10
MODULATION EFFECTS IN PASSIVE Rb FREQUENCY STANDARDS P. Thomann, G. Busca To cite this version: P. Thomann, G. Busca. MODULATION EFFECTS IN PASSIVE Rb FREQUENCY STANDARDS. Journal de Physique Colloques, 1981, 42 (C8), pp.C8-189-C8-197. <10.1051/jphyscol:1981822>. <jpa-00221717> HAL Id: jpa-00221717 https://hal.archives-ouvertes.fr/jpa-00221717 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destin´ ee au d´ epˆ ot et ` a la diffusion de documents scientifiques de niveau recherche, publi´ es ou non, ´ emanant des ´ etablissements d’enseignement et de recherche fran¸cais ou ´ etrangers, des laboratoires publics ou priv´ es.

MODULATION EFFECTS IN PASSIVE Rb FREQUENCY STANDARDS

  • Upload
    unine

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

MODULATION EFFECTS IN PASSIVE Rb

FREQUENCY STANDARDS

P. Thomann, G. Busca

To cite this version:

P. Thomann, G. Busca. MODULATION EFFECTS IN PASSIVE Rb FREQUENCYSTANDARDS. Journal de Physique Colloques, 1981, 42 (C8), pp.C8-189-C8-197.<10.1051/jphyscol:1981822>. <jpa-00221717>

HAL Id: jpa-00221717

https://hal.archives-ouvertes.fr/jpa-00221717

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinee au depot et a la diffusion de documentsscientifiques de niveau recherche, publies ou non,emanant des etablissements d’enseignement et derecherche francais ou etrangers, des laboratoirespublics ou prives.

JOURNAL DE PHYSIQUE

CoZZoque C8, suppZe'ment au n012, Tome 42, de'cembre 1981 page C8-189

MODULATION EFFECTS I N P A S S I V E Rb FREQUENCY STANDARDS

P. Thomann and G. Busca

ASULAB S. A., 6, passage M a x Meuron, CH-2001 NeucMteZ, Switzer Zand

Abstract.- The lineshape of a microwave resonance is studied theore t i - c a l l y and experimentally i n the case of a phase-modulated RF-field and o p t i c a l detect ion of the resonance. The ca lcu la t ion allows t o optimize t h e e r r o r s i g n a l i n a Rb frequency s tandard with respec t t o the modula- t i o n parameters. Sine-wave and square-wave modulation a r e examined i n some d e t a i l .

1. Introduct ion.- The s h o r t term s t a b i l i t y of a passive Rb standard is mainly li- mited by t h e s igna l t o noise r a t i o of t h e e r r o r s i g n a l needed t o lock t h e quar tz o s c i l l a t o r t o t h e atomic frequency. The e r r o r s i g n a l i s usual ly obtained by modu- l a t i n g t h e phase of the RF f i e l d and de tec t ing t h e corresponding modulation i n the l i g h t i n t e n s i t y t ransmit ted by t h e resonance c e l l . I n t h i s paper we derive ana ly t i - c a l r e s u l t s fo r t h e dependence of t h e e r r o r s i g n a l on modulation frequency, modula- t i o n depth and re laxa t ion r a t e s , with p a r t i c u l a r a t t e n t i o n t o the s p e c i f i c cases of sine-wave and square-wave modulation.

Modulation e f f e c t s have been extensively s tudied i n t h e p a s t ([I] - [8]). A l l au- thors we a r e aware o f , however, concentrate on the lineshape of t h e radio-frequency absorption curve. Here we a r e concerned with o p t i c a l detect ion of an RF resonance s igna l , which means t h a t the population inversion between t h e two hyperfine l e v e l s , not t h e i r coherence, is t h e re levan t parameter. Furthermore, most treatments a r e r e s t r i c t e d a s t o the range of t h e modulation parameters (modulation frequency low [ 6 - 8 o r high 1 3 , 43 compared t o t h e re laxa t ion r a t e s , low modulation amplitu- des [2. $, . In t h i s ca lcu la t ion we pu t no l imi ta t ion on t h e modulation amplitude and frequency, so t h a t t h e e r r o r s i g n a l cannot be r e l a t e d i n general t o der iva t ives of t h e s t a t i c lineshape.

In order t o s implify t h e mathematical treatment and t o obtain meaningful a n a l y t i c a l r e s u l t s , we make the two following assumptions:

1) Although t h e populations of a l l Zeeman subs ta tes a r e coupled through t h e o p t i c a l pumping process , we assume t h a t t h e (small) population changes induced by t h e RF f i e l d i n the two field-independent s t a t e s have a neg l ig ib le e f f e c t on t h e o ther populations. Thus we replace t h e two Zeeman mul t ip le t s by two s i n g l e l e v e l s and assume t h a t t h e e f f e c t of the coupling within m u l t i p l i c i t i e s can be contained i n the re laxa t ion r a t e s of t h e two-level system.

2) We assume t h a t the RF power is low enough t o neg lec t s a t u r a t i o n e f f e c t s ; t h i s allows a per tu rba t ive treatment of t h e equations of motion. I n t h i s respec t our ca lcu la t ion i s s imi la r t o the one by Karplus [I], bu t second-order, i n s t e a d of f i r s t o r d e r , r e s u l t s a r e necessary t o account f o r t h e o p t i c a l detect ion of t h e RF-resonance.

2. Derivation of the resonance lineshape.- The evolut ion of t h e densi ty matrix is s p l i t i n t o t h r e e p a r t s corresponding t o o p t i c a l pumping, re laxa t ion and i n t e r a c t i o n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981822

JOURNAL DE PHYSIQUE

with t h e RF f i e l d : O P Re l R F

a , ~ = a , ~ + a , P + ~ , P

We take a simple model f o r o p t i c a l pumping where l e v e l s 1 and 2 a r e depleted by t h e pumping l i g h t a t r a t e s rl and r2. The pumping l i g h t i s assumed t o be weak and t o have a broad spectrum, i n which case t h e pumping cycle i s adequately described by r a t e equat ions (no o p t i c a l coherences). The l i g h t i s reemit ted spontaneously from a s i n g l e exc i ted l e v e l which decays t o l e v e l s 1 and 2 with t h e same r a t e 4y, ( ~ > > r ) . We then have the following equations f o r t h e hyperfine 0-sublevels (we neg lec t t h e l i g h t - s h i f t f o r s i m p l i c i t y ) .

We assume t h a t a l l r e laxa t ion mechanisms ( c o l l i s i o n s with o t h e r atoms o r with the walls , magnetic f i e l d inhomogeneities) can be described by a " longi tudinal" and a " t ransverse" re laxa t ion time y i , and y;; t h e s teady s t a t e densi ty matrix elements without o p t i c a l pumping a re

011 = 022 = 4 and p l 2 = 0 , so t h a t

a Rel , Pn = - Y; (Pit - 1/21

a Rel , p22 = - Y; (P22- 1 4 )

Rel a , p 1 2 = - yiplz Fina l ly , the i n t e r a c t i o n with t h e RF-field ( l i n e a r l y po la r ized p a r a l l e l t o t h e C-

f i e l d ) is given by

where p2 / ~ W O pe icp(t)

H - . ( Be-icp(t) -% w o

Uo includes the quadra t ic Zeeman e f f e c t and t h e l i g h t s h i f t

p = .-1 PBBRF i s t h e coupling s t reng th o f the 0-0 t r a n s i t i o n i n Rb-87 with t h e RF f i e l d

Radiofrequency f i e l d , with phase $ ( t ) t o be BRF ( t ) = B R F COS cp(t)

s p e c i f i e d l a t e r

Defining A = pl l - p22, we obtain t h e following equations f o r A and p12

A = - Yl (A-AO) + 4 p Jm ( p12e - i V ( t )

biz=(-y2 + i u o ) p,, - ,ae icp(tIA

where = y; + 1 3 ( r1 + r2 )

y , = Yi + % ( r l + r 2 )

0 - Yz(r - r A -&+b;r~+;:)

In obtaining equations (4) we have a l s o made use of t h e rotating-wave approximation, which i s j u s t i f i e d s ince i n p r a c t i c e both 6 and t h e frequency w, of phase modulation a r e much smaller than W o .

Although a numerical so lu t ion of eqs (4) can read i ly be obtained f o r any value of t h e parameters, we r e s t r i c t t h e range of RF amplitude i n order t o ob ta in an approxi- mate a n a l y t i c a l so lu t ion . I f 6 < yl, yz we can expand A and i n a per tu rba t ion s e r i e s of powers of 8. This is n o t a very r e s t r i c t i v e condition: i n p r a c t i c e one avoids t o s a t u r a t e t h e t r a n s i t i o n s ince s a t u r a t i o n a l s o means broadening of t h e re- sonance curve and decrease of t h e discr iminat ing slope.

We there fore w r i t e

with d") - on

~2)- b n

Inser t ing t h e expressions above i n t o eqs ( 4 ) and s o r t i n g ou t terms of equal powers of B y i e l d s the following orders of approximation f o r t h e permanent solut ions:

Order 0 : A(') = A0 : = o

Order 1: A(') = 0

- i p a0 +iwt7 +iB@(t') .(-Y2 + iw,) ( t - t') d t'

where we have used t h e following d e f i n i t i o n

64I(t) i s the phase modulation of t h e RF f i e l d ; we make use of i ts p e r i o d i c i t y t o w r i t e it a s a Fourier s e r i e s

- we suppose f o r s impl ic i ty t h a t ak is r e a l , which is t h e case i f 6 $ 1 ( t ) = - 6@(- t ) .

Theref ore

( l) iwt a k e ikwmt

p I l ( t ) = - iPAoe 2 -a Y2+i(U +kW,)

where Cf = W - U o is t h e RF-atom detuning.

Order 2: p$) =

I n t e g r a t i n g eq. (9) we obta in , f o r the lowest (second) o rder i n B, the following expression f o r t h e permanent so lu t ion A ( ' ) (t) :

Replacing PI(:) ( t ' ) by i ts e x p l i c i t expression (eq. 8) and performing t h e integra- t i o n , we g e t , a f t e r some manipulations

A (2)(*) = - 2' Cp COs pw, t + sp sin pw,t Y1 Y 2 { P=o

JOURNAL DE PHYSIQUE

where A ( x ) = ( i + xZ)- ' x k = (a + k w , ) / y, and

D ( x ) = X . ( 1 + x 2 ) - I Y p = p W m / Y,

The inversion A ( ' ) shows o s c i l l a t i o n s a t a l l harmonics of t h e modulation frequency. A s a funct ion of t h e detuning a , t h e amplitude of these o s c i l l a t i o n s undergoes re- sonances centered a t a = - kq,,. When % << y l , y~ t h e add i t iona l resonances (k # 0) merely broaden the unmodulated l i n e shape whereas i f q,, >>yl , y2 they appear a s resolved sidebands. Since t h e f i r s t harmonic (p = 1) is of most i n t e r e s t here we w i l l concentrate on t h i s component and, i n o rder t o ob ta in s p e c i f i c a n a l y t i c a l re- s u l t s , we w i l l consider two s p e c i a l cases of phase modulation, namely sine-wave and square-wave modulation.

3. F i r s t harmonic of t h e population inversion, sine- and square-wave phase modulation.-

The f i r s t harmonic component of t h e inversion is given by e q . . l l :

where C1 and S 1 a r e given by eqs ( l l b , c )

a ) sine-wave modulation

The phase excursion is then

8g,( t )= m s i n w m t ; t h e Fourier development of ei6'(t) reads

i m s in%t +o = J~ ( m ) e i k w m t

k=-w and we have ak = Jk(m), where Jk(m) is t h e s tandard Bessel funct ion of order k.

b ) square-wave modulation -

i f k = O

= [ i s I i n m i f i f k k is i s even odd ,.,,

Table 1 gives a summary of a n a l y t i c a l r e s u l t s which a r e v a l i d i n some l i m i t i n g cases of i n t e r e s t . For small modulation frequencies t h e l i n e shape i s , a s expected, equal t o t h e der iva t ive of t h e s t a t i c Lorentzian l i n e shape (eq. 15) . A t high modu- l a t i o n frequencies , however, t h e l i n e shape becomes a s tandard dispersion curve (eq. 1 3 ) .

Comparison between these two l i m i t i n g cases (eqs 13 and 15, t a b l e 1) i n d i c a t e s a simple method t o determine Y2 fromthe width of t h e experimental curves and y l from t h e i r amplitude. A t high modulation frequencies, f o r example,the dispersion curve peaks a t a/yZ = I, which gives an immediate measurement of '(2. Once y2 is known, y l can be determined i n t h e following way. Keeping the phase excursion m and the de- tuning a f ixed, t h e amplitude C1 of t h e e r r o r s i g n a l is measured a t two frequencies: (&, y2 and Um2 >> y2. Inser t ing the experimental values C l ( % l ) and C2((&2) i n t o eqs 13 and 15 y i e l d s

ffl ffl " w .rl 0 rn

h 4

0

g 8 I" rn

8 ..i 0

3 " B 8

A

r- =!

0 - " z 5 2

~ I L II e V V s s CI

0 I

-NY- I II II II a - 4J - s 8 -

Y , 8

;

A-

- $ h U .rl ::

2 2 + A " " V

; 31; G v 2 g I 31;

'I ?I

0 - "I U rn

-

S - N

N

* II

A A A A

N m ln W

=! - 5 " - 5

T' 2

al

m

" ffl

B u

A " 8 I

C .rl rn

N A

N * $2 +

.rl rn - rn +

g 8 - U

I

3 2 4 3 I b - II II E 4 - 0 - II V

2? # 2: e

a m I al

.r( rn

4 4

* :: 819 rn 2 + N

u rn - N

,I ,I

0 - 4-1 4

b

II - +J - -

N

4

u

9

A I 8 2 2:

I

u (I

8 G + rn

N - .. ";,

N -

JOURNAL DE PHYSIQUE

Once y2 and yl a r e de'termined, t h e modulation frequency and t h e modulation index can be chosen so a s t o optimize t h e s lope of A1 (x) = (c: + s:)% near o = 0, using t h e curves no 3 , 4. I t should be noted t h a t Al, t h e maximum amplitude o f t h e s i g n a l , r a t h e r than C1 o r S1, is t h e re levan t parameter f o r determining t h e discr iminat ing s lope s ince C1 and S 1 a r e both equal t o zero a t o = 0 and a r e proport ional t o each o ther near a = 0. I n o t h e r words t h e phase s e t t i n g of t h e phase s e n s i t i v e de tec tor i n a servo-loop using A ( 2 ) ( t ) a s an e r r o r s i g n a l serves only t o maximize t h e s i g n a l bu t introduces no s h i f t i n t h e s t a b i l i z e d frequency. That is t r u e f o r pure s ine- wave and.pure square-wave modulation, bu t it may not hold f o r an a r b i t r a r y modula- t i o n s igna l .

4. Experimental.- In o rder t o check t h e r e s u l t s es tab l i shed i n t h e preceding sec- t ion , we have used a se tup very s i m i l a r t o the one used normally i n Rb frequency standards: a Rb-87 lamp, followed by a Rb-85 f i l t e r , provides t h e pumping l i g h t f o r a Rb-87 coated c e l l without buffer-gas. The RF f i e l d is produced from the 5 MHz output of a Cs-clock, phase modulated, mul t fp l ied by 1368 and mixed with t h e out- pu t of a swept frequency syn the t ize r . In order t o avoid any coupling of the RF sidebands with t h e magnetic-field dependent Zeeman subs ta tes a t t h e h ighes t modu- l a t i o n frequencies ( - 10 kHz), a r a t h e r l a rge DC magnetic h i e l d of 0.5 Gauss was used t o separate t h e Zeeman l e v e l s by - 350 kHz.

Fig. 1 Amplitude A1 of t h e f i r s t harmonic o f t h e inversion (t) versus RF-atom detuning (theory and experiment). Y P = 2050 s-l, h+,, = 1 4 . 4 . 1 0 ~ s-l, sine-wave phase modulation, m = 1.4

Fig. 1 shows t h e shape of t h e resonance (amplitude A1 of t h e f i r s t harmonic of A ( ' ) ( t ) a s a funct ion of the RE'-atom detuning a ) . In t h i s exemple t h e modulation frequency i s much l a r g e r than t h e re laxa t ion r a t e s , s o t h a t wel l resolved sidebands appear a t i n t e g e r values of t h e r a t i o o / ~ . The quant i ty of i n t e r e s t f o r a frequen- cy s tandard i s t h e s lope of t h e curve near a = 0 , which we define a s

PI = aA_ a c a / r ~ )

(18)

Fig. 2a Slope of t h e discr iminat ing s i g n a l versus modulation frequency f o r y1/Y2 = 0.3; 0.7; 1.5; 3.0, sine-wave phase modulation ( m = 2 ) s o l i d l i n e s : eq. 11; o: experiment

Fig. 2 b Slope of t h e discr iminat ing s i g n a l versus modulation frequency for Y1/Y2 = 0-3; 0-7; 1.5; 3.0, square-wave modulation m = ~ / 4 ; s o l i d l ines : eq. 17 ( t a b l e 1) ; o: experiment

C8- 196 JOURNAL DE PHYSIQUE

The discr iminat ing s lope [ ~ o l t s / ~ z ] is then given by

where V i s t h e DC vol tage change generated a t the photo-detector output when t h e RF power l e v e l is switched from B = 0 t o B >> yly2 ( s a t u r a t i o n ) , thus inducing an atomic inversion v a r i a t i o n equal t o A' (eq. 5 ) .

Figures 2a and 2b show t h e dependence of P l on the modulation frequency f o r seve- r a l values of t h e r a t i o y1/y2. For low values of %, P1 increases with modulation frequency bu t i s independent of Y1. However, t h e modulation frequency a t which P1 reaches a maximum and the maximum value i t s e l f both depend on y l . A measurement of P I a s a funct ion of y, allows, a s described before, a simple experimental determi- na t ion of y1/Y2. In t h e condit ions of our experiment, t h e da ta f i t t h e t h e o r e t i c a l curve corresponding t o Y1/y2 = 0.7 ( f i g . g: square-wave modulation with m = T/4; f i g . &: sine-wave modulation with m = 2 ) . The re laxa t ion r a t e s y; and y; (see eqs 3, 5) could be measured by repeat ing these measurements a t various pumping r a t e s and ex t rapola t ing t o zero l i g h t i n t e n s i t y .

The dependence of PI on (sine-wave) modulation frequency i s shown i n f i g . 3 f o r var ious modulation depths. For low values of t h e modulation index m (m 2) , t h e optimum modulation frequency s t a y s constant bu t the s lope PI increases with m. For m 5 2, t h e maximum slope s t a y s constant b u t t h e optimum modulation frequency de- creases with increasing m: t h e l a r g e s t s i g n a l i s obtained when the frequency excur- s ion mm is roughly equal t o t h e width y2 of t h e resonance.

Fig. 3 Slope o f the discr iminat ing s i g n a l versus modulation frequency (sine-wave modulation) f o r var ious modulation depths ~ 1 / Y 2 = 0.7. S o l i d l ines : eq. 11; experimental data: + (m = 0 .5) ; 0 (m = 1); o ( m = 2 ) ; A ( m = 5 )

Fig. 4 shows how t h e s lope P1 o f t h e e r r o r s i g n a l depends on t h e phase excursion m f o r both sine-wave and square-wave modulation. In the l a t t e r case, P I is pro- por t iona l t o sin2m. The maximum slope i s thus obtained when m = T/4, regard less of a l l o ther parameters. In sine-wave modulation PI depends i n a more complicated way on both t h e modulation index and t h e modulation frequency bu t the optimum s lope

can be up t o 50% l a r g e r than i n square-wave modulation.

Fig. 4 Slope of t h e discr iminat ing s i g n a l versus phase excursion m f o r sine-wave phase modulation and square-wave phase modulation (wm/y2 = 0.77). So l id l i n e s : sine-wave (eq. 11); square-wave (eq. 17) experiment: o sine-wave phase modulation; + square-wave phase modulation, (s lope i n a r b i t r a r y u n i t s )

5. Conclusions.- A dynamical ca lcu la t ion of t h e double-resonance lineshapes i n the presence of phase-modulation o f t h e RF f i e l d has been performed. This calcu- l a t i o n is v a l i d f o r any combination of modulation frequency and depth b u t i s res- t r i c t e d t o unsaturated resonances. I t allows t o p r e d i c t t h e modulation parameters t h a t w i l l maximize t h e discr iminator s lope once t h e re laxa t ion r a t e s of t h e system a r e known. The re laxa t ion r a t e s can both be measured, using t h e same t h e o r e t i c a l r e s u l t s , by comparing the amplitude of t h e s i g n a l a t low and high modulation f re - quencies. Experimental r e s u l t s a r e i n good agreement with t h e o r e t i c a l p red ic t ions and show t h a t t h e assumptions underlying t h e ca lcu la t ions a r e j u s t i f i e d , par t i cu- l a r l y concerning t h e neg lec t of Zeeman pumping.

Acknowledgements

We thank D r . H. Brandenberger f o r having pointed ou t t h a t problem t o us and f o r he lpfu l discussions.

References

KARPLUS R . , Phys. Rev. 73 (1948) 1027 HALBACH K . , Helvetica Physica Acta 2 (1954) 259 HALBACH K., Helvetica Physica Acta 2 (1956) 37 PRIMAS H . , ~ e l v e t i c a Physica Acta 2 (1958) 17 MISSOUT G., VANIER J . , Can. J. Phys. 53 (1975) 1030 WILSON G.V.H. , J. Appl. Phys. 34 (1963) 3276 BURGESS J.H. , BROWN R.M., J. of Sci . InStr . 2 (1952) 334 BUCKMASTER H.A., SKIRROW J . D . , J. of Maqn. Res. 5 (1971) 285