298
LINKING ECOSYSTEM SERVICES TO ESTUARY RESTORATION AT THE GERMAN NORTH SEA COAST Johann Krebs Federal Waterways and Shipping Administration

LINKING ECOSYSTEM SERVICES TO ESTUARY ... - Pianc

Embed Size (px)

Citation preview

LINKING ECOSYSTEM SERVICES TO ESTUARY

RESTORATION AT THE GERMAN NORTH SEA COAST

Johann Krebs Federal Waterways and Shipping Administration

v The Ems estuary: inbetween the dutch and german Waddensea

v The Ems became „hyper turbid“ in only 30 years

v Far from the good ecological state: Restoration activities

v The Ecosystem approach for the Ems

St

or

y-

bo

ar

d

EMS

INTRODUCTION: THE EMS ESTUARY

v Ecosystem service concept for the Ems: primary an efficient communication tool

v Because land use will change in the floodplains & behind the dikes

v Understand the complexity of measures, get acceptance, get further

THE ECOSYSTEM APPROACH FOR THE THE EMS

EMS: SELECTED ECOSYSTEM SERVICES

Provisioning services Regulating services Cultural services

Cereals, corn, cattle,

sheep, fish

Carbon sequestration, inhibition

of green house gases

Recreation and tourism

Water to navigate ships Retention of fertilizers Profit nature for human

well being (sport,

leisure, wildlife, …)

biodiversity

Ecosystem Services within the

MASTERPLAN EMS 2050

THE ECOSYSTEM APPROACH FOR THE THE EMS

v GIS based approach covering 3 km aside the river

v Data processed: DTM, habitat maps, landuse maps, waterlevel info, historic

digitized maps, computed scenario data

Nitrate retention kg/yr Phosphorus retention kg/yr Carbon sequestration

tons CO2 eq/yr

1930

2010

2050

1930

2010

2050

1930

2010

2050

THE ECOSYSTEM APPROACH FOR THE THE EMS

v Gain in spatial resolution

v Currently in discussion: RESI – must be adapted for estuaries

v Data processed: DTM, habitat maps, landuse data (maps), waterlevel info,

computed scenario data

Danube

Quality

flag highest

retent

high

retent

med

retent

low

retent

no

retent

v The Ems estuary: huge changes in short time - severe ecologic condition - to much

sediment in the system

v Key feature for restoration: sediment management & public acceptance for measures

v Ambitious long term Dutch and German programs / plans just started

v Ecosystem service approach supports anticipation and communication

SUMMARY / TAKE AWAY MESSAGES

ECOLOGY AND ECONOMY IN BALANS

www.masterplan-ems.info

Thank you for attention - Credits to the PIANC working group 195 – Ecosystem services and their application in WTI projects !!!

Burton Suedel1, Joe Gailani1, and Jeff Corbino2

1US Army Corps of Engineers, Engineer Research and

Development Center, Vicksburg, MS, USA

2US Army Corps of Engineers, New Orleans District, New

Orleans, Louisiana, USA

STRATEGIC PLACEMENT OF DREDGED MATERIAL

FROM RIVERINE ENVIRONMENTS FOR RESTORING

MARSH HABITAT

BUILDING STRONG®

Creating Value through Alignment…

What opportunities are there for achieving better alignment of natural and engineered systems?

Can improved alignment reduce risks to life, property and ecosystems?

What range of services can be produced through such alignment?

What are the science and engineering needs to achieve better alignment?

Sustainable Solutions Vision: “Contribute to the strength of

the Nation through innovative and environmentally sustainable

solutions to the Nation’s water resources challenges.”

BUILDING STRONG®

Engineering With Nature®

…the intentional alignment of natural and engineering processes to

efficiently and sustainably deliver economic, environmental and

social benefits through collaboration.

Key Elements:

Science and engineering that produces operational efficiencies

Using natural process to maximum benefit

Broaden and extend the benefits provided by projects

Science-based collaborative processes to organize and focus interests, stakeholders, and partners

www.engineeringwithnature.org 3

BUILDING STRONG®

EWN® and NNBFNatural and Nature-based Features (NNBF)

- Natural features: created & evolved over time through physical,

biological, geologic and chemical processes operating in nature

over time

- Nature-based features: mimic characteristics of natural features

but created by human design, engineering and construction to

manage flood risks (coastal risk reduction)

- Built components: include nature-based features as well as

“gray” infrastructure (i.e., rip-rap, culverts, etc.)

- Non-structural measures: policies, building codes, land use

zoning

BUILDING STRONG®

EWN Across USACE Mission SpaceFlood Risk Management

Natural and Nature-Based Features to support coastal resilience

Levee setbacks; make room for the river

Ecosystem RestorationEcosystem services supporting engineering function

“Natural” development of designed features

Water OperationsShoreline stabilization using native plants

Environmental flows and connectivity

NavigationDirect placement

Strategic placement of dredged material supporting habitat development

Habitat integrated into structures (e.g., banklines)

BUILDING STRONG®

Background

Problem:

Land loss; loss of coastal marsh; degraded channel banklines

Solution:

Diversion (2003) mimicked natural crevasse and substantially scoured West Bay while developing a subaqueous network of distributary channels

Using EWN concepts and adaptive management for beneficial use of DM from the Mississippi River Federal navigation channel and adjacent anchorage area

Improve the functionality of the West Bay river diversion for restoring coastal marshes

Reinforce degraded banklines

Employed novel DM placement practices that worked in concert with the river diversion towards developing sub-delta

Marsh created as a result of

beneficial use activities in West Bay

BUILDING STRONG®

Study Objectives

Document progress of restoring marsh habitat in West Bay following creation of an uncontrolled

diversion and series of sequenced beneficial use dredging placement activities (2002-2018)

Historical background of West Bay sediment diversion, construction and effectiveness of sediment retention enhancement devices (SREDs), and strategic dredged sediment placement to accelerate subaerial growth

Changes in elevation, land:water ratios, and emergent vegetation in West Bay following placement

Application of EWN concepts and principles

BUILDING STRONG®

Timeline of major dredging placement activities in West Bay,

Louisiana from 2002 to 2018

BUILDING STRONG®

Sediment retention and enhancement devices (SREDs) constructed in

West Bay using sediment dredged from the Mississippi River

Year SREDCubic Yards of

Dredged Sediment

Land Created

(Acres)Project

2009 1 386,233 35 CWPPRA PAA

2013 2 1,325,614 97 CWPPRA PAA

3 1,308,435 86

4 328,567 13

2015 5 2,299,295 80 USACE HDDA

CWPPRA = Coastal Wetlands Planning, Protection, and Restoration Act

PAA = Pilottown Anchorage Area maintenance dredging

USACE = US Army Corps of Engineers

HDDA = Hydraulic Dredging Disposal Area maintenance dredging

BUILDING STRONG®

SREDs

Construction Timeline of

Sediment Retention and

Enhancement Devices

(SREDs) and Restoration of

Coastal Habitat through

Beneficial Use of Dredged

Sediment in West Bay

BUILDING STRONG®

West Bay placement activities

from 2002 to 2018 (2016

imagery)

#4, #6 SREDs (green): sediment

settling

#7 SRED (pink): wave erosion

reduction

#5 (yellow): strategic placement

Others: direct placement actions

Placement Activities

Over Time

BUILDING STRONG®

Sediment accumulation rate (from 2003 to 2009)

3 cm/yr

Depth: 0-3 m

Aerial extent of land gain or loss (from 2002 to 2019)

No change (tan): 4,007 ha

Land to water (red): 58 ha

Water to land (green): 900 ha

Sediment retention (2014)Sand: 40-100%

Silt: 4-60%

Land:Water Analysis

and Bathymetry

BUILDING STRONG®

Emergent Vegetation and Habitat Analysis

Newly created habitat classified as fresh-intermediate marsh

Floristic Quality Index (FQI) metric used to assess habitat quality (0-100; higher scores indicating better habitat quality)

FQI West Bay = 34 (2015)

FQI Mississippi River Delta <20

Newly developed land providing better than regional average habitat quality

Abundance of migratory birds andgrazing cows

Fresh/intermediate marsh of particular importance to many recreationally andcommercially important wildlife species

Marsh created via beneficial use in West Bay

is attracting wildlife species

BUILDING STRONG®

Land changes in

the West Bay

project area from

2007 to 2016. Note:

New Orleans river

stage height 6.49 ft

(July 2007); 4.35 ft

(November 2016)

BUILDING STRONG®

Summary

Direct and strategic placement of dredged material both contributing to project success

Restoring wetlands

Shoring up banklines

Successful EWN applications via strategic placement and SREDs

Maintaining safe navigation

Promote better understanding of how beneficial use of dredged sediment from riverine environments can restore ecosystem function and improve bankline stability using EWN concepts

Native American lotus Nelumbo lutea

BUILDING STRONG®

Questions?

Burton C. SuedelUS Army Engineer Research and

Development Center

Vicksburg, MS, USA

[email protected]

���������������� ��������� �������� ���

�������������������������

������� ��

�������� !"�#�� ���$������%���%&��%'"���!����%���'�����&%��%����(�#�������$����)���

�*��!+!�,!���!�"�-�������$�,��!�,�.�

� /012"��������������&'��!$�#�����(��!,�3�� ���$��!,��!��!."����"�(�����

,!! 4����!��(�&%'%�%!��&'��!$�'��5!��$�!����-�,!��(�%'��!�����$�+�5!

� /016"�#�����(����)��"��������(�%&�"��((!&�!$�).� ����� ���� 4�&����%�!���

)'�,��%����)�."�+���%�5�'%�!��)�� !�"��!7!��'�7!��!'��5����$!$�%�&'�$%�5���

&����%�!����%-�)'�& %�5���!�!�����&!������!����)���

� /016"����������������&���!$�('��$%�5���$�$��5!����'.������5��%7!��

&���!���"�&'��%�5���8�' #����%�����9%'�(���2�,!! �4�20�7!��!'�����)'!����

)!���"�,��!����%�5��7!����!�&�!$"��%5�%(%&�����!������%7!�$�!$5%�5��!!$!$

� /01:"�&�+)%���%����(������������������"�'�,���%�(�''���$��!$�&!$�

,��!����--'.�(��+����%� %�5�5'�&%!���'!$����!*�!�$!$�$���5���&��$%�%����

�����!��%7!����%�!�%������-!4��!7!�!��!���%&�%���������%--%�5���$�)��%�!��

�*��!+!�,!���!�"�-�������$�,��!�,�.�

� /012"��������������&'��!$�#�����(��!,�3�� ���$��!,��!��!."����"�(�����

,!! 4����!��(�&%'%�%!��&'��!$�'��5!��$�!����-�,!��(�%'��!�����$�+�5!

� /016"�#�����(����)��"��������(�%&�"��((!&�!$�).� ����� ���� 4�&����%�!���

)'�,��%����)�."�+���%�5�'%�!��)�� !�"��!7!��'�7!��!'��5����$!$�%�&'�$%�5���

&����%�!����%-�)'�& %�5���!�!�����&!������!����)���

� /016"����������������&���!$�('��$%�5���$�$��5!����'.������5��%7!��

&���!���"�&'��%�5���8�' #����%�����9%'�(���2�,!! �4�20�7!��!'�����)'!����

)!���"�,��!����%�5��7!����!�&�!$"��%5�%(%&�����!������%7!�$�!$5%�5��!!$!$

� /01:"�&�+)%���%����(������������������"�'�,���%�(�''���$��!$�&!$�

,��!����--'.�(��+����%� %�5�5'�&%!���'!$����!*�!�$!$�$���5���&��$%�%����

�����!��%7!����%�!�%������-!4��!7!�!��!���%&�%���������%--%�5���$�)��%�!��

�����$�!����%��+!���%��-��&�%&!;

� �!�%5������-!���%���'����!���'$����!�'% !'.����)!�!*&!!$!$"�!%��!�

� �!5�'��'.�$�!�����'�,����!��&���5!�"����

� �&&��%���''.�< ��$�-��!��%�''.�&�������-�%&�''.�< )!&���!��(�!*��!+!�

+!�!���'�5%&�'"��.$��5��-�%&�'�����&!���5��-�%&�!7!���

� ���5!���!-�!�!����%� �����)��%�!��"�'%(!"�-��-!��.���$���!�!�7%���+!���

� #������$�,��!�,�.���5��%���%����+�.�,%���������!�5��!����!��!�%'%!�&!�

�(���!%��%�(������&���!���$��-!���%���

� (���&��%�7!��+!���%�����)!�8���%(%!$"���!�=&������(�%��&�%��>��!!$����)!�

��$!�����$��

��7%5��%�5��� ���5%�5� '%+��!�

� ����� !&��#����!���%-�'�)�'� '%+��!��&�%���%�%�%��%7!"��!���-�%��/01?

� �%+�������%�!��,��!�!��"�����!�5��$�-��&�%&!���$�-��7%$!��!&��%&�'���--��������!$�&%�5�!+%��%���"� �������������� ������������������������������� �������� ��$�-��+��%�5�%��!5���!$���'��%����

� #����!���%-�'!$�).������

� ������� ����!����%���'�����&%��%����(�#�������$����)���4���!����%���'����)��������!��>�����&%��%��4���!����%���'����%�%+!�#%'���>�����&%��%��4��'��$����!�,�.����!����%���'4��+������!%5��� !���!4�����-!�����!$5%�5�����&%��%��4�����-!����!��#�������5��%���%��4���$����%���!��(����%�!���5%�!!�%�5"��&%!�&!���$��!&���'�5.

� ���!������@0����!����5��%���%������7!��%5�!$��-���� ��������

� ���-�AA��7&'%+��!B-%��&B��5

�!!$�(��������7!.

� /01:�5�-����'.�%��).���7%5��%�5��� ���5%�5� '%+��!�-����!���%$!��%(%!$�

��'�& ��(�$���������!�&���!C�!�&!���(�%��&�%��������-��!��%�'�)���%!�����

8���%(.%�5�%�7!��+!���%��%+-��7%�5�&'%+��!D�!�%'%!�&!

� ���7!.���!�!(��!�$!7!'�-!$���$�-%'��!$����5���!���%5�D'!7!'�$�������

&�������$�&���!C�!�&!���(�!*��!+!�,!���!��!7!���

� �7!���������'.�$�+�5!"�&'!��D�-���$��$$%�%���'�+�%��!���&!�&����"�

)����'�����!�&���!C�!�&!���(�&'����!�"�$�,��%+!���$�$!'�.�

� ���%$!���,%$!��%���!�"�(���!*�+-'!���!���'!��(�,���%�5��.��!+�

� �!��'���(��+���!����7!.�,%''�)!���!$�%������55�!5��!�(��+���

��'.4 %�$%7%$��'�-�������,��!�,�.�$����,%''�)!� !-�����%&�'.�&��(%$!��%�'

����������������

��+)!����(��!-���!$�!*��!+!�!7!���

� 26��!�-���!�����$��!B����5!��%��100E��!�-���!��).�!�$�/01F

� G��!�-��$!������$�!*-!�%!�&!$����!*��!+!�!7!���

� G�$%$�����%$!��%(.���-���%&�'���!7!��"�)���2��(���!�!����!��!'!���

���!$����%�&�!��!�%����!�(�!C�!�&.��(��!7!�!�&��$%�%���

� /?��!�-��$!�����!-���!$�+��!������:0�!*��!+!�!7!����%������'

� �!��%'�����2G�%�$%7%$��'�!7!����,!�!�-��7%$!$�).�/0��!�-��$!����H?�

�!�-��$!����$%$�����.!��-��7%$!�$!��%'�����%�$%7%$��'�!7!���I

� ��!�!����$!��%'��,!�!�-��7%$!$������!��!+�%�%�5�!7!���"�

�!�-��$!���>�&�++!������55!�����!�!�,!�!�=+��!��(���!���+!>�%B!B�

�%+%'��������!�%�$%7%$��'�!7!�����!-���!$

� � � � �� ��

�%�$

��7!�

�7!���--%�5

�%5���%7!��('�,�

�*��!+!�&�'$

��%�(�''

J�,��%7!��('�,

�!��,�7!A$���5��

��5

�!$%+!��������-���

������������������������������������������� !����������������"�

� � � � �� ��

�%�$

��7!�

�7!���--%�5

�%5���%7!��('�,�

�*��!+!�&�'$

��%�(�''

J�,��%7!��('�,

�!��,�7!A$���5��

��5

�!$%+!��������-���

������������������������������������������� !����������������"�

���$��!"��!'��%7!'.�

(!,��!�-���!�����

'�,�('�,"��!��,�7!

��$ $���5��"�!�&B��

�%�$�K�+����

(�!C�!��'.��!-���!$�

%���!4��'���,�7!�

&��$%�%������$

��%�(�''

#�����������������������$���%�

��������$����$�&�������'(

� ����������� )*

� +�!������,��������� *

� !�- �.������,�������� !*

� �.�- /�������,�������� ��*

� 0�/�������,��������� )*

� 1������������������ �*

'��������2��������3������������������2��&

����%���������������������������$���%�'

� +�4 �5���� /*

� 4 �5����6 4 ��5��� )*

� 4 ��5����6 4 �%������ *

� 4 �6 4 ��%������� �*

� 0�4 ��%������ !*

� ����3�������� )*

� �����33����7��� 8*

#�����������������������$���%�

��������$����$�&�������'(

� ����������� )*

� +�!������,��������� *

� !�- �.������,�������� !*

� �.�- /�������,�������� ��*

� 0�/�������,��������� )*

� 1������������������ �*

'��������2��������3������������������2��&

����%���������������������������$���%�'

� +�4 �5���� /*

� 4 �5����6 4 ��5��� )*

� 4 ��5����6 4 �%������ *

� 4 �6 4 ��%������� �*

� 0�4 ��%������ !*

� ����3�������� )*

� �����33����7��� 8*

���&'����!"�)���

$!'�.����$�

$�,��%+!���%''�

�!-���!$

2@L��!�-���!��

%�7�'7!���&'����!�

�(�/@����������

+��!

�%((%&�'�����

C����%(.�&�����

�(�&'����!���$�

$!'�.��M�;

� � � � �� �� � � .� .� ��

�%�%&�'

�%5�%(%&���

��$!���!

�����%5�%(%&���

�����--'%&�)'!

��3��������2���������������������������$���%���*�������������2��&"�

M)���?0L�

�!�-���!��

&���%$!����!�

!((!&��=�%5�%(%&����

���5�!��!�>

#������35���%�2����3���������9����%�����������

#����'

� +�4 �5���� *

� 4 �5����6 4 ��5��� .*

� 4 ��5����6 4 �%������ 8*

� 4 �6 4 ��%������� .*

� 0�4 ��%������ �*

� ����3�������� ��*

� �����%�2�� *

��3��������2���������'�

� �����33����7�� *

� ������2�������� ��*

� ��������� .*

� ��2��������� ��*

� #�������� 8*

���.��!�-���!��

%$!��%(%!$�&'����!��

���$!'�.��)������

$�+�5!

20L��!�-���!��

&���%$!����!�!�

&��������)!�

=�%5�%(%&�������

5�!��!�>

� � �� � .� �� !�

�!%�5�!*-!�%!�&!$�+��!��(�!�

��-�!&!$!��!$����!*&!-�%���'�!7!��

����%�5��!'-!$�+%�%+%�!�!((!&��

��,���%�5�,��'$���7!��!'-!$

���!����� !��'$!���,!�!��'����((!&�!$

#�%%�����������:����&�����%�2����������������5����;�

�*��������2��������2��������%%���"

� � �� � .� �� !�

�!%�5�!*-!�%!�&!$�+��!��(�!�

��-�!&!$!��!$����!*&!-�%���'�!7!��

����%�5��!'-!$�+%�%+%�!�!((!&��

��,���%�5�,��'$���7!��!'-!$

���!����� !��'$!���,!�!��'����((!&�!$

#�%%�����������:����&�����%�2����������������5����;�

�*��������2��������2��������%%���"

@6L��!�-���!��

%�$%&��!$������

��!�!7!���,���

=��-�!&!$!��!$>

� � �� � .� �� !�

�!%�5�!*-!�%!�&!$�+��!��(�!�

��-�!&!$!��!$����!*&!-�%���'�!7!��

����%�5��!'-!$�+%�%+%�!�!((!&��

��,���%�5�,��'$���7!��!'-!$

���!����� !��'$!���,!�!��'����((!&�!$

#�%%�����������:����&�����%�2����������������5����;�

�*��������2��������2��������%%���"

?2L��!�-���!��

�%5�'%5����������%��

�.-!��(�!7!���%��

)!%�5�!*-!�%!�&!$�

+��!�(�!C�!��'.�

@6L��!�-���!��

%�$%&��!$������

��!�!7!���,���

=��-�!&!$!��!$>

���%�5!�&.�-'��

����%�5��.��!+

�%� ����!��+!���

���-��&!$��!��

20L��!�-��$!����

��7!���

��������� %��

-'�&!����$!�'�,%���

!*��!+!�!7!����

���%�5!�&.�-'��

����%�5��.��!+

�%� ����!��+!���

���-��&!$��!��

20L��!�-��$!����

��7!���

��������� %��

-'�&!����$!�'�,%���

!*��!+!�!7!����

��'.�?�

�!�-��$!���������(�

26���7!��''����!!�

-��&!$��!��%��

-'�&!

���%�5!�&.�-'��

����%�5��.��!+

�%� ����!��+!���

���-��&!$��!��

�� !���+!�+!���5!��M

� �*��!+!�!7!������!�!*-!&�!$����%�&�!��!�%��(�!C�!�&.���$�+�5�%��$!

� �!�%5�A�-!���%���'����!���'$��+�.�)!�!*&!!$!$"�%�&�!��%�5'.���$�-��!��%�''.�

&�������-�%&�''."�,%����%� �����)��%�!��"�'%(!"�-��-!��.���$�!�7%���+!��

� ?0L���$�20L��(����7!.��!�-��$!�����!-����!7!����,%���=�%5�%(%&���>����=&�%�%&�'>�

!((!&���%���!�+���(�$�,��%+!���$�$�+�5!��!�-!&�%7!'.�

� @6L��!-�������=��-�!&!$!��!$>�!7!��4�?2L���!��!!%�5�+��!�(�!C�!���!*��!+!�

!7!���

� ��'.�1@L��!�-��$!������7!����!*��!+!�,!���!���%� ����!��+!��"�&���%�5!�&.�

-'�����$�,���%�5��.��!+�%��-'�&!

� 20L��!�-��$!������7!����-��&!$��!��%��-'�&!����$!�'�,%���!*��!+!�!7!����

�� !���+!�+!���5!��M

� �*��!+!�!7!������!�!*-!&�!$����%�&�!��!�%��(�!C�!�&.���$�+�5�%��$!

� �!�%5�A�-!���%���'����!���'$��+�.�)!�!*&!!$!$"�%�&�!��%�5'.���$�-��!��%�''.�

&�������-�%&�''."�,%����%� �����)��%�!��"�'%(!"�-��-!��.���$�!�7%���+!��

� ?0L���$�20L��(����7!.��!�-��$!�����!-����!7!����,%���=�%5�%(%&���>����=&�%�%&�'>�

!((!&���%���!�+���(�$�,��%+!���$�$�+�5!��!�-!&�%7!'.�

� @6L��!-�������=��-�!&!$!��!$>�!7!��4�?2L���!��!!%�5�+��!�(�!C�!���!*��!+!�

!7!���

� ��'.�1@L��!�-��$!������7!����!*��!+!�,!���!���%� ����!��+!��"�&���%�5!�&.�

-'�����$�,���%�5��.��!+�%��-'�&!

� 20L��!�-��$!������7!����-��&!$��!��%��-'�&!����$!�'�,%���!*��!+!�!7!����

#'!��!��!'-����)���$!����!����7!.�)��!����

%�&'�$!�+��!�%�'��$�-�������$�,��!�,�.�M

���

���-��AA,,,B���7!.+�� !.B&�+A�A�� �*��!+!�!���!��7!���

�����5'!�=���7!.+�� !. �� �!*��!+!�,!���!��!7!���>

�!�'�� �(��,��$�����!&!%7%�5�.�����!�-���!�"�,�%&��,%''��!+�%��&��(%$!��%�'�

���� ��(���'%��!�%�5N

����������������

Accommodating climate change

uncertainties in option selection, design

and investment for resilient waterborne

transport infrastructure, up to and beyond

2050

Authors :

Laure Herbert, Jan Brooke, Monica A. Altaminaro

CLIMATE CHANGE – IMPACTS FOR INLAND WATERWAYS

2

For inland waterways, climate change is

likely to result in:

• Change (increases) in the frequency, severity

or duration of flooding; also sea level rise,

changes in estuarial currents;

• More prolonged or frequent high or low flow

conditions in the channel with potential

consequences for water supply or storage;

• Changes in sediment and debris transport,

erosion and accretion;

• Changes in visibility (fog); wind strength or

direction, water chemistry, acidity, salinity;

• Increasing air and water temperature

leading to changes in characteristic

species with consequences for river

bank integrity; algae or water weed

growth; and the spread of non-

indigenous or invasive species ;

• Changes in icing and snowmelt

characteristics;

Such changes can impact on:

• infrastructure integrity;

• affect navigational safety;

• lead to downtime;

• disrupt business continuity.

CLIMATE CHANGE UNCERTAINTIES – WHY AND WHAT IS THE IMPACT?

3

Time series of global annual mean surface air

temperature according to IPCC’s RCPs (Figure

12.5 from IPCC AR5)

Temperature projections vary from 2030

onwards, why?

• Inherent to climate change models;

• Effectiveness of measures to reduce CO2

emissions;

• Whether the political will will exist;

• Whether critical thresholds will be crossed;

Uncertainties in projections, consequences:

1) Design and operational parameters are

somehow linked to variation of

temperature. Uncertainties in

projections bring even more

uncertainties on the scale of the

impacts;

2) Increased likelihood and severity of

extreme events are more difficult to

assess;

CLIMATE CHANGE UNCERTAINTIES – WHAT DOES IT MEAN?

Return period : what will a 1:100 year event

look like in 30 years time?

Þ What is the impact into design/resilience

of infrastructure

Þ What/when is the impact in adaptation

needs?

Return period : what will a monthly event look

like in 30 years time?

Þ What is the impact in operations?

Þ What/when is the impact in adaptation

needs?

4

What if the ‘unthinkable’ happens: what would the consequences be?

How long before the benefits of adaptation measures are realised?

Þ Introduce uncertainties into

infrastructure design, adaptation

and investment decision making,

Þ Need to be able to accommodate

these uncertainties;

CLIMATE CHANGE UNCERTAINTIES – ACCOMMODATE THESE UNCERTAINTIES

Understand the vulnerability of the asset

/operations to a range of Climate Scenarios

To deal with uncertainties, take into account :

• A range of scenarios : from most likely to

worst case scenarios.

• The likelihood of more frequent/severe

extreme events.

Understand critical thresholds : how the

projected changes could affect the critical

infrastructure?

• Define acceptable risk;

• Understand existing/future adaptive

capacity adequate;

• Seek flexible adaptation measures;

• Understand the cost and

consequences of inactions;

How : Vulnerability Assessment –

PIANC WG 178 guidance comprises a

four stages framework

5

CLIMATE CHANGE UNCERTAINTIES – ADAPTATION PATHWAY

6

Þ Prepare an adaptation pathway

• Seek flexible and adaptive solutions;

• Likely to be phased;

• Operations require greater level of

contingency or redundancy;

• Resilient infrastructure with adequate

adaptation capacity and flexibility;

• Infrastructure and operations should be

designed to « fail gracefuly » rather than

catastrophically;

Adaptive management is an important

concept in effective climate change

adaptation.

To reduce the risk of maladaptation.

ie: implementing a measure that proves

inadequate or excessive. Do not want to

lock in to a single climate change

scenario

CLIMATE CHANGE UNCERTAINTIES – ADAPTATION AND RESILIENCEMEASURES

Adaptation measures :

Þ Structural/Non structural,

Þ At each step of the adaptation pathway,

Þ Not always about strengthening :

operational, management, maintenance

or structural measures

Þ Portfolio of measures – PIANC WG178

7

Box 18 The so-called Climate-Dike of the German Federal

State Schleswig-Holstein

CLIMATE CHANGE UNCERTAINTIES – MONITORING

Goals :

• Reduce uncertainty to inform decisions

on “when” action is needed;

• Facilitate selection of appropriate

mitigation measure;

• Understand the potential costs and

consequences of inactions;

• Support preparation of long-term

strategic plan and investment;

8

What to monitor :

• Condition and performance of physical

asset,

• Cost of damages and

downtime/disruption,

• Performances of already implemented

measures,

• Local hydro-meteorological data,

Þ site specific data will inform decision

making !

CLIMATE CHANGE UNCERTAINTIES – UNCERTAINTY AND INVESTMENT

Uncertainty related considerations :

• Cost of inaction to be understood

• Monitoring outcomes to help decisions

about “when” to invest => acceptable

risk thresholds to be defined

• Use of discount rate potentially increase

the risk of maladaptation

• Conventional cost-benefit assessment

or net present value calculations may

not adequately reflect the complexity of

climate change

• Multi criteria, decision tree analysis can

help avoid maladaptation

9

CLIMATE CHANGE UNCERTAINTIES – TAKE HOME MESSAGE

• Understand your asset and

operations;

• Assess the vulnerability for a range

of scenarios;

• Use sensitivity analysis;

• Seek flexible and adaptive solutions;

• Explore less conventional

assessment and evaluation

methods;

• Understand the costs and

consequences of inaction;

• Prepare adaptation pathway plan;

• Avoid maladaptation;

• Monitor and adapt;

• Expect the unexpected!

10

LAURE HERBERT

[email protected]

������ ������ ��������� ��� ����� ����������������� ������

��������

������ �� ���� �!"����#���$!��%

��&�'�(��)���*++��),*'

)-���,.����*+�),*'�/ +0*'

URBAN WASTE COLLECTION

The river solution – Lyon

2

François Pyrek

Regional Director SUEZ Recycling and Recovery

Wood

Paper-Cardboard

Metal waste

Furniture

Electrical Equipment

Bulkky waste

Textile

Household chemical waste

Since December 2016 Saône River – Saturday 9h-17h

Operational / Technical Partners : Financial partners :

Situation before December 2016

4 I

Using the river to provide a proximity service to the

inhabitants of Lyon

� 1,3 Millions p.

� 19 Waste collection points and only 2 for downtown (500 000 p.) : Lyon 7 and Lyon 9

� Quantity of waste received by these 2 waste collection points = 2 x acceptable quantity

=> Saturation

� Important collection of wild waste deposit

� Impossible to build a new waste collection point downtown (no land)

YOU ARE HERE

RIVER’TRI

Building the partnership : a key success factor

5 I

� 4 technical partners committed in the Project :

o SUEZ : Leader of the consortium ; Waste recycling and recovery operator

o CFT : River transportation operator

o CNR : France leading producer of 100% renewable electricity

o VNF : the french navigation authority responsible for the management of the majority of

France inland waterways

� 5 financial partnerships the Project (Budget = 2,4 M€ over 2 years experimentation) :

o European Union

o ADEME

o VNF

o Auvergne-Rhône-Alpes region

o Métropole de Lyon

Innovation

6 I

Results of the 3-Year Experimentation and next steps

7 I

Use of the service :o > 100 p./day

o Geographical origin < 2 kms

o Ways of transportation to reach the collection point : foot, bicycle (50%), car (50%)

o 300 t for 50 opening days per year

Answers to the Environmental Issues :o Reduction of the traffic by car

o Answer to the objective of 25% of modal shift

(Energy Transition Law)

o Increasing of the waste valorization ratio for Lyon

o Reduction of the traffic in the other waste collection points

Next steps :o Opening of news service days

o Opening of new waste collection point on the river (Rhône or Saône)

o Opening of the service for other types of waste (waste from urban cleaning activities for

example, commercial and industrial waste of waste from the touristic boats)

o Implementation of an electric motor for the pusher (PROMOVAN project)

QUESTIONS?

Operational / Technical Partners : Financial partners :

������������� ���������

���������������������

�������

������������� ���� ��!" �������

��!�����#�

$���%� ���������� ���&����! !'��

����������������� ������������ �

��%%!�(

����!�)������*�#� +!## �"��!��� ! ���#�'

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

� �"�#�� ! �%!� ��**���"���# ���� ' �� #�������

,

���&���"��!���

-

!%*!����( �*�!�)������

����!�)������*�#�+!##�"��!��� ! ���#�'

����!�)������ *�#�+!##�"��!��� ! ���#�'

����!�)������*�#�+!##�"��!��� ! ���#�'

.

����!�)������ *�#�+!##�#!��%+"�/�� #�������

�� #�#�� '�*#�)��!"�"�%� �!�(�� #������� #

����!�)������*�#�+!##�"��!��� ! ���#�'

0

�+��!�� '+�� ��+"��*���

*�#�+!##��+! ���1

����!�)������*�#�+!##�"��!��� ! ���#�'

2

���� ��! ���*���*�#�+!##�#%!��3(!

#� '�"!��� #������� 1�����#�!""��

��""���� ''!""��(4

���##���������#"��!���������"(� *�� ��*

����/�#�� '�!%5!�����/���*���

�"������!"'���+#4

���##�++�����3(����� �����#��������

!3�)�����"������!"'���+#4

���*'���+#

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

��)� ��#"��!��� ! ���#�/+�#���5����� #������� �*���%!� �"�%� �#�*���

+��&�����6�����#+���!"���� �6��#��%3� � '3���#+���!"�7��%!�� �! �

#�3%!�� �1��8#4

� !������ 5���#�� #������� �!���3��� �����������/�#�� '1������

3�� '� '!������ !"#�"����!��� #4

� #+����3(+���!#��� �����%�����#5�����%+! (9�����#�����)�"�+!

� �)!��)�#�"���� 5� ��'�!�� '!""����� #��!� �#�*���+��&���5 !%�"(�

� � )��� %� �!"�� #��!� �#

� �+��!�� '�� #��!� �#�*����(����"������+"! �4

� �������(�� #��!� �#

:

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

�����%+! (+��+�#����%� �%�7�����%+!���*����� #������� � ��� !���!"

� )��� %� �3("�%��� '#�3�!6�!���1��8#! �3��"�� '���'!""��(#��"�����*��%

!*"�!�� '��**���!%� !��(���8� ���� ��#���!"#����*��������5� ���"�*�

3! 8�*������ �4

;

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

<

+"! #�*��**���!%#��6�����*�����

�� #������� �*����� �����#��������

� #�������

�*��**���!%#

��������

#���

=>

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

==

�/���*���*"�!�� '��**���!%#

*��%�����(���8�*���

��������#���

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=,

*"�!�� '��**���!%#+!��3��1�� �����������#���! �

����!�)�������!%�%�����! =>>8%! �."��8#4

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=-

��#���� � ' ! �'��� �� '��� �%3��,

��**���!%

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=.

��#���� � '

! �

'��� �� '

��� �%3��

=��**���!%

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=0

��� *������� �����#���������*

�����""���� ''!""��(!*���#����

+�"�����**

� �"�#�� #�

�!� ��**���"���#�

&� ���� 3��1�� ���3�����**���!%#�

=2

���#&� ���� ��6����#��**���"���)��

1��8#3�*���+�%+� '������ 1!���

� #�����**���!%#

����������������������������

=:

������������� ���������

���������������������

�������

������������� ���� ��!" �������

��!�����#�

$���%� ���������� ���&����! !'��

����������������� ������������ �

��%%!�(

����!�)������*�#� +!## �"��!��� ! ���#�'

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

� �"�#�� ! �%!� ��**���"���# ���� ' �� #�������

,

���&���"��!���

-

!%*!����( �*�!�)������

����!�)������*�#�+!##�"��!��� ! ���#�'

����!�)������ *�#�+!##�"��!��� ! ���#�'

����!�)������*�#�+!##�"��!��� ! ���#�'

.

����!�)������ *�#�+!##�#!��%+"�/�� #�������

�� #�#�� '�*#�)��!"�"�%� �!�(�� #������� #

����!�)������*�#�+!##�"��!��� ! ���#�'

0

�+��!�� '+�� ��+"��*���

*�#�+!##��+! ���1

����!�)������*�#�+!##�"��!��� ! ���#�'

2

���� ��! ���*���*�#�+!##�#%!��3(!

#� '�"!��� #������� 1�����#�!""��

��""���� ''!""��(4

���##���������#"��!���������"(� *�� ��*

����/�#�� '�!%5!�����/���*���

�"������!"'���+#4

���##�++�����3(����� �����#��������

!3�)�����"������!"'���+#4

���*'���+#

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

��)� ��#"��!��� ! ���#�/+�#���5����� #������� �*���%!� �"�%� �#�*���

+��&�����6�����#+���!"���� �6��#��%3� � '3���#+���!"�7��%!�� �! �

#�3%!�� �1��8#4

� !������ 5���#�� #������� �!���3��� �����������/�#�� '1������

3�� '� '!������ !"#�"����!��� #4

� #+����3(+���!#��� �����%�����#5�����%+! (9�����#�����)�"�+!

� �)!��)�#�"���� 5� ��'�!�� '!""����� #��!� �#�*���+��&���5 !%�"(�

� � )��� %� �!"�� #��!� �#

� �+��!�� '�� #��!� �#�*����(����"������+"! �4

� �������(�� #��!� �#

:

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

�����%+! (+��+�#����%� �%�7�����%+!���*����� #������� � ��� !���!"

� )��� %� �3("�%��� '#�3�!6�!���1��8#! �3��"�� '���'!""��(#��"�����*��%

!*"�!�� '��**���!%� !��(���8� ���� ��#���!"#����*��������5� ���"�*�

3! 8�*������ �4

;

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

<

+"! #�*��**���!%#��6�����*�����

�� #������� �*����� �����#��������

� #�������

�*��**���!%#

��������

#���

=>

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

==

�/���*���*"�!�� '��**���!%#

*��%�����(���8�*���

��������#���

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=,

*"�!�� '��**���!%#+!��3��1�� �����������#���! �

����!�)�������!%�%�����! =>>8%! �."��8#4

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=-

��#���� � ' ! �'��� �� '��� �%3��,

��**���!%

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=.

��#���� � '

! �

'��� �� '

��� �%3��

=��**���!%

�����""���� ''!""��(�!)��(#+���*���� #������)�%���

=0

��� *������� �����#���������*

�����""���� ''!""��(!*���#����

+�"�����**

� �"�#�� #�

�!� ��**���"���#�

&� ���� 3��1�� ���3�����**���!%#�

=2

���#&� ���� ��6����#��**���"���)��

1��8#3�*���+�%+� '������ 1!���

� #�����**���!%#

����������������������������

=:

Justification

2

Main objectives

• To propose a pragmatic transnational quantitative sediment monitoring

network

• To establish for the first time the sediment budget for the Danube River

considering the input of the most important tributaries as well,

• To identify reaches with surplus and deficit, river bed aggradation and

degradation, sediment-related problems in flood risk management, hydropower

generation, navigation, ecology

• To gain knowledge and better understanding of sediment transport and

morphodynamic processes in the Danube River

• To develop a Danube Sediment Management Guidance (DSMG) and a related

Sediment Manual for Stakeholders (SMS)

About the DanubeSediment project

Project structure

4

• WP1 → Project management

• WP2 → Communication

• WP3 → Collection of sediment data

Collecting all available sediment related data

• WP4 → Danube Sediment Balance

Analysis of data and identifying problems

• WP5 → Impacts and Measures

Elaboration of possible answers to sediment related

problems

• WP6 → Danube Sediment Management Guidance

Status of sediment measurements along the

Danube

5

• Suspended sediment monitoring stations

46 monitoring stations

Duna-menti helyzetkép

6

Duna-menti helyzetkép

• Görgetett hordalékmérő állomások

7

The status of sediment monitoring and

recommendations for development

• Collection of different

sediment monitoring techniques

on the Danube

• Good practices

• Recommendations for the

good practices of sediment

monitoring techniques

Analysis of suspended sediment data

~60% decrease

Analysis of sediment budget

• Collecting data for establishing a sediment budget

• Investigations - sediment balance

• Long term data analysis

Example from the

Rhine river:

Frings et al. (2014)

– Aachen University

Changes in the width of the river

river km section

reference

conditions:

average

historical

channel

width in

section (m)

average

present

channel

width in

section

(m)

2588-2225 DE 195 157

2225-2202 DE/AT 285 278

2202-1880 AT 488 318

1880-1872 SK/AT 511 287

1872-1850 SK 613 313

1850-1708 SK/HU 744 404

1708-1433 HU 614 485

1433-1295 RS/HR 622 465

1295-1075 RS 782 763

1075-845 RO/RS 779 989

845-375 RO/BG 1005 977

375-0 RO 738 636

Changes in the length of the river

reach country from rkmto rkm confinementriver type type_no length change (km)

upper DE 2585 2498 auc single-thread meandering 14 -42,4

upper DE 2498 2471 auc transitional wandering 11 -3,8

upper DE 2471 2433 auc multi-thread anabranching (high energy 10 -7,6

upper DE 2433 2420 auc transitional wandering 11 -1,3

upper DE 2420 2415 ac single-thread plane bed 6 -0,3

upper DE 2415 2315 apc single-thread meandering 14 -8,4

upper DE 2315 2281 auc single-thread sinous 13 -0,5

upper DE 2281 2258 auc single-thread meandering 14 -2,0

upper AT 2258 2195 apc single-thread sinous 13 -0,1

upper AT 2195 2160 ac single-thread plane bed 6 -0,2

upper AT 2160 2144 auc multi-thread anabranching (high energy) 10 0,2

upper AT 2144 2135 apc single-thread sinuous 13 -0,6

upper AT 2135 2082 auc multi-thread anabranching (high energy) 10 -7,1

Changes in reservoirs

• Aschach

(((((Sourcecece: H. Habersack)

Significant pressures collected from

sediment point of view

Against

sedimentation

Anti erosionCatchment area

Reservoir

Free flowing section

Embankment area

Technical

measures

Administrative

measures

DRIVERS

Assessment of good practices and potential

measures

Factsheets about measures

NAVIGATION N 1

Location River banks / near bank zone

Free flowing section

Gravel and sand bed river

Main aim Reduction of river bed erosion

Reduction of bed shear stress and sediment transport capacity

water level M water level increase at low flows

flow velocity M decreased flow velocity*

shear stress H lower shear stresses*

transport capacity M decrease of transport capacity*

continuity L

Morpho-

dynamicsM less degradation in main channel*

Ecology M

Type of measure non-recurring recurring

state of the art state of science

local scale sectional scale river basin scale

upstream effects downstream effects

temporal short-term mid-term long-term

Flood protection Hydropower River basin management incl. eco logy

H construction L maintenance

Monitoring of sediment transport, bathymentry, morphology, side erosion, flow velocity pattern

Numerical simulation of sediment transport and morphology

Length, spacing, height determining effects

Scouring effects

Bank restoration (R1), chevrons (N2), side-arm reconnection (R2)

Sediment-

dynamics

Eff

ect

s

groyne field: incresed flow velocity diversity, improvemnt of habitat diversity,

minimized aggradation

Ass

ess

me

nt

No

tes

/ R

isk

s

Side erosion of river banks

Interrelation with

other measures

*depending on groyne height, orientation, spacing

Categories

Sca

lin

g spatia l

Interrelation with

Costs

Improvement of navigability (increase water depth at low discharges, reduce maintenance dredging)

Fixation of the navigation channel / fairway

Protection of banks at outer curves

influence

Hydro-

dynamics

Measure Reduction of existing groynes

Application

Parameter

Go

als

of

me

asu

re Sediment

Reduced bed erosion due to reduced bed shear stress in the main channel

Less sedimentation in the groyne field

Increased sediment input due to side erosion in combination with bank restoration

Navigation

L low

M medium

H high

NAVIGATION N 1

negative:

positive:

Variation of groynes:

- shortening

- lowering

- change of orientation

- increase of spacing

Examples

Measure Reduction of existing groynes

ReferenceIREP - Integrated River Engineering Project on the Danube to the East of Vienna (viadonau & DonauConsult, 2009)

(http://www.donau.bmvit.gv.at) (Danube/AT)

Groyne

Main channel Dyke

Dyke

Single object

Floodplain floodplainMQNQ

before after

(viadonau) (viadonau)

Danube Sediment Management Guidance

• Statement of problems and needs

• Suggestions for improved monitoring and data

management

• Sediment budget

• Practical measures

• Key question –

Significant Water Management Issue

• Recommendations

Sediment Manual for Stakeholders

• Introduction and background

• Situation concerning sediments at the Danube River

– Sediment monitoring

– Sediment transport

– Sediment budget

– Risk analysis of the current status

– Sediment related measures

• Good practice examples for sediment

management measures

– Hydropower

– Navigation

– Flood risk management

– River-basin management incl. ecology

Thank you for your attention!

• Barbara Kéri

[email protected]

• +36 30 275 2655

�������� �������� ������������ ���������������������������� ����������� ��

���� !"�� ���#$%�$�$" &���&�����!"�'�$!������('� �!���!()�

�����������

���� ��� �� �����

��������� �� �� ������� ����� ������ ��� � ������������� �������������������������������������������������

��������

� ������ � !

� �"#������ ����$��%&

� ��������� #'�������($�)����������*��������$��%&

+,�)! �!#�-���� .�������� ��������� /������������ ��������� ���� ��*�������������$

0!�1��������� �������!�1��� ������� ������

�����

����������������� ��������������������� �� ��

������������

���

.���2����2���� 2/�������

�� �� ��

����

!� �"�#��������������� �����������

��������������3��������������

������������������2���������� ��������

��������

4���������.�����������

�������������������������

�����������������2���������������������

����������

���������/������2�������

������������������������������������

�������������

���� ���������������������������2

��������������������������������������

�����-�

5��������������*�����������������������

���������������������������������������������������-�

��������

*��������6�7������� ����

������������������������������������������������������ ���������

���������2��������������������������

�����������6�.��-�����������/����������

�����������������������������������������������������-�

�����������������

$��#���� ���� �����

%�� �� ������� �� ������

����������8�������

������ ���������������������������������������������2����������9 7���������������������������������������������9 .��� ��������������������������������������-������������������� ���������� ���:�������������

&��#����'���������� �' ������ (��������)����

� %��� ������������������� ;������ �����������������������������-�������������������

4���������������9 /�������������������������������������������������� ����������������������������������� ������-����������������

*�����������������9 ������������������������������������������������������*<������5������-���������=>����*������������7������������� �0,

�.����������������

�����������

����������8�������

� 8������������������������� ;����������� ����-��� ����������������������

� 5���������������������;������������������������;���

� ���������������������������������=���������������������$,

� 7��-�������������������

� ��������������������������������������-������

8�������8�������

� 8��������������������=�����������������������������������;���,���������������;������;��

� 5�(� ���������������������-�������������������������������������������������������������������-�

� *��� �����������������������? ������������������������;���������;��

*�#� � ������������� '�+�*�� '����� �,�(��#���

������������

��������� ������ �������� =7����2-��#@# � �? #'0��0,

A� ���� ����������B��

& ���� �+�% ��� ���&���' � ��

��������� ���

8���������� (����� �����8���������� (����� �����

A�2���� ���������

A�2���� �������� �� ���

������������������ ����

& ���� �+�-#����.������#��/ ���

7�� �������������������������7����2�����������

.��� ��-�����������C��2�������������� 7����������������

D�����:������������������������E���F������������������GC��F���������������������� �������������

7��2 2��������������������� ��������

7����2�����������������������������������������������������������������$

������������

H-#����.�����������������������

�� #!

A����-� �����I�JK

0!�$LLL��J����)�����! $'#!��J������

�� #0

�� #'

�������� #'

������� #@6� �

���������������������� #L2� #"

C��2��������������

�� #'

������������

-#����.�����������������������

��������������� �������

����������������������������������������

�����������������������������

���������������������������� ����

��� �� �������������������� ������

����������������������������

�������������� ������?���������������������������������� �������������������������

��������������������������

� !��������������������

"� ��������������� ���

��# $�����"%&"

������������

.���� ��- ���������

A2���������

4�������

-#����.�����������������������

/������������ 3������2���:������������������:�������������������

$�������������01�� �� ��2$� ����'������������������'� 3����� ��'��� �

� ������������������������������� ��������������������������� �����

=������ ������ ����������,� ����2-��#'@"��� �����! $ ��J������������

������������������ ����������������-���5 ����2������� #'� ������������������

�������������

1�� ������ � ���������

M���� ��� ���� ��� M���� ��� ������������������ ��� ���������� ����

���:������� ��� ���:�����������

%�� ������ ���� �����

M���� ��� ���� ��� M���� ��� ��������

��������� ��� ��������� ����

)�������4*5 �4�� ��)����

7����������� %�����2.��� ����

7�������� ��� ���

.���� ��-����������

%��� ���

%�����.��� ����

D���6�����*�-������

7���������

3������

A�����$28��� ���

61*578�,94$

� 8�������27����-������������ �)�!�-�������������������������=#L�-�����8<�,� L�-������� ��-�������������=8<�,� >�����8����������C�5*�����������

7��� ��� #@

������������

C�������������������$����/����������������������������� ����������������=���������������,$

� ��������������������� =������������-�,���������������������������6�����������������=�������� �����6����������-���������������������,

� 5�(� ����������������������������������-��������������������������������$

� D�����:������3��;�����C���������������;���������;���=����:����������������������������������������������,

� ����������3��������C��������������������������

3������������

� 7�����������������6������������=�������������������� ���������,

� 5�(� ��������������������������6�(�������= �������������������,

% ����'��#���04 �����'�%��� �2

�������������

%��� ���� ��5�������7��-������5������������������������������������������-������$

� ������������ ����������(������������������������ #�2� #!

9 3���� �����������������������������������������������������$

9 ��������������������������������������������������������������$

8������� �����6�7��-�����������������������9 L������������6�����������������9 "������������������4>D�9 #���������������4��������3��-�9 #����������������/3�.9 ��������

�������������������������������������� �����

������ ����� %����� � #0

����������� �� � #'

� !����������������������:��� ������" 1�����������������������������

� �����������������������������������������������������������

� 8������������������ ������������������������������������ ���������������������� �L 1

)� ������ ��� �:

�������������

.� ����N>*C%�������������������.����*���������3��;��

��OL)�! �L)�#2�"#��� ��$����P��������$��������2/��27���Q�#��#�� ��������8<7�.�8

���$� ����2�����������$�����$��������$���

$������

7����������������� M���� 8��

������������ ��� �����

������� ������������

����� �� ���������

�����������������

������� �

��������� ��� �������� !"#� ����������!$�"#���" $!%�&�

��'��

�"�&(�

��)"&��!�&��'�*"+��& $��,����"

� ��-�"-&++!�".���'&��+!"-&�/012

� ��-� !"��,�/3�'&�&��4$&"�+�5

/1���'� ��!-��& -�&+

� 1167$��,�*!'&.8 �8&�* �&�* �

�"�&(�

++�&+�-�"-&�"!"8� �

� ��*��+&"!"8��,�9��'+

� � !"�&" "-&��,��4:$ ��" �!8 :�"�-�"'!:�"+

� �;+�, -!�!:&+�+ ,&��

� !"�8� �+��,���&�+��'�

� �" ��+!+��,���)"&��!�&��<&'�&����:�"+

� �44�!- :�"���� ��!++�&+

� +&-��&�9��'�9�*�+&-:�"+

� $ !"� !"���&�8� � "�&&'�, !�* �

�"�&(�

� ���$&��!-�$& +��&$&"�+

� ����&��*!�����'��8� 4�!-�<� ��=��>'>�!-��!+�� �?

� �$4�&$&"� ���$& +��&$&"�+�<�� �;+��&��!���! ��

�!�!+!�"+��& $+

��>'>�!-��!+�� � �&��!���! ���!�!+!�"+��& $+

��'��$��4����8!- �� " ��+!+

�" ��+!+��,���'� ��!-��& -�&+�!"�1�+�&4+�

� � � -�&�!@ :�"��,�-�"����� "'��&+4�"+&�� �! <�&+

� ������������� ��������������� ����

� '&":A- :�"� "'�� "7!"8��,�'!+���< "-&+

� ������������ ������������������������

� �$4 �!+�"��,�< ���$&��!-�+���&�+�,� $!"8�& -��4&�!�'

� ������������������������

��'��$��4����8!- �� " ��+!+

�&A"!:�"��,��& -�&+�*!�����$�8&"&��+�<&� �!���+

� ���!"8�&!��&��B'!+���<&'C����B�"'!+���<&'C�4&�!�'+

� ��&��$!'5��"8��&�$�4&�!�'

�!+:"-:�"�<&�*&&"�!"!: �� 'D�+�$&"�+� "'�-���&"��

+&'!$&"��'�" $!-+

�44�!- :�"���� ��!++�&+

�&-��&�9��'�9�*�+&-:�"+

� '&":A- :�"��,� 88� '!"8#�

'&8� '!"8� "'�+� <�&�+&-���+

� �E&-�+��,�&����:�"���&"'+��"�

9��'�9�*�+&-:�"+

�44�!- :�"���� ��!++�&+

� !"� !"���&�8� � "�&&'�, !�* �

� � @ �'�F�&����:�"���&"'+��"���&�, !�* ��&(�&"�

� ���"&� <!�!���F��&!8����,��"'&��7&&��-�& � "-&

� �!+7�F�"�".-�$4�! "-&��,�8� � "�&&'�$!"!$�$�'&4��

�44�!- :�"���� ��!++�&+

� !"� !"���&�8� � "�&&'�, !�* �

� �

�&+���+�G�&(4&-� :�"+

��)"&��!�&��'!�!'&'�!"�1�+&8$&"�+�'�*"+��& $��,����"

� �&�*&&"�� )"&��!�&�� "'�+H�&��!�&��-�"9�&"-&+

� ��*�+&'!$&"���� "+4���

� �$&���+�B�&&,+C� "'��!�&�<&'�+!"��+!����&+�� !"!"8���&�, !�* �

� �&�*&&"�+H�&��!�&�� "'���'H-�&��!�&��-�"9�&"-&+

� � !"�!"9�&"-&��,�+&'!$&"��+��!-!"8

� � � "-&'�+&'!$&"���� "+4����!"�$!'5��"8��&�$

� ��*"+��& $��,���'H-�&��!�&��-�"9�&"-&

� ��<+� ": ��* �&�� "'�+&'!$&"��!"4��+�,��$���!<�� �!&+

� �� '� ���&'�-!"8��,���&�+��4&

� �88� ' :�"���&"'+�!"��&+&���!�+

�&+���+�G�&(4&-� :�"+

�4&-!A-�<&� �!����,���&�&����& -�I�*!���,&*�-�$$�"�

,& ���&+�

� ��&� ���+� <!�!����,��& '� -&� "'�� !�� -&

� "9�&"-&��,��!�&�.�� !"!"8�+���-���&+�!"�<�4 ++&'��& -�&+

� �88� ' :�"�'�*"+��& $�<�4 ++&'��& -�&+

� �4+��& $�< �� 8&+���$ D��� 88� ' :�"�<���� ��!"8�

+&'!$&"��&� -� :�"�- 4 -!��

�&+���+�G�&(4&-� :�"+

��� '&���!+!�"����!"-��'&����&��!++�&+

� �&+��� :�"��,�+&'!$&"��'�" $!-+��"�<�4 ++&'��& -�&+

� � $�8 �&+��&�! <!�!���!$4 -�&'�<���4+��& $�'&4�+!:�"

� �'D�+�$&"�+����8� � "�&&'�, !�* �

� � " 8&$&"���,�-� �+&�+&'!$&"�+�8&"&� �&'�<��'�&'8!"8�

�4&� :�"+

�4&� :�" �� 44�!- :�"+

� '&":,��4�!��� �& +����$�"!���� J&�� �$ D���9��'

� ��!'&� 'D�+�$&"�+��,���&�8� � "�&&'�, !�* �

� ��- �&�+�!� <�&� �& +�,���'�&'8&.+4�!��'�$4!"8

Author : Villalba, SebastiánHidrovía SA

Arcelus, AlejandroNardín, Alejandro CARU

Use of hydrodynamic models for

decision-making in dredging works.

Uruguay River waterway case (Argentina)

INTRODUCTION

Motivation

Smart Rivers Conference – Lyon 2019 - PIANC

• Size of rivers on South America

• Low regulation levels

• Limited budget to invest

• Several channels available to develop a waterway

Best alternative selection increases the technical and economic viability and

sustainability of the worksPANAMAX (L=229m) in Km 400 Paraná-Paraguay

Waterway(~650 km from Atlantic ocean)

Smart Rivers Conference – Lyon 2019 - PIANC

INTRODUCTION

Study area

• Uruguay River

• Basin area: 370,000 m2

(Uruguay, Brazil and

Argentina)

• Av. Flow: 5,500 m3/s

• Max. Flow: 30,000 m3/s

• Geo-political limit

between ARG-URU

• KM 125 to 135 of

Uruguay River waterway

INTRODUCTION

Objetive

Smart Rivers Conference – Lyon 2019 - PIANC

Determine the appropriate location of the channel in a 15 km section of the Uruguay River waterway, where

two alternatives were available: Filomena Channel and

El Burro Channel

Filomena channel (red) and El Burro channel (green)

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

• Collection of basic information

• Capital dredging volumes

• Mantenance dredging volumes

• Costs

• Alternative selection

Grid and DTM

Soil parameters

Boundary conditions

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

• Designed channel dimension- Design Vessel: PANAMAX (224m x 32m); Draft: 23’ (7.01 m)

- Reliability level of 92.5%

• Bathymetric information- Nautical charts 1: 40,000 SOHM (2002)

- Digital charts 1: 5,000 DNVN (2006)

- Detailed Surveys (CARU)

• Soil studies

• Hidrometric registers

- Discharge rate upstream

- Water level downstream

• NO SEDIMENTATION RATE INFORMATION!

Basic information

METHODOLOGY

Capital dredging

Smart Rivers Conference – Lyon 2019 - PIANC

• Detailed surveys

• Channel design geometry

METHODOLOGY

Maintenance dredging

Smart Rivers Conference – Lyon 2019 - PIANC

1-D model Hec-Ras 3-D model Delft3D

Models used

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

• 15.5 km modeled reach

• Medium grid resolution:

20 m x 100 m

• More tan 10,000 points

surveyed between 2013 and

2016

Grid and DTM

Maintenance dredging

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

• Sedimentological equations used by the

model were valid to the modelled river

reach (L. Van Rijn)

• Medium grain size 280 μm

• Variable Manning number in the

section

Parameters

Maintenance dredging

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

Basic information shows wide flow

variation.

30 years of flow data record of

Salto Grande Dam

Boundary conditions: upstream condition

Discharge permanence curve

RangeRiver Discharge

(m3/s)

Average

(m3/s)

Permanence

(%)

Partial permanence

(%)

Partial permanence

(days/year)

1 0 - 5,000 2,300 100 61.17 223.27

2 5,000 – 7,500 6,255 38.83 18.01 65.74

3 7,500 – 9,000 8,123 20.82 5.84 21.32

4 9,000 – 11,000 9,953 14.98 5.16 18.83

5 11,000 – 13,500 12,095 9.82 3.9 14.24

6 13,500 – 18,000 15,351 5.92 3.42 12.48

7 18,000 – 30,000 22,212 2.5 2.5 9.13

Maintenance dredging

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

1-D model of 3 rivers (Uruguay, Negro and Gualeguaychu)

with more than 130 cross-section surveyed in 350 Km.

With calibrated model, a 13-month simulation was carried

out in which there was a large temporal variation of flows,

with flows maximum of 25000m³/s

Boundary conditions: downstream condition

Maintenance dredging

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

Longitudinal

Transversal

Maintenance dredging Simulations out-put

METHODOLOGY

Smart Rivers Conference – Lyon 2019 - PIANC

Sedimented volumes (m³/año)

Rango 1 2 3 4 5 6 7 Total

Pa

so

El Burro 0 1,327.25 1,581.83 5,868.81 7,356.22 14,753.41 25,205.28 56,092.8 56,092.8

Filomena Inferior 0 0 80.88 408.62 3,806.76 14,312.45 33,920.05 52,528.76

104,411.93Filomena Medio 0 0 0 73.36 147.86 570.56 3,810.57 4,602.35

Filomena Superior 0 645.26 1,058.63 2,639.93 4,443.98 10,982.81 27,510.21 47,280.82

Maintenance dredging Volumes resume

RESULTS

Volumes calculated

Smart Rivers Conference – Lyon 2019 - PIANC

Dredging area Capital volumes (m3)Mantenance volume

(m3/year)

Filomena Inferior 117,394.6

455,596.2 104,411.9Filomena Medio 269,606.3

Filomena

Superior68,595.3

El Burro 570,877.5 56,092.8

RESULTS

Costs

Smart Rivers Conference – Lyon 2019 - PIANC

0 5 10 15 20 25

Co

st

Year

Costs per alternative

El Burro

Filomena

33%

The most cost-effective alternative was El Burro Channel

Net present value

CONCLUSIONS

Smart Rivers Conference – Lyon 2019 - PIANC

In June 2018 capital dredging works at

25’ depth in El Burro Channel were finished.

For this purpose, a 3500 m3 TSHD was

employed and more than 500.000 m3 were

removed.

• The application of hydrodynamic models

allowed to have a decision making tool in

a new dredging work where there were

no previous sedimentation data.

• The next years maintenance volumes

should be considered to improve the

performance of the mathematical model,

and adjust the results of the

sedimentological module.

• Altogether with navigability convenience

of the channel, El Burro was chosen.

Thank you very much for

your attention!

Questions?

Smart Rivers Conference – Lyon 2019 - PIANC

Gensheng ZHAO

Paul VISSER

SEDIMENT TRANSPORT IN MIDDLE AND LOWER

YANGTZE RIVER AFTER THREE GORGES DAM,

CHINA

September 11, 2019

2

Contents

• Introduction

• River Regime

• Field Survey

• Numerical Model

• Conclusions

3

Length: 6,418km

River basin: 1/3

China’s Area

Introduction

4

Start in 1994

Completed in 2006

Length:2,335m

Dam Top: 185m

Maximum Water

level 175 m

Concrete

27.2 billion m3

Steel

463,000 tons

Introduction

5

Water Volume:39.3km3;Water Surface:1,045km2; Flood Area: 632km2; People Relocated: 1.3M

Introduction

6

Introduction

7

0

5000

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (month)

Dis

ch

arg

e (

m3/s

)

140

150

160

170

180

Wate

r L

evel

(m)

Pre-TGD Discharge

Post-TGD Discharge

175~155~145m Scheme

Sketch of Discharge Process and 175~155~145m Scheme

Introduction

September 11, 2019

8River Evolution due to disturbance

2000

7000

12000

17000

22000

27000

32000

0 2 4 6 8 10 12

Time (Month)

Dis

ch

arg

e (

m3/s

)

2001

2002

2003

2004

2005

2006

2007

2008

Multi-year

Average

0

10

20

30

40

50

0 2 4 6 8 10 12

Time (month)

Se

dim

en

t tr

an

sp

ort

ra

te (

ton

/s)

2001

2002

2003

2004

2005

2006

2007

2008

Multi-year

Average

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 2 4 6 8 10 12

Time (month)

Se

dim

en

t c

on

ten

t (K

g/m

3)

2001

2002

2003

2004

2005

2006

2007

2008

River Regime

9

( ) ( ) ( ) tan minm s cv c bv b s gP QUJ Q S S Q Ug g g w w g g x f= - - + - - =

Q BhU=

yR

U A RJd

æ ö= ç ÷è ø

1.543

0.053U

Sghw

æ ö= ç ÷

è ø0.832 1.468

1.083 1.3380.344( )

( 1) ( 1)

c

s s

U UhJ

dgd gd

wx

g gg g

-é ù é ùê ú ê ú-

= ê ú ê úê ú ê ú- -ê ú ê úë û ë û

River Regime

10

River Regime

11

Thalweg and topography of Shashi Reach in October, 2001

Juzhang River

Chenjiawan

Taipingkou

Hudu River

Zhanghe River

Dike

N

Thalweg

40m

Waterside

35m

30m

25m

20m

Legend

15m

2km10

Scale

Xuetang Shoal

Shashi City

Guanyinji

Beizha

Erlangji

Liudaxiangji

0m

5m

10m

Sanbatan Shoal

Field Survey

12

Thalweg and topography of Shashi Reach in October, 2018

Sanbatan Shoal

Field Survey

13

Hukou

Mathematical Model

14

QiLi

Lake

West DT

Lake South Dongting Lake

East

Dong

Ting

Lake

Poyang

Lake

Qing River

Taiping Ouchi

Chaowei river

Chenlingji Jiujiang Hukou

ShashiWuhan

Han River

Datong

Xiu

Gan

Fu

Xin

Rao

XiangZi

Yuan

Li

TGP

Yangtze River

GZ Dam

Songzi TiaoXuan

Calculated Range of 1D River Net Model

Mathematical Model

September 11, 2019

15

0

0.2

0.4

0.6

0.8

1

1.2

Pre-

TGD

10 20 30 40 50 60 70 80 90 100

Time (Year)

Sed

imen

t C

on

ten

t (K

g/m

3)

Yichang Gauge Station

0

0.2

0.4

0.6

0.8

1

1.2

Pre-

TGD

10 20 30 40 50 60 70 80 90 100

Time (Year)

Sed

imen

t C

on

ten

t (K

g/m

3)

Shasi Gauge Station

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pre-

TGD

10 20 30 40 50 60 70 80 90 100

Time (Year)

Sed

imen

t C

on

ten

t (K

g/m

3)

Hankou Gauge Station

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pre-

TGD

10 20 30 40 50 60 70 80 90 100

Time (Year)

Sed

imen

t C

on

ten

t (K

g/m

3)

Datongi Gauge Station

Mathematical Model

16

Accumulated deposition in different sections of the middle reach

of the Yangtze River

Mathematical Model

17

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 10 20 30 40 50 60 70 80 90 100

Time (Year)

Co

mu

lati

ve D

eg

rad

ati

on

an

d A

gg

rad

ati

on

(B

illi

on

ton

s)

YIchang to Chenglingji

Yichang to Wuhan

Yichang to Datong

Mathematical Model

September 11, 2019

18

Numerical Model

Conclusions

19

• TGD Gives Large disturbance to the Yangtze River system

• River Regime in the middle of Yangtze River Changes a lot in Post-

TGD

• Yangtze River will get a new equilibrium in the long term (100

years)

20

Thanks for your attention!

Merci!

Riparian zone recovery following the

large-scale removal of bank protection in

a large impounded and navigable river

Tom Buijse, Clara Chrzanowski, Gertjan Geerling, Marc Weeber (Deltares)

Martijn Dorenbosch (Bureau Waardenburg)

Bart Peters (Bureau Drift)

Jan Joost Bakhuizen, Frans Kerkum (Rijkswaterstaat)

‘Leitbild’ for renaturalized riverbanks

10 years later

3 years later

35 years later

60 years later

Current situation

B

1

2

3

4

Peters (2005)

x

River Meuse removing bank protection projects

http://www.rws.nl/maasoevers

Free eroding river banks

Goals:- Improve riparian habitat

- Natural gradient from

water to land

- More room for river

Total length: 90 km

80 km finished

30%

Nature-friendly (with

foreshore)

Monitoringproject

‘Renaturalized riverbanks River Meuse 2008-2017’

1) Which factors drive bank erosion in the River Meuse?

2) Which monitoring is necessary to

- Estimate erosion rates

- Assess ecological improvement

Guidance for water managers to

- Implement

- Optimize

- Monitor

- Manage

the removal of bank protection

for nature

River

management

Discharge

Weir operation

Location• Channel width

• Inner/outer bend

• Distance to weir

Water level variation

Flow velocity

Shore

• substrate

• height

Navigation• recreational

• commercial

Protection• Bank

• Foreshore

• Removal (complete, partial, timespan)

Bank erosion• rate

• magnitude

Ecological improvement• habitat diversity

o succession

• Aquatic

o Fish

o Vegetation

o Invertebrates

• Terrestrial

o Birds

o Insects

o Riparian

vegetation

Floodplain management

Source populations

Conceptual model

Design of the restoration

project

Context

10 years monitoring: 21 locations – 5 types

Nature-friendly with foreshore

Free erosion

Unintended bank erosion

Protected

Groyne fields

Monitoring scheme

Control – Impact, for some Before - After

Con

Imp

ImpCon

Con

Monitoring programme

Period: 2008 – 2017

Ecological monitoring

biannual left or right bank

Data Frequency

MORPHOLOGICAL MONITORING

Aerial survey 2009-2012, 2014, 2017

Laser altimetry (DTM) Annual

Bathymetry Annual

Discharge + water level Daily

ECOLOGICAL MONITORING

Terrestrial flora and fauna biannual

Aquatic vegetation biannual

Aquatic invertebrates biannual

Fish (2008), 2011, 2014, 2017

Substrate composition biannual

Context: water level variation

impounded river Meuse

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

Wa

ter

Leve

l(N

AP,

m)

river (km Dutch part of the River Meuse)

50 m3/s, 268 d/yr

125 m3/s, 184 d/yr

250 m3/s, 107 d/yr

500 m3/s, 45 d/yr

1000 m3/s, 8 d/yr

1500 m3/s, 2 d/yr

2000 m3/s, 1x/5yr

Discharge; exceedance (d/yr)

Context: Water level variation

- Within an impoundment the more upstream

• more water level fluctuation

• higher bank height

Belfeld

Sam

beek

Gra

ve

Lith

Roerm

ond

Lin

ne

Bergen

Zandmeren

Context: Navigation

Commercial vessels and

recreational boats on the

River Meuse

- average # of passages in

sluices between 2008-2017

Recreational boats

Commercial vessels

Oevererosie Noordereiland

2009

2008

2009

2010

2012

2014

2017

2009

2012

2010

Bank erosion ‘Noordereiland’

2014

2017

~20 m

Asseltse plassen

Broekhuizen

Gebrande Kamp

Ossekamp

Paaldere - Het Wild (2012)

Batenburg (2011)

Koningsteen - De Engel

Aijen (2006)

Bergen (2006)

Noordereiland (2010)

Overasselt (2010)

De Witte Steen (2015)

Balgoij (2012)

Lus van Linne

Oude Schans

Oeffelt (2010)

Keentse oevers (2012)

Zandmeren (2010)

Ooijen

Hedel - Casterense Hoeve

Hedel – Benedenwaarden

10 years later

3 years later

35 years later

60 years later

Current situation

Removal types Other types

Removal: Nature-friendly

with foreshore

Unintended bank erosion

Removal: Free erosion Protected

Groyne field

B

1

2

3

4

‘Leitbild’ for Maas riverbanks

Zandmeren

Bergen

Gebrande Kamp

Hedel – Benedenwaarden

• General improvement in the River

Meuse

• Similar bank types show different

signals

• Variation between years

• Time-lag after restoration

Characteristic species for the Water Framework Directive

Subset 1: Even years

Aquatic vegetation

Subset 2: Uneven years

Protected

Free eroding

Unintended bank erosion

Nature-friendly with foreshoreGroyne fields

Av

era

ge

#o

fch

ara

cte

risti

c

sp

ecie

sfo

rri

verb

an

kty

pe

Av

era

ge

#o

fch

ara

cte

risti

c

sp

ecie

sfo

rri

verb

an

kty

pe

Benthic invertebrates – substrate & flow

Protected

riverbanks

Unintended

free erosion

Free erosion

Groyne

fields

Nature-friendly

with foreshore

Substrate appears more important than flow velocity

due to impoundment

ratio gravel/silt

ratio fast flowing/ stagnant

Fish – spawning and nursery habitats

Source: Dorenbosch & van Kessel (2017)

• Renaturalized riverbanks are important habitats for

juvenile fish

• Substrate preference differs between species: enlarging

variety in bank types is beneficial

• Large shallow water areas benefit fish densities

• Vicinity to source populations is crucial

• Up- to downstream change in species composition

• Impounding by weirs overrules benefit of renaturalizing

banks

protected renaturalizedUpstream Downstream

Rheophilic species

Birds: Sand martin - substrate

sand

Nests of sand martins in sandy

layers between clay deposits

Cutoff river bends & substrate

Clay banks without

sand martins

Higher turbidity due to

clayey substrate

Conclusions

• Morphology: most sites in initial succession state of bank erosion

• Increased habitat diversity of riparian zone

• Location of riverbank plays a crucial role for erosion rate

• Water level fluctuation, bank height & intensity of navigation

• Flow velocity, channel width, inner/outer bend, substrate

• Ecology: both aquatic and terrestrial biota benefit

• Impoundment and navigation constrain aquatic ecology (rheophily, densities)

• Fish: rapid response

• Aquatic vegetation: water body dominates, time-lag

• Benthic invertebrates: substrate dictates community

• Characteristic terrestrial biota (e.g. sand martin)

• 10 year monitoring may sound long …

• … but many factors influence development (location, design)

• BACI monitoring yielded improved understanding, but no hard statistical

conclusions due to the diversity in local conditions

Guidance for water managers

Implementation & design optimization

- Choice of location

• Water fluctuation: location within impoundment

• Soil composition of the banks

• Up- or downstream: source populations

- Based on (desired) erosion depth into the floodplain

• Extend of removing bank protection

Monitoring

- Comparability of types and locations

- Continuity (long-term succession, time-lag)

- Morphological development of shallow areas

Floodplain management

- Formulate quality requirements for floodplains and riparian zones

Thank you for your

attention!

[email protected]

Questions?

������� � ����� �������

���������������������������

�� ������������������������

����������������

��������� �������������!�������"�����

�������������#$����������%���&�'������

(�)��� � �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.

��-0(!+* "*�+-+-��* !��1�

��*,�*!+-'�,�(/�-�2" ��3(�"*�

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

������������������ ��� ����������

����� ������ �������

� ��������#�� �� �))������� ���������/���������� ���4)����������

� �����������4)�����������������������)/���������)����

» "���5�(�������������������/�������"�������������6776

» "���6������)������������)��������)���!�����'�������6778

� !��������������������������(��������))�����

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

�� ������ ��� �� �������� ��

������������������ ��� �����������

*�����������))�����

�������������������

-���))�����9

� ��������������

� ������� �)�����

� :������� �:)�������

� 3����)����;�������

� +))����������

� +����������

� '��������� 9

� "�����)�������9

� (��-"��"���'56<

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

�������� ��� ���������� �����

������ ����������� �������

(��������� ��������= ������� ����� ���4

= ��������� ��#�����#��� ���4

���)/������� ��)����= ���4� >)����� ����?��������

= ������� >���������?��������

�����������������= ���� ������ ��� ��)���� ������

= ����� #���#������ ������

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

�������� ��� ���������� �����

������ ����������� �������

� ��������6776

� ������� �����@���A�

� (������������� ��4�

� *������ �)������

����������#���

� '�������6778

� ������� �����@���A�

� �����)��� ����

� �����)������

����������#���

"���5��������/�������"����

"���6�)��� !������������

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

�������� ��� ���������� �����

������ ����������� �������

"���5��������/�������"����

"���6�)��� !������������

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

�������� ��� ����������

���� � � �������������� �����

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � �������������� �����

��������

+�;�������= )������ ������� ���)/������� ��)����= ����������������)����#������� #����

���4)���������

= )������������#�����#���� ���4= ������� �����@������� �����������

��������= ����� ���������4��� �����= ������� ������������ ��� �����������

*���������= ������������ �6776/ 677B= �����������677A/ 6757

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � �������������� �����

������� ��� ������

3��������= ������ �����= ��������� �������= ������������������ �����= ������������ )������

-���������= ���������) �5<7�:6C�:<�<�%" 3* �� 57D777���&= �������5AD777E��563�E�= �������� ������8

������)���= �������� �� #�������<�= �������������� ���������� �7�8�

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � �������������� �����

����������

"����= �))��:������� 5D777 2!E�= ������� �� ��)/��)�677F

������= ������)�����= )��������)�������� ���������� ���� ���= ������� �)��� ��������������= )�������� #�� #������������� )���������= ��� ���� ���� �������������

���������= ������������= ������������������)����� �������

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � �������������� �����

������� ������

!�������/�������

= ��)����������#����������4������= ��)��������)�������������������������@���= ������������#������������@��������= ����������������������#)�����@���= )���������������������������������������������������

##����������= �������4)������������������)������������������= ���������#����������������������)���������#���������

������� �����@���

= ������������@����������)������%)��������&����������= ����������������������������������������= )�����#��������������������������������#������)�����

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

�������� ��� ����������

���� � � ����� ����� �� �����

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � ����� ����� �� �����

��������

+�;�������= ��)���� #����� ������������= ���������� ���)��������� �������

���4)���������

= ���������� �����)��� ����= ������� �����@������� ��������4���

��������= ��)������ �����= ������� ������������ ��� �����������

*���������= ������������ �6778= ����#�������� �675A

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � ����� ����� �� �����

������� ��� ������

3��������= ����������)���= ��)��) ������ 7�6�= ��������� �������= )�������4������� �����)�����

-���������= �����������G7�:57�A�:6�A�%" 3*� 5DA77���&= ������������ �87���)� E��� ��������= �������� ������57

������)���= �������� �� #�������7�� 57�= ��)���� ���������� �7�A�

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � ����� ����� �� �����

����������

"����= �))��:������� 8DA77 2!E�= ������� �� ��)/��)�577F

������= ������� ���������� ��������� ���������= ����������������������� #�������������= ��������#��� ����� �������= ����� ������������� �#��� ����#��������= ������������� ��������

���������= �����)��� �#��� )��������= ���)� ������� ������� ��� ��)��)

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���� � � ����� ����� �� �����

������� ������

= ��)���� ���)������������= ��4��)������ ��)�� ��;�������= ��)��������� ����� ������� �����@���= ������������������� #�� ����� �������

= ��� ������������ �������� ������

= �� ���������������� ��� ��������������)����� �#��� ���)�����

= ������� ������� ������:������= ��)������#�����)��� ���� �� ����

!�������/�������

##����������

������� �����@���

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

���������������

������� � ��� �������� ��������

� �����������������)����������)�����

������������#����������������������������������

� ������)����%���)/�����������������������������������&�

���4)��)������%���������������������4�������������&���

#������������%����������������������&

� 3������������#�������#������������������

� ���)�������������;���������#���������������������)�������������

� �*(!�"*�" �((!+�",+�

�-��! "** ",-�"�./��+.+'�"�.��-0(!+* "*�+-+-

��* !��1���*,�*!+-'�,�(/�-�2" ��3(�"*�

����� �������

����������������������������� �����������������������������D �������H���������������D��

����������������

��������� �������������!�������"������������������#$����������%���&�'��������������D��������H���D��

��� �������� �������� ��

�������� ������������������ ��� ���������� ��

��������� ���� ������ ����������� �������

������������������� ����� ������������ �����������������������������

�������� ����

������� ���!����"� �� �����#���������� �������$ ��������

�%%& ��#'���($))#"��"��* $��#&(���+��

(")�&,�&��,�#"-)�)"-�+�-$%.��&%&��-$%��$+��

�#&)"-)�&+�&+� $)"# $/�

|

www.baw.de

www.bafg.de

Introduction

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 230/11/2019

Inland navigable waterways in Germany: ~ 7.500 km

Moselle

41% impounded rivers

Rhine

35% free-flowing rivers

Mittelland

Canal

24% artificial waterways (canals)

Federal Waterways and Shipping

Administration (WSV) acting until now:

First priority in modernisation/development/

maintenance:

Ensure safe navigation!� river bank protection

based on technical regulations, dimension

standards, experiences

© BAW

|

www.baw.de

www.bafg.de

Introduction

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

30/11/2019

Hydraulic engineering interventions on river bank ecology

Diversity

Neobiota

Bank stability

Safety against erosion and sliding of the bank slope

Safety of ship traffic

Planning security (dimensioning standards)

Flood protection

Natural dynamics

(erosion/sedimentation)

Structural and habitat diversity

Biodiversity

Connectivity (lateral)

Ecosystem functionality

-

+

-+

Seite 3

© BfG © BAW © A. Sundermeier, BfG© BfG

|

www.baw.de

www.bafg.de

Political framework – Alternatives are required!

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 430/11/2019

Management of

navigation

+

Integration of

ecological issues

=

Extended

responsibility of

Federal

Waterways and

Shipping

Administration

European Water

Framework Directive (WFD)

German Water Act

(WHG)

Federal Nature

Conservation Act

(BNatSchG)

Ecological

Requirements

Enhancement of

ecological functionality

in and along

Federal

Waterways!

aims

New orders of

Federal Ministry of

Transport and

Digital Infrastructure

(BMVI)

Increasing

demand for more

environmental

friendly solutions

effect

|

www.baw.de

www.bafg.de

Technical-biological bank protection measures as alternative

30/11/2019

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 5

Returning bank protection

to natural state

© A. Sundermeier, BfG

© P. Fleischer, BAW

Measures with living or

dead plants

precultivated plant mats

willow brush mattresses© P. Fleischer, BAW

© K. Behrendt, BfG

© P. Fleischer, BAW

Combination of both (plants and

technical components)

reed gabions

vegetated rip rap

© 4 Fotos: P Fleischer, BAW

Technical

bank protection

© BAW

Research Project of

BAW/BfG

Laboratory-, model-, in

situ-tests,…

− Applicability

− Dimensioning

− Installation

− Long term stability

− Plant development

− Ecological effectiveness

− Maintenance effort

− Costs,…

?Plants as living

building materials

|

www.baw.de

www.bafg.de

Research Project: In situ test Rhine

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 630/11/2019

Test stretch Rhine (Rhine km 440,6-441,6, right bank)

Initial state in 2009

Initial state 2009:

• Bank inclination 1:2, 1:3

• Technical bank fixation (rip rap)

• Layer thickness: ~ 80 cm

• Poor ecological potential

Boundary conditions:

• 120 ships/day (2014)

• High flow velocity and ship wave

impact

• High water level fluctuation

(up to 6 m)

• Long dry and flood periodsWorms

9 Test fields (TF) with technical-

biological bank protections

© K. Behrendt, BfG

© 2019 Google

|

www.baw.de

www.bafg.de

In situ test Rhine – technical-biological bank protection measures

30/11/2019

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 7

TF 9

TF 9

TF…

Reference (R)

TF7

TF5

TF2+3

TF4

TF1

TF6

TF8

+��0�1�2����� �

$����� 3��0�12����� �

TF…

"����� ���� �2�3�������� 2�2

R

R

# 2�2������������

© BAW

Reference

R

rip rap with willow plantings,

stone wall with shallow water

zone, dead wood,

dead wood

TF1

TF2+3

Willow brush mattresses

Dead wood fascines

TF4

Precultivated reed

gabions/stone mattresses

TF5

Precultivated plantmats

TF7

© all Fotos:

K. Behrendt, BfG

|

www.baw.de

www.bafg.de

Willow brush mattresses - specification/components/installation

� Direct bank protection measure

� Shoot-forming and elastic willow branch

layer that covers the bank �

without additional surface weight!

30/11/2019

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 8

© K. Behrendt, BfG

Living branches of

indigenous and site

adapted willow trees/shrubs secured to the

soil by stakes

and crossbars

12/2011

Cover with sandy-gravelly soil on top of the

measure (protection against dehydration)

Installation during dormancy period (Nov. 2012)

© P. Fleischer, BAW

Basal ends (first layer) embedded

into rip rap; above mean water level!© P. Fleischer, BAW

|

www.baw.de

www.bafg.de

Willow brush mattresses – Cross section

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 930/11/2019

• Natural ground not

resistant to erosion

• Risk of sliding due

to pore water

pressure

• Bank protection

immediately

essential! GLW

MI/ HNWLI

MII/ HNWLII

Rip rap maintained

(below MWL)

Willow brush mattresses

(above MWL)

Slope stability is ensured by roots

No surface weight!

MWL

Slope-inclination 1 : 3!

120 vessels per day!MWL = mean water levelHNWL= highest navigable water level

© P. Fleischer, BAW

Rhein-km 441.250, rechtes Ufer

(Einmaß 2009)

80

82

84

86

88

90

92

290 295 300 305 310 315 320 325 330 335

Rechtswert [m]

he

[m

NN

]

|

www.baw.de

www.bafg.de

Monitoring – study size

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1030/11/2019

Technical (BAW) Pre- and post monitoring

− Local inspections

− Measurements of cross section,

hydraulic loads, excess pore

water pressure

− Weather conditions & water level fluctuations

− Maintenance effort

− Root-excavations,…© 2 Fotos: P. Fleischer,

BAW

Fauna

− Birds

− Ground beetles

− Spiders

− Reptiles

− Macrozoobenthos

− Fish

Ecological (BfG)

Vegetation

− Species composition

− Zonation

− Structural parameters

− Vitality of plantings

© M. Kleinwächter, BfG

© K. Behrendt, BfG

© M. Kleinwächter, BfG

|

www.baw.de

www.bafg.de

Development (2011-2018) and technical results

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1130/11/2019

05/2012

� First sprouts alongside the cross-bars

� Shoot lengths: > 2 m

07/2012

Root-length: ~ 60 cm

Increasing soil shear strength could be

determined – over correlations of shear tests!

Root excavation after 1 year (Nov. 2012)

© 3 Fotos: P. Fleischer,

BAW

|

www.baw.de

www.bafg.de

Development (2011-2018) and technical results

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1230/11/2019

© BAW

� Water level on the top of the slope (MWL + 4m)!

� Large impact due to floating forces, currents, waves!

� Critical initial state: local soil erosion/local instability of

measure � some repair work necessary

06/2013© Abz Worms 05/2014

� Largely comprehensive development of willows

� Predominant good bonding with soil

© K. Behrendt, BfG

|

www.baw.de

www.bafg.de

Development (2011-2018) and technical results

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1330/11/2019

04/2015

� First pruning in february 2015

� varying pruning intensity

Pruning area

Growth area

© K. Behrendt, BfG 07/2016

� Immediately after pruning long period of flooding

� Local failures of willows, local erosion especially

in areas of total pruning

© K. Behrendt, BfG

06/2017

� High regeneration capacity of willows

in case of careful maintenance

© P. Fleischer, BAW

|

www.baw.de

www.bafg.de

Development and technical results

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1430/11/2019

Root excavation after 5 years (2017)

Master thesis [Ziegenhorn, 2017]

Soil stabilisation by roots

Bank protection is given!

• Deep and finely branched root system:

Summary technical results:

• Soil fixation and filter function is given

• Proven increase of soil shear strength

• Proven protection against slope slide

• Best root and sproud development in the area of stakes and

crossbars� strong contact with soil is essential!

• High regeneration capacity of willows in case of careful maintenance

(avoid large clear-cuts!)

• Root length: ~170 cm

©P. Fleischer, BAW

branches > 2 cm Ø branches 1-2 cm Ø

• Willow branches > 2 cm Ø with significantly higher root mass

© 2 Fotos: L. Ziegenhorn, Uni Hannover

|

www.baw.de

www.bafg.de

Ecological results – Vegetation and Fauna

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1530/11/2019

Keep in mind: technical-biological measures have to ensure bank protection � conventional bank

protection (rip rap) serve as reference!

+

Vegetation

� Improved structural diversity

� Initial state of softwood

� Site typical and site adapted species

� High cover ratio of vegetation

� Lower risk potential of (invasive) neophytes

(competitive willows)

� Willows with high regeneration capacity

-� Planting (in general) must be regarded as

adulteration of flora

© Pastor

© BCE

© Lindsey

Fauna

� Good feeding and resting habitat

for a wide variety of birds

� Growing brood potential for

wood breeding birds

� Higher proportion of bank

typical ground beetles

� Measure ineffective for

macrozoobenthos and fish

(measure above MWL!)

|

www.baw.de

www.bafg.de

Ecological results - Summary

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1630/11/2019

favourable

limited favourable

unfavourable

VF 1 VF 2 VF 3 VF 4 VF 5 VF 6 VF 7 VF 8 VF 9

Vögel

Reptilien

Laufkäfer

Spinnen

Fische

MZB

birds

reptiles

ground beetles

spiders

fish

macrozoobenthos

TF 9TF 8TF 7TF 6TF 5TF 4TF 3TF 2TF 1

Willow brush mattresses Furthermore:

� Willows as host plants

Chrysomela populi

Nematis salicis

Pontania virilisAphrophora spec.

©4 Fotos: K. Behrendt, BfG

� Willows as bee

pasture

� Willows as carbon

sink (see our next report) © K. Behrendt, BfG

|

www.baw.de

www.bafg.de

Summary – Willow brush mattresses

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1730/11/2019

� Ecological added value compared to rip rap

� In principle, suitable as direct bank protection measure on inland waterways

� Important findings serve as basis for our elaborated recommendations and working aids� available

under: http://ufersicherung.baw.de/de

Short

description

Ecological

potential

Components

and

installation

MechanismConstruction

Fotos

|

www.baw.de

www.bafg.de

Outlook

SRC 2019, Lyon | Katja Behrendt, Kathrin Schmitt, Petra Fleischer

Seite 1830/11/2019

See next presentation!

Bernhard Soehngen & Kathrin Schmitt: „First steps towards a best practice

approach for the selection of technical-biological bank protections“

Research on technical-biological bank protections will provide promising approaches for the ecological

development of German Federal Waterways and also…..

… in the international context!

Input of our findings into PIANC InCom Working Group 128 „ Alternative Bank Protection Methods for

Inland Waterways“ Willow brush mattresses as one Fact File

Fact File Collection as a basis for the development of decision-making

tools (best practice approach)

© 2 Fotos: K. Behrendt, BfG

� Long-term monitoring of the test stretch to verify first results

� New BfG-research project „Be connect – Biodiversity and ecological connectivity of riverbank habitats“

� further ecological studies on willow brush mattresses

Federal Institute of Hydrology, Germany

56068 Koblenz

www.bafg.de

Federal Waterways Engineering and Research Institute

76187 Karlsruhe

www.baw.de

Thank you for your attention!

Bernhard Söhngen Federal Waterways Engineering and Research Institute (BAW), Germany Katja Behrendt & Kathrin Schmitt Federal Institute of Hydrology (BfG), Germany Tetsunori Inoue Port and Airport Research Institute, Japan

FIRST STEPS TOWARDS A BEST PRACTICE

APPROACH FOR THE SELECTION OF TECHNICAL-

BIOLOGICAL BANK PROTECTIONS - STATUS AND

FINDINGS OF PIANC INCOM WG 128

25.09.2019 SRC 2019, Session E-7, First Steps Towards a Best Practice Approach for Techn.-Biol. Bank Protections, Söhngen, Schmitt 2

InCom WG Report

n° 128 - 2021

TECHNICAL-BIOLOGICAL BANK

PROTECTIONS FOR INLAND

WATERWAYS

Session 5-7 (Environment):

FIRST STEPS TOWARDS A BEST-

PRACTICE-APPROACH FOR THE

SELECTION OF TECHNICAL-

BIOLOGICAL BANK PROTECTIONS FOR INLAND WATERWAYS

STATUS AND FINDINGS OF PIANC

InCom WG 128

Bernhard Söhngen, Katja Behrendt,

Kathrin Schmitt, Tetsunori Inoue

• “Fact File” InCom WG 128

• Basic ideas and principles

• Steps towards useful design tools

• Examples from existing guidelines

• Detailed view on the “7 steps”

• State of discussion in WG 128

Possible layout of

the future report

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 3

9th meeting Utrecht 2018

InCom WG 128: • Founded 2010

• Re-established 2015

• Bank protection experts, bioengineering

• Waterway (civil) engineers, bioengineers,

biologists (ecologists)

• 13 members, 8 countries

• 11 meetings, 1 workshop, 7 papers

Who we are?

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 4

9th meeting Utrecht 2018

InCom WG 128: • Founded 2010

• Re-established 2015

• Bank protection experts, bioengineering

• Waterway (civil) engineers, bioengineers,

biologists (ecologists)

• 13 members, 8 countries

• 11 meetings, 1 workshop, 7 papers

Who we are?

Target group: • Decision-makers in adminis-

trations (approach, stakeholders, effort)

• Planners of waterways (concrete design

rules, approach)

For whom?

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 5

9th meeting Utrecht 2018

Vegetated riprap,

Rhine

Willow brush mattresses, Rhine

Grey measures

(below MW)

Dutch Rhine

tributary

Green measures

(above MW)

Green - Grey

measures

InCom WG 128: • Founded 2010

• Re-established 2015

• Bank protection experts, bioengineering

• Waterway (civil) engineers, bioengineers,

biologists (ecologists)

• 13 members, 8 countries

• 11 meetings, 1 workshop, 7 papers

Who we are?

Target group: • Decision-makers in adminis-

trations (approach, stakeholders, effort)

• Planners of waterways (concrete design

rules, approach)

For whom?

Selected reliable measures: • Natural development and succession

• Pre-embankment and direct measures

• Spectrum “from green to hard”

What?

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 6

9th meeting Utrecht 2018

InCom WG 128: • Founded 2010

• Re-established 2015

• Bank protection experts, bioengineering

• Waterway (civil) engineers, bioengineers,

biologists (ecologists)

• 13 members, 8 countries

• 11 meetings, 1 workshop, 7 papers

Who we are?

Target group: • Decision-makers in adminis-

trations (approach, stakeholders, effort)

• Planners of waterways (concrete design

rules, approach)

For whom?

Selected reliable measures: • Natural development and succession

• Pre-embankment and direct measures

• Spectrum “from green to hard”

What?

Objectives: • Elaborating existing guidelines and

“grey” literature

• Collecting of expert knowledge

• Developing of a design approach

Canada, 2013 …

France, 2003 …

Germany 2016 …

PIANC-Principle:

Trust experts

where science

and engi-

neering

lags behind

practice

demands!

PIANC-approach:

• Bring experts in their special field of work from

relevant waterways in the world together,

• collect their knowledge and experience,

• even if it is not totally scientifically proved

Wherefore?

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 7

9th meeting Utrecht 2018

InCom WG 128: • Founded 2010

• Re-established 2015

• Bank protection experts, bioengineering

• Waterway (civil) engineers, bioengineers,

biologists (ecologists)

• 13 members, 8 countries

• 11 meetings, 1 workshop, 7 papers

Who we are?

Target group: • Decision-makers in adminis-

trations (approach, stakeholders, effort)

• Planners of waterways (concrete design

rules, approach)

For whom?

Selected reliable measures: • Natural development and succession

• Pre-embankment and direct measures

• Spectrum “from green to hard”

What?

Objectives: • Elaborating existing guidelines and

“grey” literature

• Collecting of expert knowledge

• Developing of a rational design approach

For what?

Best Practice Approach (BPA): • Process recommendations for the

Detailed Design - “7-Steps”

• Concrete selection of appropriate

measures in different degrees of

complexity (focus of WG 128 report),

How?

BPA

Preparatory works

1. Consider planners aims

2. Consider site-specific conditions

3. View Fact Files “Pool of Measures”

Selection of measures

4. Pre-select feasible solutions

5. Consider knockout criteria

Suitability-check of selected variants

6. Specify variant properties and

possible combinations

5. Choose variants e.g. using

decision-making tools as AHP

BPA

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 9

BPA - Basic Ideas and Principles

Relevant criteria

from a

“pool of criteria”

Feasible

measures from a

“pool of

measures”

strong link

e.g. replaced

revetments,

Rhine, Worms

e.g. shallow water zone

behind sheet-pile wall

Fro

m n

atu

ral d

evelo

pm

en

t up to

te

chnic

al s

olu

tions w

ith “g

reen u

pgra

de”

Site-specific

boundary conditions

… and its range of suitability

for different boundary

conditions and aims

e.g. ship-induced impacts,

Rhine, Worms

Demands on

functionality

and

performance

e.g. technical functionality,

interlocking concrete

blocks, China

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 12

Principles related to measures:

Mitigation first: See e.g. reports WG 27 (impacts of vessels) & WG 141 (fairway design)

• WG 128 report starts after mitigation measures were exhausted (e.g. bank-fairway distance, speed limits, draught restrictions, vessel licensing …)

The future report – the BPA – will be (one) part (only) of the planning process

BPA - Basic Ideas and Principles

From WG 27: Fairway distance and speed “scale” ship-induced impacts!

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 13

BPA - Basic Ideas and Principles

Feasible

measures from a

“pool of

measures”

Dutch Maas

Close to nature

development

Lower Yangtze

Direct measures

Lower

Mississippi

River Training

& Management

Principles related to measures:

Mitigation first: See e.g. reports WG 27 (impacts of vessels) & WG 141 (fairway design)

• WG 128 report starts after mitigation measures were exhausted (e.g. bank-fairway distance, speed limits, draught restrictions, vessel licensing …)

Categorization: Indirect, direct, pro-portion of technical components, flanking measures - important for “table-based-approaches”

Projection: What would be if the Fact-File-measure would be realized in site? - Analysis ® Design Case

Rhone, France

Bioengineering

Indirect (pre-

embankment)

measures

Technical

or almost

technical -

e.g. “Rich

Revetments”

(ECO-

SHAPE)

Realized measures including possible improvements and site-adaptions will provided in so-called “Fact Files”

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 14

BPA - Basic Ideas and Principles

Excursus Fact Files & “projection”:

Content of Fact Files: 1. Designation, e.g. Living brush

mattresses, River Rhine 2. Objectives 3. Description (construction,

materials, section, plan view 4. Realization in site 5. Site conditions (waterway

properties, navigation, habitats) 6. Evaluation/ functionality (stability,

economics, ecology) 7. Results (overall, lessons learned,

possible improvements and adjustments to other sites) …

Potential for projection to other boundary conditions?

• Technical and ecological functionality needs to be addressed in Fact Files

Ø “Applicability-ranges” of boundary conditions (e.g. tolerable impacts) Ø “Functionality-ranges” (e.g. concerning benefits related to riprap)

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 16

BPA - Basic Ideas and Principles

Relevant criteria

from a

“pool of criteria”

Principles related to criteria: Categorization: Planners aims, knockout

criteria, waterway & site-specific con-

ditions (water level changes, climate,

impact, resistance) and criteria defining

functionality (techn., econ., ecological) …

Technical Functionality

(stability, maintainability …)

E.g. easy access from

water side - Spree, Berlin

How to quantify and match

competing criteria?

Willow brush

mattresses,

Rhine

Vegetated riprap, Rhine

Economical Functionality (constr. &

maintenance expenses … compared

to riprap (“naked” or vegetated)

River meadows,

Elbe

sturgeon

White-water lily

Ecological Functionality

(living matter, dead matter,

aquatic area, terrestrial

area, zoning …) - strong

concurrence of criteria

Spiegel-Waal, The Netherlands -

comprehensive renaturalisation

and social project

Ecosystem Services

(quantified ecological benefits)

- PIANC EnviCom WG 195

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 17

BPA - Basic Ideas and Principles

Excursus: Existing BPA, state 4/2019

Criteria forming the Impact

Score (4 Criterion Groups)

1. Ship-induced impacts

2. Hydraulic impacts

except vessels

3. Water level changes

4. Extra impacts

Criteria forming the

Efficiency (Technical &

Economical) Score (2

Criterion Groups)

1. Technical

Functionality

2. Economical Efficiency

Criteria forming the

Ecological Functionality

(1 Criterion Group)

Demands on

functionality

and

performance

Impact Score

Index “I”

Synoptic Scores

Criteria forming the Bank

Score (3 Criterion Groups)

1. Climate

2. Bank properties

3. Risk and mitigation

Bank Score

Index “B”

Total

Waterway

Score

(Index “W”)

Total

Scores

Technical

Score Index “T”

Ecological Score Index “E”

Total

Suitability

Score

(Index “S”)

Synoptic Groups

It’s of course still

not perfect, but it

may be improved

… see following

pages

Subgroup Commercial Navigation

1. CEMT Waterway Class and vessel type

2. Ship-bank distance, commercial navigation

3. Ship speed limits, commercial

4. Coverage ratio

Subgroup Recreational Navigation

1. Boat Size influence

2. Effect of disturbance frequency

3. Bank attractiveness to

recreational boating

4. Speed limits, recreational

Subgroups and single criteria,

example Ship-induced impacts:

Site-

specific

boundary

conditions

Subgroup Probability of high impacts

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 18

BPA - Basic Ideas and Principles

Quantification of high number of criteria

• Importance (weight of single criteria)

Analytic Hierarchy Process (AHP)

• Criteria with numerous subcriteria

• Criteria with different scales are comparable

• Pairwise comparison of importance (every criterion against the other)

• Standardized criteria and corresponding factors à objectivity

AHP-Matrix for subcriteria of Criterium “Recreational boats”

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 21

Criteria forming the Impact

Score (4 Criterion Groups)

1. Ship-induced impacts

2. Hydraulic impacts

except vessels

3. Water level changes

4. Extra impacts

Steps towards useful design tools

BPA, state

April 2019: Criteria forming the

Efficiency (Technical &

Economical) Score (2

Criterion Groups)

1. Technical

Functionality

2. Economical Efficiency

Criteria forming the

Ecological Functionality

(1 Criterion Group)

Demands on

functionality

and

performance

Impact Score

Index “I”

Synoptic Scores

Criteria forming the Bank

Score (3 Criterion Groups)

1. Climate

2. Bank properties

3. Risk and mitigation

Bank Score

Index “B”

Total

Waterway

Score

(Index “W”)

Total

Scores

Technical

Score Index “T”

Ecological Score Index “E”

Total

Suitability

Score

(Index “S”)

Synoptic Groups

Site-specific

boundary

conditions

Now, we’ve got our

toolbox, but how

could a useful BPA

work in reality?

Part 2

Kathrin

Schmitt

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 22

Existing interdisciplinary approaches

German Association of Water, Waste Water and Waist; “Technical-

Biological Bank Protections for Large and Navigable Inland Waters”

….

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 23

Existing interdisciplinary approaches

e.g. Green approaches in river engineering

Targets: Providing a decision support tool

Categories, decision making process and case studies:

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 24

Existing interdisciplinary approaches

e.g. Green approaches in river engineering

Targets: Providing a decision support tool

Categories, decision making process and case studies:

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 25

State of discussion in WG 128,

11th meeting in Brussels, July 2019

• Focus on Fact File-Collection

• Focus on “7 steps”

• BPA optimization after finalization

of Fact File-Collection

Challenges with existing BPA

• Long list of criteria à mandatory/optional?

• Difficulties in combination of planning and

assessment criteria

• Risk of information loss with the use of metric scoring

system

• Assessing ecological functionality is highly complex

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 26

Detailed view on 7-steps

Selection of measures

4. Pre-select feasible solutions

5. Consider knockout criteria

Preparatory works

1. Consider planners aims

2. Consider site-specific conditions

3. View Fact Files “Pool of Measures”

Suitability check of selected variants

6. Specify variant properties and possible

combinations

7. Choose variants e.g. using

decision-making tools as AHP

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 27

Preparatory works

1. Consider planners aims

2. Consider site-specific conditions

3. View Fact Files “Pool of Measures”

1. Consider planners aims

à Which is the ecological target?

à How to support ecological functionality?

à Are there legal restrictions?

2. Consider site specific conditions

à Available space

à E.g. Climate conditions

à Is bank stabilization required?

3. View Fact Files “Pool of Measures”

à Which types of measures do already exist and which target do they have?

à How were local boundary conditions?

à Lesson learned ? (ecological improvement, technical requirements, maintenance)

Detailed view on 7-steps

© L

ub

om

ir H

lase

k

e.g. Target species / Target habitats?

© M

ichael G

erb

er

© L

ubom

ir H

lasek

© M

ichael S

chäff

er

© K

atja B

ehre

ndt

© L

ubom

ir H

lase

k

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen & Schmitt 28

4. Pre-Selection of feasible solutions

à Which measures from the collection meet required ecological targets?

à Which measures are suitable for my site specific boundary conditions?

5. Consider knockout criteria

à Climate specific criteria, e.g. ice drift

à No available space, high flooding risk

à No human resources for implementation of measures

à Strong excess pore water pressure prohibits solution with plants only

Selection of measures

4. Pre-select feasible solutions

5. Consider knockout criteria

Detailed view on 7-steps

Ice drift, Rhine,

Cologne, 1963

©Söhngen

Fact File „Living brush mattresses“

e.g. Shrub specific species

© Lindsey © Burkhardt

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen &

Schmitt 29

Suitability check of selected variants

6. Specify variant properties and possible combinations

7. Choose variants e.g. using decision-making

tools (e.g. AHP)

6. Specify variant properties an possible combinations

à Are the given combination of measures from the Fact File list suitable for my requirement?

à Are there different options for combinations of measures in my individual case?

7. Choose variants, e.g. using decision making tools (e.g. AHP)

à With respect to different ecological targets

à With respect to local boundary conditions (criteria list)

à With respect to economical constraints

Detailed view on 7-steps

+ + +

Flattening of bank Wood palisades Dead wood fascines Shallow water zone ©Hoppe ©Hoppe ©Hoppe ©Behrendt

25.09.2019 SRC 2019, Short Course “Alternat. technical-biological bank protections for inland waterways”, Best Practice Approach, Söhngen &

Schmitt 30

Thank you for

your attention!

Outlook - WG Incom 128

Next meeting in April 2020

To do‘s :

• Finalization of Fact File collection

• Classification of Fact File-Collection as basis

for international exchange of experience

• Final balancing agenda of future report

• Optimization of BPA

����������������� ��������� ������ ��

�� ������������� ��� �����������

������ �������� !�"!���#�!��$�!��!�%&���!��'%

�������������(��� �)���

�����������

� ��������������������

• �*+$�#*!���,!�"���-.//�*!�!��

• ��$�"���'��'�!�!�0�,!���$,,�10$��,&�+$��'��������23

• �����!���0�$��$�,��$��4����!"���$,���$44�'�

• �$�$,�4�������%���$,��%!�����������%��'�0�%%�+�,��&

• �%%�*0����%�• ��!5!���5�+�$����%

• 1�$�!�2�+����*�*$&�����+!�!6'$5$�!���!$��!*+$�#*!��

• ���$"!�%$��&���!�"!�*$�!��$,�4��*�'$�$,3

• 0"�$�!�'$�$,�'$0$'��&�$���%�$+�,��&�!6�%���"�!*+$�#*!��3

• ��!$�!�*��!�+����5!�%��&3

���������� ���������� ���� �

��*+��!��*0��5!*!����4�%��!�"���0��0!���!%�'��'�!�!�0�,!���$,,������'�!$���"�*��!�+����5!�%��&������!�'$�$,

• ��!$�!�*��!�$'��5!�"������0�!%%��!3�

• �$#!��%!��4�,�'$,���!�"!�*$�!��$,%3

• ���!���!�"!�%$���*$�!��$,����������!���+!�%&%�!*%7

������������������

• $�%$"!�%�$0!

• ��$*!�!��+!��!!��89:���,,�;�*�

• ��,,��!�"���+!��!!��8�$���<9=�*�

• �!�"���+!��!!��>/���,,�8//�*!�!�

• ��,,��"��&��$�,�'$,,&

• ���,,��"9�0�%�������"�$���4�,,�

�00,�'$����%

• �+*!�"!��+�!$#�$�!�%

• �����4���,$����!',$*$����

• ���!��4�+�!$#�$�!�

��������������� �������������

������������������� �������������

• ��%�$,,$������4����+,!���������!��0�,!%�!5!�&�8//�'*9

• �����!���0�+!��!!����!����9�>���,,���4$%'��!%�

• ����,!5!,,��"���!�%,�0!�$�%*$,,�?�/9;�*����%&%�!*�$��������0��,$�"!�?<9-�*����%&%�!*�

������������ �������

• ��!����4��'�����4��'!%�%�$+�,��&��4���!��$,,���,,�+!��*0��5!�������$������-�#�@*8�

• ���%���,,��*0��5!���!�,�4!���*!��4���!�!6�%���"��$,,�

• ���!���$�!���!0�����,,���'�!$%!���!�+����5!�%��&�4�����!�!6�%���"�4,��$�$���4$��$��

���������� ����������� !� ��������� !!��"

#�������������!�� �$��� �

���������

• ��'!�"�!!��!*+$�#*!��3

• �$���!��%�,��#��"�4���%�!,�!�3

• �$%'��!�$�!�'�!$���"�$�'$,*��$�!��1,!!�$�!$2�

• ���$"!��4�%!��*!��%�'$��+!��"����!������!�%���������"�$�!$3

• �*0��5!*!����4���!�+����5!�%��&��%���"!

���������������

• ��A$�����

��%�$5��"+���"

�$��($��!,%#$�!�>=9��!5!��!�9���!��!��!�,$��%

��%�$5�!"+���"B�$���'�*

������������������ �������� �

�����������

������������������������������������� �����������!���"���#��

Influence of climate, garbage, sedimentation

�������

��������$���%"�����������&�������!�������&�����$�&�!��� ������� ���!"������'�������

�����$������'�(��)���"(*�$�������+�&���,$���!� ���&� �������&���---.

��� �$�!� �$�! &�!���/����� �' ��&�� ��&��������� �� +����+�0� �!�� �������� ���������

$��!!�� �� '�� ��� (����&�����0 �' ����� ��'�����"$�"���

Wetlands and aquatic environments

Locks of Chautagne

The green techniques, Rhône Vegetated banks, Rhône

The use of bioengineering on the waterways banks involves assessing global

factors such as climate, sedimentation and floating waste

An analysis of the impact of these factors is proposed through detailed feedback

from several sites on the Rhône between 1998 and 2010: Saint-Vallier bank,

Beauchastel reservoir and the Montélimar inlet canal.

The objective is to consider this when designing these techniques in future

projects.

�������

Actions of the three factors on waterway vegetation dynamics

Influence of climate, garbage, sedimentation

Helophyte berm protected by a helophyte fascine (7 species), willow cutting (5

species) installed between +80 cm and + 2.5m, brush layers, young forest plants

and mesophilic seedlings

Surface covered with topsoil protected by a coconut net

Earthworks (levelling and green engineering) carried out between January and

March 1998

Site presentation

Location of the site on the left bank at PK 70 (median Rhône), south-west facing

bank

Erosion due to wake waves (navigation) and flooding over several hundred metres

Hot and temperate climate, 4 m bank height, materials sensitive to water stress

The techniques

����� ����� ��������

Eroded riverbank Geen engineering phase

Influence of climate, garbage, sedimentation

Results

����� ����� ��������

At the end of the two growing seasons, the recovery percentage dropped to 18% in

the median area compared to 72% in the lower area.

The willows disappeared quite quickly from the middle of the shoreline,

Their durability was ensured on the lower part but with a slower development (<

100 cm in July the second year) compared to similar sites.

Two species are more resistant to summer stress conditions : S purpurea et S

eleagnos

Green engineering phase

Phase de génie végétal

% o

f re

covery

Influence of climate, garbage, sedimentation

����� ����� ��������

Climate change increased water stress for vegetation in spring (high water

demand) and during the summer season (resistance)

As a reminder, the Saint Vallier site has not been watered.

Analysis of this warming by the number of days with a temperature above 36�C

between April and September in the Rhône Valley (Montélimar station)

Influence of climate, garbage, sedimentation

���������� �����

Excessive accumulation of

harmful floating waste on

the banks of the river

No data available on the flow of plastic waste carried by the Rhône.

10 rivers in the world located in Asia and Africa are responsible for 90% of plastic

pollution of the oceans

Site presentation

«Blockage» upstream of dams Impacts on vegetated banks

The objective was to create a river reedbed with a role

as spawning grounds and growth area for juveniles

sheltered from waves

The site located on the left bank of the dammed Rhône at KP 118.5 in the

municipality of Beauchastel.

Installation of a double bank using a riprap barrier

(protection against waves), plantations (helophytes and

willows), creation of an openingEarthworks in 1998

Influence of climate, garbage, sedimentation

���������� �����

1 year after earthwork, spawning grounds and reed beds 10 years after earthworks 20 years after

earthworks

Site evolution

Arrival of floating waste at the openings inside the double bank.

Adaptations to try to limit these inputs by installing nozzles or anti-jam wooden

stakes.

Maintenance during the first 10 years (waste removal) to preserve the functionality

of the environment

Gradual stop of maintenance for organisational and financial reasons

Complete filling of the double bank with waste of all kinds: loss of aquatic aspect,

trivialization of vegetation and arrival of invasive species,

Sterilization of this land-water interface, disappearance of ecological benefits with

the exception of the role of the green belt on the riverbank (willow grove)

Influence of climate, garbage, sedimentation

Site location in the inlet canal of the Montélimar

development on the right bank at PK 153.500

Presence of an area favourable to silt deposits

below the mean water level over a length of 700m

and a width of 100m

Site presentation

�����������

The project

Increase in the surface area of an aquatic reedbed due to the need to carry out a

compensatory measure

Presence of wake waves and macro waste (jams, etc.): slow dynamics for a

"natural" expansion of the aquatic reed beds

Techniques: laying a wooden palisade to reduce swell and planting reeds at the

back (in the form of islands protected by fences against predation by birds)

Sedimentation Area, Montélimar,

Rhône Development

Influence of climate, garbage, sedimentation

Creation of protections 1 year after earthworks

�����������

The gain in surface area was 3,500 m2 in 5 years

Ecological monitoring has shown the presence of three protected bird species

(Acrocephalus arundinaceus, Acrocephalus scirpaceus and Netta rufina) on this

restored site.

The "ecological" exploitation of these sedimentation areas around the canals: a

good "opportunity" for the biodiversity gains of the waterway.

5 years after earthworks

Influence of climate, garbage, sedimentation

Results

�������������������������

Choice of Mediterranean varieties of salicaceous plants more resistant to dry

climate and performing the same functions: approach of local plant species

Analyze in detail the distribution of species in altimetry, improving soil quality

Be more proactive in supporting vegetation during the first growing seasons:

watering

����� ����� ��������

Site sensitivity analysis: field observations

Integrate these constraints into the design: height of protection, enclosed

environments, continuity of maintenance, choice of more compatible species

(shrubby species)

���������� �����

The "ecological" exploitation of these sedimentation zones on singularities in a

context of developed watercourses is a great opportunity for biodiversity

Ecological engineering techniques can accelerate colonization processes

Need to monitor sedimentary and vegetation changes to avoid raising and then

drying out these reed beds

�����������

The objective is to implement "no regrets" projects

Influence of climate, garbage, sedimentation

Influence of climate, garbage, sedimentation

���� ��� �������� ��������

����������������� ������

�� ���� ������ ����� �������������

����� ������������������

��������������

������� ������������������ �!"�!����#��$�%���&�'��

(��!�����)��*��))����'��+��,���!"�-�&��''�"#

�� ������#������*��(����,�.�/��

SCRIPTES project

Objectives :

• Answer the questions : What are the evolutions of the estuary ?

• To implement the structure for a rigorous management of the data,

• To address management-related questions as determined with local estuary stakeholders

Contributors:

• Project initiated and managed by the GIPSA (a public/private sector partnership organisation dedicated to the downstream Seine basin), and co-funded by the Seine-Normandy regional water authority

• Implementation by ARTELIA, ADS-COM and PIXIME Consulting

Presentation

Organisation of the SCRIPTES project

• Consultations with the estuary stakeholders

• Inventory of available data and storage in a database

• Calculation of environmental indicators

• Display of the indicators via a dedicated web page https://indicateurs.seine-aval.fr/

Determination of the environmental management issues

Consultations with the estuary stakeholders

• 1st stage : Thematic workshops

=> to define the needs and priorities for the Seine estuary

• 2nd stage : Steering committee meetings

=> to choose a structure, to discuss the indicators, to validate the editorial contents

Determination of the environmental management issues

6 topics identified

Morphology,

Water quality,

Hydrology and hydraulics

Fauna and flora, Habitats

Estuary uses

15 stakeholders involved

Ports,

Health regional agency,

Fishing associations,

Union of chemical industry,

Municipalities…

16 environmental indicators

implemented and validated

Themes and indicatorsOrganisation

Flushing time

SalinityMicropolluants

in mussels

Oxygen

deficiency

Dissolved

oxygenTemperature

NutrientsBlooms

Water levelRiver flow

Primary

productivity

Turbidity

Migratory fishBreeding

limnicolae

Contaminants

in sediment

High frequency data

Land use

Dredged

sedimentEstuarine uses

Anthropogenic influences

Biodiversity

Habitat

Morphology

Hydraulics

SCRIPTESStructure of the system

« Front office » Web site where indicators are displayed

SCRIPTES Database

Data collection and storage R software,

automatic

calculation of the

indicators

« Back office » of the web

interface

Data collection and storage

• Inventory of the data

• Classification of the contents, formats, availability, frequency

• Stored in a durable and secured manner

• Management of the database (in Postgres/PostGIS) by the GIPSA

• Data stored in json format (attributes data) and geoson format ( geographical data)

• Secured, accessible from a web interface

Implementation of the SCRIPTES database

Data collection and storage

• Data upload, data download

• Supervision of automatic data collection

• Visualisation of geographic locations

SCRIPTES DATABASE : Web interface

Calculation of the indicators

• Automatic calculation

• Read data from the SCRIPTES database

• Upload results of the calculation in the backoffice

Development with R

Back office

• Creation of the editorial contents

• Validation of the indicators before publications on the front office

• Creation of new indicators

• Interface developed in JavascriptAngular framework

• Reserved for the administrator to manage the contents of the public website (front office)

Structure and functionality

Environmental indicatorsExample 1: HAP in sediments

Classification of

the degree of contamination

Maps with

sampling locations

Environmental indicatorsExample 2 : land use map

Editorial

contents : data sources,

description of

the evolution,

definition

Spatial

distribution for each surface

type, for each

year

Environmental indicatorsExample 3 : Sediment dredged

Spatial distribution,

for each year

Annual volume,

for the whole estuary

Time-series for

each site

Conclusions

• 18 webpages in service, with around 40 environmental indicators published online

• 10 and 20 years of data are stored

• A flexible and open-ended structure

• Graphics are used in GIPSA’s newsletters, and included in posts on social media

• QGIS-based calculation procedures are currently being developed to add geographical environmental indicators (bathymetry or statutory protection measure)