  before  it  would  be  considered  to  be  inferior  is  15%.  Therefore,  with  a  non-­‐inferiority  design,  assuming  the  failure  rate  in  the  hospital  ward  group  is  7%  and  the  failure  rate  in  the  HITH  group  is  10%,  if  the  maximum  amount  by  which  the  failure  rate  in  the  HITH  group  could  exceed  that  in  the  hospital  group  before  it  is  considered  to  be  inferior  is  15%,  89  subjects  in  each  treatment  group  gives  a  power  to  the  study  of  approximately  81%.  Thus,  allowing  for  rates  of  5%  dropout  and  cross  over  between  treatments,  94  participants  are  required  in  each  treatment  arm  –  188  in  total.    

   

2.5. STUDY  PROCEDURE    

Assessment/  Procedure  

ED  presentatio

n  Day  1  

Day  2   Day  3    until  

discharge  

Day  7-­‐14    after  

discharge    (after  

finishing  oral  antibiotic  or  at  resolution  of  cellulitis)  

3  months  after  initial  

ED  presentatio

n  

1  year  after  initial  

ED  presentatio

n  

Informed  Consent   X            Demographic  Information   X            

Clinical  assessment   X   X   X        Blood  culture   X            Skin  swab   X            Nasal  swab    (optional)   X       X   X   X  Stool  sample  (optional)   X       X   X   X  Photo  on  parent’s  phone   X   X   X        

IV  antibiotics   X   X   X                      Anonymous  questionnaire     X     X      

Final  review  method  option  1:  RCH  clinic  (where  parents  willing)  Optional  stool  for  culture  and  sensitivity  

     X    X  

   

Final  review  method  option  2:  by  telephone         X  

     

327

HREC34254E CHOICE Statistical Analysis Plan Page 9 of 15

(FORM-STAT-04A-01/Version 1.0)

(where  parents  unwilling  to  attend  clinic)      Parents  to  email  photo  of  previously  affected  area  if  not  seen  in  clinic  

X    

   3. DEFINITION  OF  PROTOCOL  VIOLATIONS,  MISRANDOMISATIONS,  AND  STUDY  POPULATIONS  

 3.1. MISRANDOMISATION  

The  following  cases  will  be  considered  misrandomisations  and  will  be  excluded  from  all  statistical  analyses:  

• A  child  found  prior  to  commencing  intravenous  treatment  to  have  met  one  of  the  predefined  exclusion  criteria  

• Randomisation  occurred  after  intravenous  treatment  commenced      Participants  who  are  found  to  be  misrandomised  will  be  excluded  from  the  analysis  and  

replaced.      

3.2. HANDLING  OF  STRATIFICATION  ERROR  Participants  may  have  been  stratified  incorrectly  at  the  point  of  initial  data  entry  during  randomisation  process  eg  date  of  birth  entered  incorrectly,  in  this  case  the  participant  will  be  analysed  as  per  the  correct  stratum.      

3.3. PROTOCOL  VIOLATIONS  Major  protocol  violations  include:  

• Received  treatment  on  the  ward  if  randomised  to  the  HITH  arm  • Received  treatment  under  HITH  at  home  if  randomised  to  hospital  arm  • Did  not  receive  any  study  treatment  

 Minor  protocol  violations  include:  

• Received  oral  flucloxacillin  at  discharge  instead  of  oral  cephalexin.      

3.4. DEFINITIONS  OF  STUDY  POPULATIONS  AND  ANALYSIS  SETS  Data  analysis  for  the  study  will  be  performed  by  CEBU  at  MCRI.  Statistical  analysis  will  follow  both  intention  to  treat  (ITT)  and  per-­‐protocol  (PP)  approaches,  which  is  a  common  standard  method  for  non-­‐inferiority  randomised  controlled  trials.      • The  ITT  population  will  include  all  randomised  participants  where  outcome  data  are  

available,  regardless  of  treatment  received.  Misrandomised  cases  as  defined  in  section  3.1  will  be  excluded  from  the  intention  to  treat  population  and  replaced.  

• The  PP  population  will  include  all  individuals  that  received  treatment  as  per  randomised  allocation  and  also  did  not  encounter  any  major  protocol  violation  as  

328

HREC34254E CHOICE Statistical Analysis Plan Page 10 of 15

(FORM-STAT-04A-01/Version 1.0)

defined  previously  (subsection  3.3).  Misrandomised  cases  as  defined  in  section  3.1  will  be  excluded  from  the  per  protocol  population  and  replaced.  

   

4. OUTCOME  VARIABLES    

4.1. PRIMARY  OUTCOME  The  primary  outcome  is  treatment  failure  defined  as  lack  of  clinical  improvement  of  cellulitis  or  an  adverse  event,  resulting  in  a  change  of  initial  empiric  antibiotics  within  2  days  (48  hours)  of  treatment  from  the  start  of  the  first  antibiotic  dose  given  in  the  ED.  The  features  contributing  to  clinical  improvement  are  assessed  and  recorded  daily  in  the  CRF  by  the  treating  clinician  and  include:  reduction  in  fever  (reduction  in  fever  frequency  or  degree  of  temperature,  if  fever  source  is  cellulitis  and  not  concurrent  illness),  reduction  in  the  cellulitis  area  (measured  by  largest  diameter  of  erythema),  reduction  in  the  severity  of  swelling  (judged  as  mild,  moderate  or  severe)  and  a  reduction  in  the  intensity  of  erythema  (judged  on  a  scale  of  0  to  5,  0=no  erythema  and  5=severe  erythema).      

4.2. SECONDARY  OUTCOMES  Rate  of  cessation  of  cellulitis  spread  at  24  h:  Proportion  of  children  whose  cellulitis  stopped  spreading  past  the  marked  area  within  24  hours  from  the  start  of  the  first  dose  in  ED  (Day  1).   Rate  of  cessation  of  cellulitis  spread  at  48  h:  Proportion  of  children  whose  cellulitis  stopped  spreading  past  the  marked  area  within  48  hours  from  the  start  of  the  first  dose  in  ED  (Day  1).    Duration  of  IV  antibiotics:  number  of  days  (including  fractions  of  days)  elapsed  from  the  start  of  the  first  dose  in  ED  (Day  1)  to  the  last  dose.  

 Time  to  discharge:  number  of  days  (including  fractions  of  days)  elapsed  from  the  time  of  presentation  in  ED  to  the  time  the  patient  is  discharged  from  hospital  or  HITH  care  i.e.  length  of  stay.  (Discharge  is  defined  as  when  patients  admitted  to  hospital  or  HITH  are  deemed  not  to  require  any  hospital  or  HITH  funded  care/intervention  from  a  hospital  or  HITH  based  nurse/doctor.  The  time  and  date  is  registered  on  the  electronic  hospital  database.)    Length  of  stay  in  ED  at  initial  presentation:  from  first  presentation  in  ED  to  time  the  patient  leaves  ED  to  go  either  home  under  HITH  or  to  hospital  ward.    Rate  of  re-­‐presentation  to  ED:  Proportion  of  children  re-­‐presenting  to  ED  within  14  days  of  discharge  and  diagnosed  to  have  incomplete  resolution  or  recurrence  of  same  cellulitis    Rate  of  readmission:  Proportion  of  children  readmitted  to  hospital  within  14  days  of  discharge  date  due  to  the  same  cellulitis  

 

329

HREC34254E CHOICE Statistical Analysis Plan Page 11 of 15

(FORM-STAT-04A-01/Version 1.0)

Rate  of  at  least  one  re-­‐siting  of  IV  cannula  during  treatment:  Proportion  of  children  who  require  at  least  one  IV  cannula  to  be  re-­‐sited  to  maintain  IV  access  during  IV  treatment    

 4.3. OTHER  SECONDARY  PARAMETERS  

 DEMOGRAPHY  AND  BASELINE  Age  at  baseline  Sex  Site  of  cellulitis  Clinical  assessment:    - presence  of  systemic  features  - dimension  of  surface  area  affected  (longest  length  axis  multiply  by  the  longest  

perpendicular  axis  measured  in  cm2),    - severity  of  swelling  (judged  by  clinician  as  mild,  moderate  or  severe)  - intensity  of  erythema  (judged  by  clinician  on  a  scale  of  0  to  5,  0=no  erythema  and  

5=severe  erythema)  - tenderness  of  cellulitis  area  (judged  by  clinician  from  a  scale  of  0  to  5,  0=not  tender  

and  5=very  tender)  - impairment  of  function  of  affected  area      

 SAFETY  Complications  of  cellulitis:  development  of  abscess  requiring  drainage  after  starting  IV  antibiotics,  bacteremia.    Adverse  events:  occurrences  of  anaphylaxis,  allergic  reaction  (suspected  or  confirmed)  necessitating  change  of  empiric  antibiotic,  sepsis,  death.      MICROBIOLOGY  (SHORT  TERM)  Microbiology,  for  participants  who  consented  to  samples:    - Rate  of  ceftriaxone  susceptibility  in  bacteria  isolated  from  skin  and/or  nasal  swabs.  

Bacteria  isolated  by  culture  of  a  skin  swab  of  the  affected  area  and/or  nasal  swab  will  have  susceptibility  testing  against  ceftriaxone  to  document  the  rate  of  organism  susceptibility  to  ceftriaxone    

- Rate  of  Staphylococcus  aureus  (methicillin-­‐sensitive  and  methicillin-­‐resistant)  nasal  carriage  collected  within  48  hours,  7-­‐14  days  and  3  months  of  initial  presentation  to  hospital  

- Rate  of  resistant  enteric  bacteria  present  in  stool  sample  collected  within  48  hours,  7-­‐14  days  and  3  months  of  initial  presentation  to  hospital  

       

 

330

HREC34254E CHOICE Statistical Analysis Plan Page 12 of 15

(FORM-STAT-04A-01/Version 1.0)

4.4. LONGER-­‐TERM  PARAMETERS    COST  ANALYSIS  Analysis  of  cost  differences:  Difference  in  average  daily  and  total  cost  of  treatment  at  home  via  HITH  versus  in  hospital,  incorporating  direct  (e.g.  antibiotic  cost,  nursing  visit)  and  indirect  (e.g.  computer  use,  overheads)  costs    QUALITY  OF  LIFE  INDICATORS  Quality  of  life  (QOL)  indicators:  anonymous  survey  asking  parents/patients  how  much  admission  to  hospital  or  HITH  disrupt  their  routine  and  including  questions  from  a  published  quality  of  life  (QOL)  tool    CLINICAL  Infections  with  resistant  bacteria:  Rate  of  clinical  infections  with  documented  resistant  bacteria  within  1  year  of  initial  presentation  to  ED;  correlation  with  microbiology  results    MICROBIOLOGY  (LONG  TERM)  Microbiology,  for  participants  who  consented  to  samples:  - Rate  of  Staphylococcus  aureus  (methicillin-­‐sensitive  and  methicillin-­‐resistant)  nasal  

carriage  collected  1  year  after  initial  presentation  to  hospital  - Rate  of  resistant  enteric  bacteria  present  in  stool  sample  collected  1  year  after  initial  

presentation  to  hospital  - Differential  effect  of  narrow  spectrum  (flucloxacillin)  and  broad  spectrum  

(ceftriaxone)  antibiotic  on  the  nasal  and  gastrointestinal  microbiome  from  nasal  swabs  and  stool  samples  collected  within  48  hours,  after  7-­‐14  days,  3  months  and  1  year  after  starting  antibiotics  

- Analysis  of  risk  factors  for  acquisition  of  nasal  or  stool  colonisation  (e.g.  travel  overseas,  other  hospital  admissions,  household  member  a  healthcare  worker)  

 These  longer-­‐term  parameters  will  be  analysed  later  and  published  subsequently.    

 5. STATISTICAL  METHODOLOGY  

 5.1. GENERAL  METHODOLOGY  

 Baseline  characteristics  (such  as  patient  demographics,  underlying  diagnosis,  presence  of  systemic  symptoms,  site  of  cellulitis,  characteristics  of  the  cellulitis),  safety  and  microbiology  outcomes  will  be  presented  separately  for  participants  in  the  two  treatment  groups  using  means  and  standard  deviations  (SD)  for  continuous  data  (or  medians  and  inter-­‐quartile  ranges  for  non-­‐normal  data)  and  proportions  for  categorical  data.    HANDLING  OF  MISSING  DATA    The  frequency  and  patterns  of  missing  data  will  be  examined.  If  the  proportion  of  missing  data  on  the  primary  outcome  is  greater  than  5%,  sensitivity  analyses  will  be  performed  to  

331

HREC34254E CHOICE Statistical Analysis Plan Page 13 of 15

(FORM-STAT-04A-01/Version 1.0)

compare  the  results  of  analyses  restricted  to  patients  with  complete  data  and  analyses  where  those  with  missing  data  are  considered  using  multiple  imputation  techniques.  Multiple  imputation  models  will  be  specified  including  all  demographical  and  baseline  variables  and  50  completed  data  sets  will  be  imputed  by  chained  equations  including  all  the  children  randomised  (misrandomised  patients  will  not  be  included).  

 SUBGROUP  ANALYSIS  The  analysis  of  microbiology  outcomes  for  nasal  Staphylococcus  carriage  and  resistant  organisms  in  the  stool  will  be  restricted  to  those  patients  who  consented  to  have  nasal  swabs  and  stool  samples  collected.    CLASSIFICATION  OF  PROTOCOL  VIOLATION  The  absolute  number  and  the  proportion  of  children  with  major  and  minor  protocol  violations  will  be  reported  in  each  treatment  arm.  If  there  are  fewer  than  5  protocol  violations  in  each  treatment  group  these  will  simply  be  listed  per  treatment  group.      

5.2. PRIMARY  DATA  ANALYSES  The  number  and  proportion  of  participants  who  will  be  assessed  as  treatment  failures  by  the  treating  clinician  within  two  days  from  the  first  dose  will  be  summarized  by  treatment  group,  using  frequency  tabulations.    We  have  pre-­‐specified  the  margin  of  non-­‐inferiority  for  HITH  as  15%  above  the  treatment  in  hospital  failure  rate.  For  the  HITH  to  be  non-­‐inferior  to  treatment  in  the  hospital,  the  upper  limit  of  the  95%  CI  must  be  less  than  15%.  Non-­‐inferiority  will  be  determined  by  calculating  the  risk  difference  and  its  one-­‐sided  97.5%  confidence  interval  (or  equivalently  a  95%  two-­‐sided  confidence  interval)  between  the  failure  rates  in  the  HITH  and  the  hospital  groups,  obtained  by  running  a  binomial  regression  model  on  the  primary  outcome,  adjusting  by  the  stratification  factors  (age  at  randomization  -­‐  6  months  to  <9  years  and  9  to  <18  years;  and  periorbital  cellulitis  -­‐  absent  and  present)  as  predictors.    The  same  binomial  regression  model  will  then  be  used  to  investigate  whether  inclusion  of  presence  of  systemic  features  at  baseline  and  any  other  baseline  and  demographic  variables  -­‐where  an  imbalance  is  found-­‐  as  predictors  modifies  the  estimated  effect  (and  its  95%  confidence  interval)  of  treatment  group  on  the  treatment  failure  rate.    As  this  is  a  non-­‐inferiority  trial,  the  analyses  of  the  primary  outcome  will  be  done  via  ITT  and  PP  analyses,  since  participants  not  following  the  protocol  are  likely  to  bias  the  estimated  treatment  effect  towards  0.                    

332

HREC34254E CHOICE Statistical Analysis Plan Page 14 of 15

(FORM-STAT-04A-01/Version 1.0)

5.3. SECONDARY  DATA  ANALYSES    

OUTCOME  TYPE   OUTCOME   ANALYSES  

Binary  Outcomes  

Rate  of  cessation  of  cellulitis  spread  at  24  h  

Binary  outcomes  will  be  compared  between  the  two  groups  using  binomial  regression  model  adjusted  by  the  stratification  factors  (age  at  randomization  and  periorbital  cellulitis),  with  presentation  of  risk  differences  and  95%  confidence  intervals.    

Furthermore,  the  same  binomial  regression  model  will  then  be  used  to  investigate  whether  inclusion  the  presence  of  systemic  features  and  any  other  baseline  and  demographic  variables  where  an  imbalance  is  found  as  predictors  modifies  the  estimated  effect  (and  its  95%  confidence  intervals)  of  treatment  group  on  the  binary  outcome.  

 

The  “binreg”  STATA  command  will  be  adopted.  Should  this  command  not  achieve  convergence,  the  “glm”  command  specified  using  the  binomial  family  and  the  logit  link  function  will  be  used,  followed  by  the  “margins”  command  to  obtain  the  estimate  of  the  risk  differences  and  it  95%  CI.  

 

Rate  of  cessation  of  cellulitis  spread  at  48  h  

Representation  to  ED  rate    

Readmission  rate  

Rates  of  IV  cannula  needing  at  least  one  re-­‐siting  

Continuous  Outcomes  

Time  to  discharge  

 Continuous  outcomes  will  be  compared  between  the  two  groups  using  linear  regression  model  adjusted  by  the  stratification  factors  (age  at  randomization  and  periorbital  cellulitis),  with  presentation  of  mean  differences  and  95%  confidence  intervals.    

Furthermore,  the  same  linear  regression  model  will  then  be  used  to  investigate  whether  inclusion  the  presence  of  systemic  features  and  any  other  baseline  and  demographic  variables  -­‐where  an  imbalance  is  found-­‐  as  predictors  modifies  the  estimated  effect  (and  its  95%  confidence  intervals)  of  treatment  group  on  the  outcome.  

The  “reg”  STATA  command  will  be  adopted.    Should  the  distribution  of  the  outcome  follow  a  Poisson  distribution,  then  a  Poisson  model  will  be  adopted  instead  of  the  linear  model,  using  the  “poisson”  STATA  command.  

Length  of  stay  in  ED    

Duration  of  IV  antibiotics  

 The  analyses  of  all  the  secondary  outcomes  will  be  done  via  ITT  and  PP  analyses.  

333

HREC34254E CHOICE Statistical Analysis Plan Page 15 of 15

(FORM-STAT-04A-01/Version 1.0)

 SIGNATURES PAGE Signature of Principal Investigator:

Date ___-___-_____

Print Name Laila Ibrahim

Signature of Trial Statistician:

Date 03-08-2017

Print Name Francesca Orsini

   

03 08 2017

334

335  

Appendix  2  Blood  Cultures  in  Cellulitis  are  not  cost  effective  and  should  prompt  investigation  for  an  alternative  focus  

Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

118 | www.pidj.com The Pediatric Infectious Disease Journal  •  Volume 35, Number 1, January 2016

Aeromonas Associated With Swimming Pool 

Folliculitis

Letters to the editor

To the Editors:

We read with interest the publicationby Trenchs et al1 ‘Blood Cultures

are not Useful in the Evaluation of Chil-dren with Uncomplicated Superficial Skin and Soft Tissue Infections’. This retrospective study showed that although 79% of patients had a blood culture, only 2 (0.6%) patients had a significant patho-gen isolated. The crucial information that is not clearly stated is whether these patients were clinically different from the other patients in the study. Without this, the question remains what risk phy-sicians are prepared to take by not tak-ing a blood culture. The authors also did not detail whether these positive culture results affected subsequent management such as other investigations or antibi-otic duration, which may be because of difficulties inherent in retrospective data collection.

We prospectively collected clinical and microbiological data on 162 patients with uncomplicated moderate/severe cel-lulitis (excluding complicated wounds, such as bites or containing foreign bod-ies, varicella and immunosuppression) receiving intravenous antibiotics. The majority—138 (85%) patients—had a blood culture. Only one (0.6%) patient had a positive culture, growing Staphylo-coccus aureus. He presented with 5 days of fever (38.5°C), lethargy and ano-rexia and 1 day of erythema and swell-ing over his left ankle. Difficulty with weight-bearing precipitated his hospital presentation. As data collection was pro-spective this culture result was deemed unusual. After 36 hours of antibiotics, he was afebrile with improving erythema, but the swelling remained. He therefore

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

ISSN: 0891-3668/16/3501-0118DOI: 10.1097/INF.0000000000000938

The Pediatric Infectious Disease Journal

35

1

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

0891-3668

PIDJ

PIDJ-215-688

Letters to the Editor

Letters to the Editor

2016

January

118

121

10.1097/INF.0000000000000938

2015

Priyamalini

Pediatr Infect Dis J

Lippincott Williams & Wilkins

Hagerstown, MD

XXX

The study is funded in part by grants from the RCH Foundation, the Murdoch Children’s Research Institute Infection and Immunity Theme and the Victorian Department of Health, Melbourne, Australia. The funding bodies do not have any authority in collection, management, analysis, and interpretation of data. The authors have no conflicts of interest to disclose.

Address for correspondence: Penelope A. Bryant, PhD; E-mail: [email protected]

Blood Cultures in Cellulitis are not Cost Effective and Should 

Prompt Investigation for an Alternative Focus

had a bone scan that showed left f ibula osteomyelitis, which was treated with 3 weeks of antibiotics. He could have been differentiated at presentation from other patients with uncomplicated mod-erate/severe cellulitis by the prolonged history of fever. Although the positive blood culture prompted the diagnosis of osteomyelitis in this case, this would have otherwise been diagnosed based on incomplete clinical improvement. Two patients (1.2%) had blood culture contamination with coagulase-negative staphylococci, resulting in an unneces-sary additional day in hospital awaiting organism identification.

The Australian Medicare Benefits Schedule cost of blood cultures (incorpo-rating cost of consumables and scientist time for culture and sensitivities) at RCH is AU$30.75, so blood cultures in 85% of patients incurred AU$4244.2 The cost of the 2 contaminated blood cultures was 1 additional day in hospital and repeat blood culture for each patient: AU$2661, total-ing AU$7284 with no clear benefit. This is excluding additional costs of medical staff drawing the culture, transportation to the laboratory, etc.

On the basis of our additional data, we agree with Trenchs et al1 that blood cultures are unhelpful in celluli-tis in children and should not routinely be collected. In addition, as has previ-ously been found in adults, they are not cost effective.3 However, we suggest that if blood cultures are obtained, positive cultures with significant pathogens are sufficiently rare that they should prompt investigation for a metastatic focus or alternative diagnosis.

Penelope A. Bryant, PhDRCH@Home Department

Infectious Diseases UnitDepartment of General Medicine

Microbiology DepartmentMurdoch Children’s Research Institute

The Royal Children’s HospitalParkville, Australia

Franz E. Babl, MDEmergency Department

Murdoch Children’s Research InstituteThe Royal Children’s Hospital

Parkville, AustraliaDepartment of Paediatrics

University of MelbourneMelbourne, Australia

Andrew J. Daley, MBBSMicrobiology Department

The Royal Children’s HospitalParkville, Australia

Department of Paediatrics

University of MelbourneMelbourne, Australia

Sandy M. Hopper, MBBSEmergency Department

Murdoch Children’s Research InstituteThe Royal Children’s Hospital

Parkville, Australia

Laila F. Ibrahim, MB BCH, BAORCH@Home Department

Murdoch Children’s Research InstituteThe Royal Children’s Hospital

Parkville, AustraliaDepartment of Paediatrics

University of MelbourneMelbourne, Australia

REFERENCES1. Trenchs V, Hernandez-Bou S, Bianchi C, Arnan

M, Gene A, Luaces C. Blood cultures are not use-ful in the evaluation of children with uncomplicatedsuperficial skin and soft tissue infections. PediatrInfect Dis J. 2015;34:924–927.

2. Health AGDo. MBS Online. Medicare BenefitSchedule. Available from: http://www9.health.gov.au/mbs/fullDisplay.cfm?type=item&q=69354&qt=item&criteria=blood culture. Accessed July19, 2015.

3. Perl B, Gottehrer NP, Raveh D, et al. Cost-effectiveness of blood cultures for adult patientswith cellulitis. Clin Infect Dis. 1999;29:1483–1488.

The authors have no conflicts of interest to disclose.Address for correspondence: Veroniek Saegeman, MD,

PhD; E-mail: [email protected].

To the Editors:

In summer, it is common for childrento play in inflatable domestic swim-

ming pools. We report about a family with 4 children who developed moderate follic-ulitis after having played in their swimming pool. One day after the swimming pool was filled with fresh tap water without supple-mental chemical treatment of the water, the children did not show any signs of redness or folliculitis after their swim. The next day, the children swam in their swimming pool at noon. That evening all 4 children devel-oped small erythematous macules and pap-ules on the trunk and the back. The differ-ential diagnosis was sun burn and bacterial folliculitis. The morning afterwards, the folliculitis had extended to the cheeks in

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

ISSN: 0891-3668/16/3501-0118DOI: 10.1097/INF.0000000000000940

The Pediatric Infectious Disease Journal

0891-3668

INF

Letters to the Editor

Letters to the Editor

2016

January

2015

Pediatr Infect Dis J

Lippincott Williams & Wilkins

Hagerstown, MD

XXX

336

337  

Appendix  3  Clinician  survey  questionnaire  

31/12/2018 03:32 projectredcap.org

ConfidentialPage 1 of 8

Cellulitis at Home Or Inpatient in Children from ED(CHOICE) - Survey for Physicians

Thank you for taking part in this survey! By participating, you will increase our knowledgeabout doctors' perspectives on paediatric cellulitis management. Your responses will remainanonymous and confidential.

By completing all sections, you will also be in the draw to win one of three coffee and cakevouchers from Sandrock.

Please do not hesitate to contact the research team to address any questions and concerns. 1. In which department do you work? (Select all that EDapply) General Medicine

IDOther (Please specify)

__________________________________

2. Please state your current appointment (or most Consultantrecent if doing other e.g. Research) Fellow

RegistrarResidentIntern

338

31/12/2018 03:32 projectredcap.org

ConfidentialPage 2 of 8

Vignette 1A 12-year-old previously well boy, presents to the Emergency Department with a 1 day historyof localized redness on his leg after grazing his leg in the playground. On examination he isalert, interactive and afebrile with an area of localised erythema, mild swelling andtenderness measuring 7 x 4 cm on his lower left shin. He does not have a limp.3. How would you classify this episode of cellulitis? Mild

Moderate/severe

4. What would be your preferred initial treatment for Home with oral antibioticsthis patient? Hospital-in-the-Home (HITH) with IV antibiotics

Hospital with IV antibioticsOther (Please specify below)

__________________________________

4a. If oral, would you be happy to send this child Nohome without consultant review? Yes

4b. If oral, how many days antibiotics would you 1prescribe? 2

345678910

5. If you prescribe oral antibiotics for cellulitis Always complete the course prescribed(either as first-line treatment or as step-down from If the cellultitis resolves before the course isIV), what is your advice to parents: complete, cease the antibiotics earlier

Attend the GP for review and they will decide howto long to continueNo specific advice givenOther

Other advice:__________________________________

6a. If you recommend a specific duration ofantibiotics, what proportion of parents do you __________________________________estimate complete the course? (%)

6b. If symptoms resolve, would you be happy for the Yescourse of antibiotics to be shortened? No - the planned antibiotic course should be

completed

6c. Would you trust parents to make this decision? YesNoIt depends on the parents

7. Which of these affect your decision between oral and IV?

339

31/12/2018 03:32 projectredcap.org

ConfidentialPage 3 of 8

Usually Sometimes Rarelya) Site of the affected areab) Size of the affected areac) Degree of erythemad) Degree of tendernesse) Degree of swellingf) Feverg) Tracking lymphangitish) Functional impairment of theaffected area

i) Already received at least 24hours oral antibiotics

j) Family preference

8. Are you aware of any objective measure (e.g. A Yes (Please specify below)clinical scoring system) for deciding whether to Notreat cellulitis with IV or oral antibiotics?

__________________________________

9. How helpful do you/would you find a clinical Helpful - to decrease variation in practicescoring system to guide your decision to use oral or Neutral - I feel that clinical judgement is mostlyIV antibiotics? effective

Not helpful - I feel it is not amenable to score

10. How often do you give the parents a say in Rarelydeciding between IV and oral? Sometimes

Frequently

11. Would you do any investigations in this Yespresentation of cellulitis? No

If yes, which investigations? (Select all that apply) FBEESR and/or CRPBlood culturesSkin swab for microbiologyNeedle aspiration for microbiologyNasal swab for microbiologyRadiological imagingOther (Please specify below)

__________________________________

If WCC was abnormal: (Select all that apply) Affects IV vs oralAffects hospital vs HITHTo track for duration of treatmentTo track for clinical improvement

If ESR and/or CRP abnormal: (Select all that apply) Affects IV vs oralAffects hospital vs HITHTo track for duration of treatmentTo track for clinical improvement

340

31/12/2018 03:32 projectredcap.org

ConfidentialPage 4 of 8

If blood cultures were positive: (Select all that Affects hospital vs HITHapply) Affects antibiotic duration

Affects antibiotic choice

Skin swab results: (Select all that apply) Affects antibiotic durationAffects antibiotic choiceAffects need for MRSA eradication

Nasal swab results: (Select all that apply) Affects antibiotic durationAffects antibiotic choiceAffects need for MRSA eradication

Radiological imaging results: (Select all that apply) To exclude abscessTo exclude fracture

341

31/12/2018 03:32 projectredcap.org

ConfidentialPage 5 of 8

Vignette 2A 3-year-old previously well girl presents to the Emergency Department with swelling andtenderness on her left shin after grazing her leg in the park when she fell. On examination,she has a temperature of 38.5C but is systemically well, with an area of erythema, swellingand tenderness measuring 20 x 10 cm on her lower left shin. She has tracking lymphangitisgoing up 10cm to above knee level. She can weight bear but has a limp.12. How would you classify this episode of Mildcellulitis? Moderate/severe

13. What would be your preferred initial treatment Home with oral antibioticsfor this patient? Hospital-in-the-Home with IV antibiotics

Hospital with IV antibioticsOther (Please specify below)

__________________________________

14. Which of these affect your decision between HITH and hospital?

Usually Sometimes Rarelya) Site of the affected areab) Size of the affected areac) Degree of erythemad) Degree of tendernesse) Degree of swellingf) Feverg) Tracking lymphangitish) Functional impairment of theaffected area

i) Already received at least 24hours oral antibiotics

j) Family preference

15. How often do you give the parents a say in Rarelydeciding between HITH and hospital for their child Sometimeswith cellulitis? Frequently

16. Would you do any investigations in this Yespresentation of cellulitis? No

If yes, which investigations? (Select all that apply) FBEESR and/or CRPBlood culturesSkin swab for microbiologyNeedle aspiration for microbiologyNasal swab for microbiologyRadiological imagingOther (Please specify below)

__________________________________

342

31/12/2018 03:32 projectredcap.org

ConfidentialPage 6 of 8

If WCC was abnormal: (Select all that apply) Affects IV vs oralAffects hospital vs HITHTo track for duration of treatmentTo track for clinical improvement

If ESR and/or CRP abnormal: (Select all that apply) Affects IV vs oralAffects hospital vs HITHTo track for duration of treatmentTo track for clinical improvement

If blood cultures were positive: (Select all that Affects hospital vs HITHapply) Affects antibiotic duration

Affects antibiotic choice

Skin swab results: (Select all that apply) Affects antibiotic durationAffects antibiotic choiceAffects need for MRSA eradication

Nasal swab results: (Select all that apply) Affects antibiotic durationAffects antibiotic choiceAffects need for MRSA eradication

Radiological imaging results: (Select all that apply) To exclude abscessTo exclude fracture

17. Which of the following statements reflects your High probabilityperception of the probability of bacteraemia in this Moderate probabilitypresentation of cellulitis? Low probability, but can't exclude so need blood

cultureLow probability, blood culture not necessary

18. Which of the following would be your first line PenicillinIV choice for uncomplicated moderate/severe Ampicillincellulitis as in the above vignette? Flucloxacillin

CephazolinCeftriaxoneClindamycinVancomycinTeicoplaninTicarcillin/clavulanateCo-trimoxazoleCiprofloxacin

19. Which of the following do you think is true of ceftriaxone:

343

31/12/2018 03:32 projectredcap.org

ConfidentialPage 7 of 8

Yes No Don't knowa) Ceftriaxone can be given lessfrequently than flucloxacillin

b) Ceftriaxone is moreinflammatory to the veins thanflucloxacillin

c) Ceftriaxone takes longer toinfuse than flucloxacillin

d) Ceftriaxone is more expensivethan flucloxacillin

e) Ceftriaxone is moreassociated with immediate sideeffects (anaphylaxis) thanflucloxacillin

f) Ceftriaxone is more associatedwith short-term side effects (e.g.Gastrointestinal symptoms) thanflucloxacillin

g) Ceftriaxone is moreassociated with long-term sideeffects (e.g. Acquisition ofresistance) than flucloxacillin

20a) For a child with uncomplicated moderate/severe cellulitis, please rate how you view the potential benefits ofbeing on HITH compared to being in the hospital.

Very Low 1 2 3 4 Very High 5i) Benefit to child's psychologyii) Benefit to family functioningiii) Benefit of reduced cost tofamily

iv) Benefit of reduced cost tohospital

20b) For a child with uncomplicated moderate/severe cellulitis, please rate how you view the potential risks of beingon HITH compared to being in the hospital.

Very Low 1 2 3 4 Very High 5i) Risk of missing a complicationii) Risk of child deterioratingunnoticed

iii) Risk of child having tore-present to hospital

21. If you accept the potential benefits of a childbeing at home, and you transferred 100 patients to __________________________________Hospital-in-the-Home, what number of patientsre-presenting to hospital would still make itworthwhile?

22. How often do you think nursing staff assess the cellulitis?

344

31/12/2018 03:32 projectredcap.org

ConfidentialPage 8 of 8

Daily Twice daily 4 hourly withobs

Only onparent/patient

request

Never Other

a) On the wardb) On HITH

Other (On the ward)(Please specifiy):__________________________________

Other (On HITH)(Please specifiy):__________________________________

23. In a patient with uncomplicated periorbital Nevercellulitis requiring intravenous antibiotics, how Unlikelylikely are you to send them home with HITH? Likely

Always if confident it is periorbital

24. Which of the following would make you less Fevercomfortable about sending a patient home with HITH? Maculopapular rash(Select all that apply?) Urticarial rash

Sunburn-like rashVesicular rashAge under < 6mAge 6m-1yr

25. Quickfire proportion questions for uncomplicated moderate/severe cellulitis requiring intravenous antibiotics:

a) What percentage of parents do you think wouldprefer to be home rather than in hospital? __________________________________

(%)

b) What percentage of patients do you think arebacteraemic? __________________________________

(%)

c) What percentage of patients at RCH do you thinkhave MRSA as the causative organism? __________________________________

(%)

d) What percentage of periorbital cellulitis in EDturns out to be orbital (Due to progression of __________________________________disease and/or incorrect initial diagnosis)? (%)

345

346  

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Ibrahim, Laila Farah Binti

Title:

Home intravenous antibiotics in children: determining the population, efficacy, safety and

cost-effectiveness using cellulitis as a paradigm

Date:

2019

Persistent Link:

http://hdl.handle.net/11343/223034

File Description:

Complete thesis

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.