22
Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation Franca Tecchio Ms 1,2,* , Andrea Cancelli Ms 1,3 , Carlo Cottone Ms 1,4 , Giancarlo Zito MD PhD 1,5 , Patrizio Pasqualetti Ms 6,2 , Anna Ghazaryan MD 5 , Paolo Maria Rossini MD 3,2 , Maria Maddalena Filippi MD 5 1 Laboratory of Electrophysiology for Translational neuroScience (LET’S) – ISTC – CNR, Department of Neuroscience, Fatebenefratelli Hospital, Rome, Italy 2 Department of Neuroimaging, IRCCS San Raffaele Pisana, Rome, Italy 3 Institute of Neurology, Dept. of Geriatrics, Neurosciences & Orthopaedics, Catholic University of Sacred Heart, Rome, Italy 4 Department of Neuroscience and Imaging, G. d’Annunzio University of Chieti – Pescara, Italy 5 Department of Clinical Neuroscience, Fatebenefratelli Hospital, Rome, Italy 6 Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy Corresponding author: Dr. Franca Tecchio, LET'S Laboratory of Electrophysiology for Translational neuroScience, ISTCCNR, Dipartimento di Neuroscienze Cliniche, Osp.le Fatebenefratelli, Isola Tiberina, Roma00186. Tel +39 06 6837382, email: [email protected]

Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation

Embed Size (px)

Citation preview

   

Multiple  sclerosis  fatigue  relief  by  bilateral  somatosensory  cortex  neuromodulation  

 

Franca  Tecchio  Ms1,2,*,  Andrea  Cancelli  Ms   1,3,  Carlo  Cottone  Ms   1,4,  Giancarlo  Zito  MD  PhD1,5,  

Patrizio  Pasqualetti  Ms6,2,  Anna  Ghazaryan  MD5,  Paolo  Maria  Rossini  MD3,2,  Maria  Maddalena  

Filippi  MD5  

1   Laboratory   of   Electrophysiology   for   Translational   neuroScience   (LET’S)   –   ISTC   –   CNR,  

Department  of  Neuroscience,  Fatebenefratelli  Hospital,  Rome,  Italy  

2  Department  of  Neuroimaging,  IRCCS  San  Raffaele  Pisana,  Rome,  Italy  

3  Institute  of  Neurology,  Dept.  of  Geriatrics,  Neurosciences  &  Orthopaedics,  Catholic  University  

of  Sacred  Heart,  Rome,  Italy  

4  Department  of  Neuroscience  and  Imaging,  G.  d’Annunzio  University  of  Chieti  –  Pescara,  Italy  

5  Department  of  Clinical  Neuroscience,  Fatebenefratelli  Hospital,  Rome,  Italy  

6   Medical   Statistics   and   Information   Technology,   Fatebenefratelli   Foundation   for   Health  

Research  and  Education,  AFaR  Division,  Rome,  Italy  

 

 

 

Corresponding  author:  Dr.  Franca  Tecchio,  LET'S  Laboratory  of  Electrophysiology  for  

Translational  neuroScience,  ISTC-­‐CNR,  Dipartimento  di  Neuroscienze  Cliniche,  Osp.le  

Fatebenefratelli,  Isola  Tiberina,  Roma-­‐00186.  Tel  +39  06  6837382,  e-­‐mail:  

[email protected]  

   

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

2    

Abstract  

Multiple  sclerosis  related  fatigue  is  highly  common  and  often  refractory  to  medical  therapy.  

Ten  fatigued  multiple  sclerosis  patients  received  two  blocks  of  5-­‐day  anodal  bilateral  primary  

somatosensory  areas  transcranial  Direct  Current  Stimulation  in  a  randomized,  double  blind  

sham-­‐controlled,  cross-­‐over  study.  The  real  neuromodulation  by  a  personalized  electrode,  

shaped  on  the  MR-­‐derived  primary  somatosensory  cortical  strip,  reduced  fatigue  in  all  patients,  

by  26%  in  average  (p=.002),  which  did  not  change  after  sham  (p=.901).  Anodal  tDCS  over  

bilateral  somatosensory  areas  was  able  to  relief  fatigue  in  mildly  disabled  MS  patients,  when  

the  fatigue-­‐related  symptoms  severely  hamper  their  quality  of  life.  These  small-­‐scale  study’s  

results  support  the  concept  that  interventions  modifying  the  sensorimotor  network  activity  

balances  could  be  a  suitable  non- pharmacological  treatment  for  multiple  sclerosis  fatigue.  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

3    

Introduction  

Approximately  80%  of  subjects  with  multiple  sclerosis  (MS)  complain  of  excessive  

fatigue;  in  half  of  them  it  is  their  most  disabling  symptom[10].  The  few  medications  used  to  

treat  MS  fatigue  are  often  of  limited  efficacy[12],  and  sometimes  not  officially  indicated  for  it.    

Much  of  the  MS  fatigue  originates  in  the  central  nervous  system,  with  a  specific  

involvement  of  the  sensorimotor  networks[29].  In  particular,  altered  excitability  properties  

within  the  sensorimotor  cortex  have  been  documented.  Consistent  involvement  of  brain  areas  

devoted  to  motor  planning  with  a  failure  of  the  inhibitory  mechanisms  in  frontal  and  primary  

motor  (M1)  cortex[15],  a  reduced  intracortical  inhibition  (ICI)  within  M1  either  pre  and  post  

fatiguing  exercise[16,  22],    and  an  increase  in  M1  excitability  [19,  27]  were  found  in  MS  patients  

complaining  of  fatigue  more  often  than  those  without  fatigue  or  than  healthy  subjects.  

The   aim   of   the   present   study   was   to   fit   to  MS   fatigued   patients   an   intervention   which   has  

already  been  proven  to  enhance  endurance  to   fatigue  when  applied  to  healthy  subjects[3].  A    

neuromodulation   procedure   capable   of   inducing   long-­‐lasting   effects  was   here   applied   to   the  

whole  bilateral  S1  strip  instead  of  the  hand  sensorimotor  areas  alone[3].  Previous  electro-­‐  and  

magneto-­‐encephalographic   (EEG   and  MEG)   data   from  our   laboratory   showed   a   disruption   of  

primary   somatosensory   network   patterning   in   MS[6,   26]   as   a   possible   substrate   for   central  

fatigue[28].   In   particular,   we   found   that   an   altered   functional   communication   within   the  

central-­‐peripheral   nervous   systems,   namely   involving   S1   and   M1,   was   sensitive   to   tiny  

alterations  of  neural  networking  leading  to  fatigue,  well  before  the  appearance  of  impairments  

of  the  communicating  nodes[28].  Linking  these  functional  indications  to  cortical  atrophy  of  the  

parietal   lobe   observed   in   patients   affected   by   multiple   sclerosis   fatigue,[20]   we   planned   to  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

4    

selectively   modulate,   via   a   transcranial   Direct   Current   Stimulation   (tDCS),   the   primary  

somatosensory   cortices   excitability.  We   first   decided   to   selectively   target   S1   instead   of   SM1,  

since  M1  is  already  more  excitable  in  MS  patients  complaining  of  fatigue  than  in  those  without  

fatigue   and   in   healthy   subjects[19,   27].   Furthermore,   neither   electrophysiological   [6],   nor  

neuroimaging   data   [20],     provided   any   evidence   for   mono-­‐hemispheric   prevalence   in   MS  

fatigue   so   far.   Furthermore,   reduction  of   interhemispheric   functional   connectivity   in   fatigued  

patients  [21]  suggested  stimulating  interventions  aiming  to  restore  a  normal  inter-­‐hemispheric  

dynamical  balance.  Besides,  since  lower  limbs  are  typically  involved  in  the  disease,  we  opted  to  

bilaterally   [17,   25]   target   the   S1   surface   along   the   whole   extent   of   Rolandic   sulci.   We   thus  

exploited  an  ad-­‐hoc  procedure   to  properly   shape  and  position   the  custom-­‐sized  S1  electrode  

using  individual  brain  MRI  data  [4]  .  

In  the  present  study  electrodes  personalized  to  individual  patients  were  employed,  with  the  

aim  of  increasing  bilateral  S1  excitability  in  a  group  of  mild  MS  patients  complaining  of  fatigue.  

Primary  endpoint  was  a  Modified  Fatigue  Impact  Scale  (MFIS)  score  reduction  as  a  measure  of  

fatigue  relief.  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

5    

Methods  

Participants  

We  enrolled  patients  with  MS  in  a  mild  state  (Expanded  Disability  Status  Scale,  EDSS  

≤3.5)  experiencing  fatigue  (MFIS  >  38);  they  were  depression-­‐free  (Beck  Depression  Inventory,  

BDI<19)  and  in  absence  of  clinical  relapse  or  radiological  evidence  of  disease  activity  for  the  last  

three  months.  Patients  were  excluded  if  they  were  consuming  symptomatic  drugs  that  could  

affect  their  level  of  fatigue,  depression  and  anxiety.  They  were  also  excluded  if  they  suffered  

from  epilepsy  or  other  central/peripheral  nervous  system  comorbidities,  or  any  conditions  that  

could  cause  fatigue,  including  pregnancy.  

 

Study  design  

  To  investigate  the  efficacy  of  the  treatment  by  bilateral  whole  body  S1  5-­‐day  anodal  

tDCS  we  designed  a  randomized,  double  blind,  sham-­‐controlled,  cross-­‐over  study  AB/BA  (real-­‐

sham/sham-­‐real).  Primary  outcome  measure  was  MFIS.  It  is  based  on  items  derived  from  

interviews  with  patients  concerning  how  fatigue  impacts  their  lives,  in  terms  of  physical,  

cognitive,  and  psychosocial  functioning.  Administration  time  is  approximately  5-­‐10  minutes  and  

is  a  self-­‐report  questionnaire  that  the  patient  can  generally  complete  with  little  or  no  

intervention  of  an  interviewer.  All  of  our  patients  completed  the  questionnaire  by  themselves.    

We  applied  a  restricted  randomization  procedure,  so  that  the  two  arms  were  balanced  

(5  patients  Sham!Real  and  5  Real!Sham).  Once  a  patient  was  recruited,  the  

neurophysiologist  or  the  technician  responsible  for  the  tDCS  delivery  called  the  Statistical  Unit  

and  received  the  indication  of  the  assigned  treatment,  on  the  basis  of  the  randomization  list  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

6    

prepared  in  advance  and  kept  concealed.  The  patient  was  kept  blind  to  the  delivered  

treatment.  Being  the  patients  themselves  the  outcome  evaluator  the  study  design  is  

double-­‐blind.  

The  fatigue  scale  scores  were  collected  before  (T0),  at  the  end  of  treatment  (at  least  4  hours  

after  the  5th  day  of  tDCS,  T1)  and  four  (T4),  eight  (T8)  weeks  later,  according  to  MFIS  referred  

to  the  past  4  weeks.    

MFIS  scores  were  collected,  and  the  tDCS  treatments  were  executed,  in  the  early  

afternoon.  

Since  the  literature  did  not  provide  data  about  the  duration  of  possible  effects  of  our  

tDCS  treatment,  we  collected  MFIS  every  4  weeks  even  after  T8  to  wait  a  value  similar  to  the  

baseline  before  directing  patients  to  the  second  treatment  block.  We  defined  as  ‘washout’  a  

difference  from  baseline  <  50%  of  the  effect,  i.e.  the  ‘washout  time,  TW’  was:  

!"#$  !"!!"#$  !"!"#$%  !"#$%!"#$  !"!"#$%  !"#$%

< 0.5  !"#$  !"!"#$%  !"#$%!!"#$  !"!"#$%  !"#$%!"#$  !"!"#$%  !"#$%

.  To  minimize    possible  

fatigue  increase  due  to  hot  weather[11],  we  avoided  going  every  day  for  1  week  to  the  Hospital  

in  summertime,  i.e.  in  the  case  the  washout  time  occurred  on  July  or  August,  September  was  

waited  for  the  second  block.    

  In  addition  to  EDSS  and  BDI,  a  detailed  clinical  history  was  collected  in  baseline  (Table  1).  

In  all  cases,  MFIS  was  collected  either  separately  (in  a  different  day)  or  before  other  clinical  

scales.  All  patients  underwent  brain  magnetic  resonance  imaging  (MRI)  to  agree  with  

inclusion/exclusion  criteria  and  to  tailor  the  S1  personalized  electrode  [25].    

The  Ethics  Committee  of  the  ‘S.  Giovanni  Calibita’  Fatebenefratelli  Hospital  in  Rome  approved  

the  protocol.  All  patients  signed  an  informed  consent  form  before  their  recruitment.  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

7    

Sample  size      

To  calculate  the  sample  size  we  used  the  repeatability  of  MFIS  scores  before  neuromodulation  

treatment  started.  We  collected  MFIS  twice  one  week  apart  in  10  patients  with  mild  MS.  The  

average  MFIS  pre-­‐post  difference  resulted  0.1  ±  1.9  (Table  1),  with  the  Intra-­‐Class  Correlation  

indicating  a  very  high  agreement  (ICC=0.96;  p<0.001).  We  assumed  that  the  sham  stimulation  

would  not  induce  any  change  and  that  a  fatigue  reduction  of  at  least  3  points  could  be  

considered  clinically  relevant  and  plausibly  induced  by  our  treatment.  According  to  cross-­‐over  

design,  a  sample  size  of  10  patients  allowed  us  to  recognize  as  significant  (at  a  bilateral  alpha  

level  of  0.05)  this  large  standardized  effect  size  (3/1.9=1.6),  with  a  power  above  0.90.  This  

sample  size  will  not  have  enough  power  to  test  the  main  Duration  effect  and  the  

Duration*tDCS  Treatment  interaction,  to  be  tested  in  a  larger  incoming  study.  

   

Experimental  Procedure  

Brain  MR  images  were  collected  from  a  standard  scanner  operating  at  1.5  Tesla  (Philips  

Medical  Systems,  Best,  The  Netherlands).  A  semi-­‐automated  region  of  interest  approach  was  

used  to  trace  hyperintense  lesions  upon  white  matter  (Jim  6.0,  Xinapse  Systems  Ltd,  Colchester,  

UK),  and  the  lesion  relative  factor  (LrF)  was  calculated  normalizing  for  brain  parenchymal  

volume[26].  

SofTaxic  Neuronavigation  System  ver.2.0  (www.softaxic.com,  E.M.S.,  Bologna,  Italy)  was  

used   to   elaborate   individual   brain   MRI   data   to   guide   the   stereotaxic   procedure   for   the  

electrode’s  personalization.  We  shaped  the  bilateral  S1  electrode  as  a  2-­‐cm-­‐width  band  along  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

8    

the  central  sulcus  trace  (setting  the  electrode  area  to  35  cm2[25]  Figure  1A).  SofTaxic  navigation  

was  also  used  to  place  the  S1  electrode  5  mm  anteriorly  in  line  with  the  central  sulcus  (Figure  

1B).  The  reference  electrode  (7  x  10  cm2)  was  centered  on  Oz,  with  the  longer  side  pointing  in  

the  left-­‐right  direction  (Figure  1C).  

tDCS  was  delivered  through  the  electrodes  wired  to  an  electrical  stimulator  (BrainSTIM,  

EMS  srl,  Bologna,  Italy).  The  customized  S1  was  the  anode.  A  constant  current  of  1.5  mA  

intensity  was  applied  for  15  minutes  a  day  for  5  consecutive  days.  Sham  condition  consisted  of  

4  s  of  active  stimulation  at  the  beginning  and  the  end  of  each  daily  15  minute-­‐stimulation.  At  

debriefing  patients  were  explicitly  asked  if  they  felt  the  stimulation  and  no  subject  reported  

feeling  any  difference  across  tDCS  blocks.  

Statistical  analysis      

After  fitting  a  Gaussian  of  MFIS  scores  distribution  (checked  by  the  Shapiro-­‐Wilk  test),  tDCS  

effects  were  studied  by  submitting  MFIS  to  an  Analysis  of  Variance  (ANOVA)  with  

tDCS  Intervention  (Pre  T0,  Post  T1)  and  Stimulation  (Real,  Sham)  as  within-­‐subjects  factors.  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

9    

Results  

The  MS  patients  presented  a  mild  clinical  picture  and  no  sign  of  depression  (Table  1).  

Seven  of  them  had  relapsing-­‐remitting,  1  secondary-­‐  and  2  primary-­‐  progressive  MS.  The  lesion  

load  did  not  associate  to  any  clinical  or  fatigue-­‐related  measure  (LrF  with  EDSS,  BDI,  MFIS  

p>.200  consistently).    

One  patient  (P6)  did  not  come  back  for  the  second  block-­‐sham  stimulation.  Real  and  sham  

stimulation  block  induced  effects  lasting  differently.  As  mentioned  above,  we  considered  the  

washout  ‘completed’  when  the  percentage  MFIS  difference  from  baseline  became  smaller  than  

0.5  of  the  induced  effect.  Subjects  receiving  sham  as  first  intervention  block  returned  below  the  

washout  threshold  in  4.8  ±  1.8  weeks,  while  those  undergoing  real  stimulation  as  first  did  the  

same  in  9.6  ±  3.6  weeks  (independent  sample  t-­‐test  p=.028).  The  washout  time  correlated  to  

the  dimension  of  the  effect  (Pearson’s  correlation  r=.816,  p=.004).  The  second  block  started  3.3  

±  1.3  months  after  the  first  block.  The  mean  MFIS  percentage  difference  at  the  second  block  

baseline  with  respect  to  the  first  block  baseline  was  -­‐10%  ±  6%  of  the  induced  effect.    

The  Shapiro-­‐Wilk  test  indicated  that  the  MFIS  scores  distribution  did  not  differ  from  a  Gaussian  

(p>.500).  ANOVA  indicated  that  the  MFIS  changes  depended  on  the  type  of  stimulation  

[Stimulation*tDCS  Intervention  F[1,8]=9.692,  p=.014,  Figure  2],  with  a  reduction  of  fatigue  after  

Real  stimulation  (post-­‐hoc  comparison  p=.002,  31.0  ±  4.0  post-­‐  vs.  42.1  ±  2.6  pre-­‐stimulation)  

and  no  change  after  Sham  (post-­‐hoc  comparison  p=.901,  34.8  ±  3.5  post-­‐  vs.  37.2  ±  2.4  pre-­‐

stimulation).  Slightly  different  baseline  levels  of  Real  and  Sham  blocks  were  observed  

(F(1,8)=4.665,  p=.063),  but  baseline  levels  did  not  correlate  with  the  observed  changes  

(p>.200).    

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

10    

After  real  stimulation  the  mean  fatigue  reduction  was  28%  of  the  baseline  (range  between  2%  

and  76%),  and  8%  after  sham  (range  between  -­‐11%  and  38%,  paired-­‐samples  t-­‐test  real  vs.  

sham,  p=.016).  No  patient  was  classified  as  an  outlier  (Figure  2).  Noteworthy,  when  excluding  

the  patient  who  displayed  the  76%  of  amelioration,  the  overall  fatigue  improvement  after  real  

tDCS  among  the  remaining  subjects  was  confirmed,  being  21%  in  average,  ranging  between  2-­‐

40%  (paired-­‐samples  t-­‐test  real  vs.  sham,  p=.038).  

Neither  MFIS  nor  its  changes  associated  with  BDI  or  EDSS  (p>.500  consistently).  

   

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

11    

Discussion  

We  documented  that  an  innovative  personalized  electrode  targeting  5-­‐day  anodal  tDCS  

on  bilateral  S1  encompassing  the  whole  body  representation  induced  a  relevant  reduction  of  

MS  fatigue  symptoms.    

 

Clinical  relevance  of  personalized  neuromodulation  

Fatigue  is  the  single  symptom  that  MS  patients  identify  as  interfering  most  with  their  

daily  activities  [12].  It  is  agreed  in  literature  that  treatment  of  fatigue  requires  a  

multidisciplinary  approach,  with  appropriate  strategies  including  graded  exercise  programs,  

behavior  modification  therapy,  or  medication.  Nevertheless  fatigue  remains  a  challenging  

problem  with  only  incremental  improvements  in  developing  effective  drug  therapies  [5,  12].    

Currently  available  medications  include  amantadine,  acetyl  L-­‐carnitine,  aminopyridines  (3-­‐4-­‐

diaminopyridine,  4-­‐aminopyridine)  that  did  not  prove  a  definite  efficacy  and  presented  various  

grade  of  side-­‐effects  [7,  12]  .    

The  proposed  neuromodulation  intervention,  if  confirmed  efficacious  in  larger  cohorts  of  

patients,  will  represent  a  simple,  low  cost  and  risk-­‐free  procedure  [2]    

Whole  body-­‐S1  tDCS  to  relief  MS  fatigue  

  Our  working  hypothesis  about  the  mechanisms  behind  beneficial  tDCS  effects  stands  on  

the  indications  that  a  site  of  MS  fatigue  is  upstream  from  the  cortico-­‐spinal  tract  [24]  and  that  

tDCS  can  modify  complex  cortical  and  systemic  excitability  and  connectivity  properties.  The  

effects  of  non-­‐invasive  brain  stimulation,  in  fact,  are  not  limited  to  the  directly  targeted  brain  

regions,  but  are  spread  trans-­‐synaptically  to  distant  cortical  and  subcortical  structures  in  a  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

12    

networking  mode  [1,  14].  In  particular,  our  previous  data  on  impoverished  S1  functional  

projection  to  M1  posed  the  hypothesis  of  greater  relief  from  fatigue  through  an  intervention  

predominantly  impacting  S1  excitability.  It  can  be  speculated  that  anodal  tDCS  inducing  a  

prolonged  facilitation  of  cortical  pyramidal  S1  neurons  can  enhance  parieto-­‐frontal  projections  

[23]  without  significantly  affecting  M1’s  excitability  (already  over-­‐expressed  in  fatigued  MS  

patients  [19,  27,  29]  ).    tDCS  may  also  be  responsible  of  important  neuroplastic  effects,  partly  

dependent  on  intracortical  NMDA  receptors  activity  and  on  stimulation  parameters  (duration  

and  intensity).  Studies  applying  tDCS  for  multiple  consecutive  days,[9]  beyond  establishing  the  

safety  of  the  procedure,  showed  that  the  final  effects  are  cumulative,  lasting  24  hours  at  least.  

This  supported  the  proposed  application  of  tDCS  on  5  consecutive  days,  in  order  to  achieve  a  

neural  modulation  outlasting  the  stimulation  session,  leading  to  fatigue  improvement.  In  our  

observations,  the  effects  were  evident  immediately  following  the  fifth  day    of  real  stimulation  

block  and  lasted  at  least  2  months  (MFIS  at  T8  did  not  differ  from  T1  and  differed  from  

baseline).  

 

tCS  electrode  personalization    

While  an  overall  lack  of  efficacy  was  found  for  tDCS  over  bilateral  sensorimotor  hand  

cortex  [8]  we  documented  beneficial  effects  when  focusing  the  cortical  target  over  bilateral  S1,  

in  line  with  our  working  hypothesis.  This  indicates  that  it  is  possible  to  boost  tCS  efficacy  by  

properly  tuning  the  stimulation  parameters.  

A  tailoring  procedure  to  personalize  specific  cortical  targeting  was  used.  In  the  present  

study,  following  our  working  hypothesis,  the  procedure  took  into  account  the  realistic  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

13    

individual  central  sulcus  shape,  which  was  reconstructed  by  means  of  a  structural  brain  MRI  of  

the  patient.  Furthermore,  an  MRI-­‐guided  neuronavigation  system  was  used  to  precisely  locate  

the  electrodes  through  the  subject's  scalp  onto  the  target  cortical  patches.  The  present  results  

strengthen  the  notion  that  it  is  possible  to  enhance  the  effects  of  transcranial  current  

stimulations  on  specific  cortical  areas  by  properly  shaping  and  positioning  the  electrodes.    

The  proposed  workflow  needs  a  precise  neuronavigation  to  shape  and  position  the  

personalized  electrode.  This  is  the  only  step  requiring  special  attention  and  we  are  working  on  

automatizing  both  the  electrode's  shaping  from  the  individual  brain  MRI  and  its  positioning,  in  

view  of  future  applications  at  home.  

 

Bilateral  stimulation  

The  implemented  targeting  of  the  whole  bilateral  [13,  18,  25]  S1  covering  the  cortical  

convexity  from  left  to  right  medio-­‐lateral  areas,  where  face,  upper,  and  lower  limbs  of  both  

body  sides  are  represented,  can  be  a  further  motivation  for  explaining  the  greater  efficacy  of  

the  present  treatment  compared  to  the  selected  bilateral  hand  sensorimotor  region  

stimulation[8].  

 

Conclusion  

A  beneficial  tDCS  effects  against  fatigue  in  MS  patients  with  mild  disability,  when  the  

fatigue-­‐related  symptoms  could  be  identified  as  the  main  cause  of  the  reduced  quality  of  life,  is  

the  main  outcome  of  the  present  report.  Our  findings  support  the  notion  that  changing  

reciprocal  excitability  balances  within  the  neural  system  implicated  in  MS  fatigue  can  produce  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

14    

beneficial  effects.  This  result  sustains  neuroscientists’  efforts  in  developing  proper  

neuromodulation  interventions,  in  terms  of  cortical  targeting,  reference  electrode  dimension  

and  positioning,  induced  current  amplitude,  and  time  modulation.  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

15    

Acknowledgement  

The  Authors  wish  to  thank  NT  Marina  Di  Giorgio  for  her  technical  contributions.    

This  work  was  supported  by:  1)  FISM  –  Fondazione  Italiana  Sclerosi  Multipla  –Cod.2011/R/32  

[FaReMuSDiCDiT],  2)  Ministry  of  Health  Cod.  GR-­‐2008-­‐1138642  [ProSIA]  and  3)  MIUR  Prot.  

2010SH7H3F  'Functional  connectivity  and  neuroplasticity  in  physiological  and  pathological  aging  

[ConnAge]'.  

 

Conflict  of  interest  

The  authors  have  no  conflicts  of  interest  or  financial  ties  to  disclose.

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

16    

Table  1.   MS  patient  demographic  and  clinical  profile  

 

M=male,   F=female;  Mean   or  Median   in   italics   and   SD=standard   deviations   ()   or   ranges   [min,  

max]   across   the   group   of:   Dis  Dur=disease   duration;   ARR=  annual   relapse   rate;   Scores   of:  

EDSS=Expanded   Disability   Status   Scale,   BDI=Beck   Depression   Inventory,   LrF=lesion   relative  

factor,   MFIS=modified   fatigue   impact   scale,   and   9-­‐HPT=time   (s)   to   execute   right   hand  

9-­‐Hole  Peg  Test  at  baseline.  *  MFIS  1�week  apart  repetition  was  41.5,  SD  6.1  (see  study  design).  

   

 Sex   Age  

Dis  Dur  

ARR   EDSS   BDI   LrF   MFIS   9-­‐HPT  

Mean/Median  7F/3M  

45.8   7.1   0   1.5   12.7   0.38   41.6*   20.8  

SD/Range   (7.6)   (8.2)   [0-­‐2]   [0-­‐3.5]   (3.5)   (0.48)   (6.4)*   (4.9)  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

17    

Figures/Figure  legends  

 

Figure  1  Experimental  procedure  and  design  

 

 

Main  steps  of  the  experimental  procedure:  personalized  electrode  shaping  (ES,  A)  performed  

once  for  each  patient  (see  the  sequence  of  the  operations  sketched  for  the  two  consecutive  

blocks  in  the  bottom  part  of  the  figure)  and  electrode  positioning  (EP,  B)  for  tDCS  stimulation  

(C)  repeated  for  the  5-­‐day  treatment.      

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

18    

Figure  2  Bilateral  S1  AtDCS  effects  on  MS  fatigue  

 

Left  Individual  MFIS  scores  before  (Pre-­‐)  and  after  (at  least  4  hours  after  day  5  tDCS,  Post1-­‐)  

five-­‐day  bilateral  S1  anodal  tDCS  either  real  or  sham  (filled  symbols).  Post4  and  Post8,  which  did  

not  enter  the  main  analysis  (see  methods),  are  presented  for  descriptive  purposes.    Patient  who  

underwent  sham  stimulation  first  are  listed  in  bold  (patients  3,  4,  5,  6,  7).  In  all  patients  MFIS  

decreased  after  real  stimulation.  Subject  P6  did  not  come  for  the  second  session.    Middle  The  

MFIS  post1-­‐pre  difference  and  its  standard  deviation  is  plotted  for  real  and  sham  stimulations.  

Right  The  box  and  whiskers  plot  is  used  for  percentage  MFIS  changes,  showing  that  no  outlier  

was  found,  according  to  Tukey’s  method:  no  values  were  below  [Quartile1  –  1.5×Inter  Quartile  

Range,  IQR]  or  above  [Quartile3  +  1.5×IQR].  

 

 

   

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

19    

References    

1.   Baudewig  J,  Nitsche  MA,  Paulus  W,  Frahm  J  (2001)  Regional  modulation  of  BOLD  MRI  

responses  to  human  sensorimotor  activation  by  transcranial  direct  current  stimulation.  

Magn  Reson  Med  45:196-­‐201  

2.   Brunoni  AR,  Amadera  J,  Berbel  B,  Volz  MS,  Rizzerio  BG,  Fregni  F  (2011)  A  systematic  

review  on  reporting  and  assessment  of  adverse  effects  associated  with  transcranial  

direct  current  stimulation.  The  international  journal  of  neuropsychopharmacology  /  

official  scientific  journal  of  the  Collegium  Internationale  Neuropsychopharmacologicum  

14:1133-­‐1145  

3.   Cogiamanian  F,  Marceglia  S,  Ardolino  G,  Barbieri  S,  Priori  A  (2007)  Improved  isometric  

force  endurance  after  transcranial  direct  current  stimulation  over  the  human  motor  

cortical  areas.  Eur  J  Neurosci  26:242-­‐249  

4.   Cottone  C,  Tomasevic  L,  Porcaro  C,  Filligoi  G,  Tecchio  F  (2013)  Physiological  aging  

impacts  the  hemispheric  balances  of  resting  state  primary  somatosensory  activities.  

Brain  topography  26:186-­‐199  

5.   Courtney  AM,  Castro-­‐Borrero  W,  Davis  SL,  Frohman  TC,  Frohman  EM  (2011)  Functional  

treatments  in  multiple  sclerosis.  Current  opinion  in  neurology  24:250-­‐254  

6.   Dell'Acqua  ML,  Landi  D,  Zito  G,  Zappasodi  F,  Lupoi  D,  Rossini  PM,  Filippi  MM,  Tecchio  F  

(2010)  Thalamocortical  sensorimotor  circuit  in  multiple  sclerosis:  an  integrated  

structural  and  electrophysiological  assessment.  Hum  Brain  Mapp  31:1588-­‐1600  

7.   DeLuca  J,  Nocentini  U  (2011)  Neuropsychological,  medical  and  rehabilitative  

management  of  persons  with  multiple  sclerosis.  NeuroRehabilitation  29:197-­‐219  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

20    

8.   Ferrucci  R,  Vergari  M,  Cogiamanian  F,  Bocci  T,  Ciocca  M,  Tomasini  E,  De  Riz  M,  Scarpini  

E,  Priori  A  (2013)  Transcranial  direct  current  stimulation  (tDCS)  for  fatigue  in  multiple  

sclerosis.  NeuroRehabilitation  

9.   Fregni  F,  Boggio  PS,  Lima  MC,  Ferreira  MJ,  Wagner  T,  Rigonatti  SP,  Castro  AW,  Souza  DR,  

Riberto  M,  Freedman  SD,  Nitsche  MA,  Pascual-­‐Leone  A  (2006)  A  sham-­‐controlled,  phase  

II  trial  of  transcranial  direct  current  stimulation  for  the  treatment  of  central  pain  in  

traumatic  spinal  cord  injury.  Pain  122:197-­‐209  

10.   Giovannoni  G  (2006)  Multiple  sclerosis  related  fatigue.  Journal  of  neurology,  

neurosurgery,  and  psychiatry  77:2-­‐3  

11.   Guidelines  MSCfCP  (1998)  Fatigue  and  multiple  sclerosis:  evidence-­‐based  management  

strategies  for  fatigue  in  multiple  sclerosis  Clinical  Practice  Guidelines:6  

12.   Kesselring  J,  Beer  S  (2005)  Symptomatic  therapy  and  neurorehabilitation  in  multiple  

sclerosis.  Lancet  neurology  4:643-­‐652  

13.   Koenigs  M,  Ukueberuwa  D,  Campion  P,  Grafman  J,  Wassermann  E  (2009)  Bilateral  

frontal  transcranial  direct  current  stimulation:  Failure  to  replicate  classic  findings  in  

healthy  subjects.  Clin  Neurophysiol  120:80-­‐84  

14.   Lang  N,  Siebner  HR,  Ward  NS,  Lee  L,  Nitsche  MA,  Paulus  W,  Rothwell  JC,  Lemon  RN,  

Frackowiak  RS  (2005)  How  does  transcranial  DC  stimulation  of  the  primary  motor  cortex  

alter  regional  neuronal  activity  in  the  human  brain?  Eur  J  Neurosci  22:495-­‐504  

15.   Leocani  L,  Colombo  B,  Magnani  G,  Martinelli-­‐Boneschi  F,  Cursi  M,  Rossi  P,  Martinelli  V,  

Comi  G  (2001)  Fatigue  in  multiple  sclerosis  is  associated  with  abnormal  cortical  

activation  to  voluntary  movement-­‐-­‐EEG  evidence.  Neuroimage  13:1186-­‐1192  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

21    

16.   Liepert  J,  Mingers  D,  Heesen  C,  Baumer  T,  Weiller  C  (2005)  Motor  cortex  excitability  and  

fatigue  in  multiple  sclerosis:  a  transcranial  magnetic  stimulation  study.  Mult  Scler  

11:316-­‐321  

17.   Marshall  L,  Molle  M,  Hallschmid  M,  Born  J  (2004)  Transcranial  direct  current  stimulation  

during  sleep  improves  declarative  memory.  J  Neurosci  24:9985-­‐9992  

18.   Marshall  L,  Molle  M,  Siebner  HR,  Born  J  (2005)  Bifrontal  transcranial  direct  current  

stimulation  slows  reaction  time  in  a  working  memory  task.  BMC  Neurosci  6:23  

19.   Nielsen  JF,  Norgaard  P  (2002)  Increased  post-­‐exercise  facilitation  of  motor  evoked  

potentials  in  multiple  sclerosis.  Clin  Neurophysiol  113:1295-­‐1300  

20.   Pellicano  C,  Gallo  A,  Li  X,  Ikonomidou  VN,  Evangelou  IE,  Ohayon  JM,  Stern  SK,  

Ehrmantraut  M,  Cantor  F,  McFarland  HF,  Bagnato  F  (2010)  Relationship  of  cortical  

atrophy  to  fatigue  in  patients  with  multiple  sclerosis.  Arch  Neurol  67:447-­‐453  

21.   Peltier  SJ,  LaConte  SM,  Niyazov  DM,  Liu  JZ,  Sahgal  V,  Yue  GH,  Hu  XP  (2005)  Reductions  in  

interhemispheric  motor  cortex  functional  connectivity  after  muscle  fatigue.  Brain  

research  1057:10-­‐16  

22.   Perretti  A,  Balbi  P,  Orefice  G,  Trojano  L,  Marcantonio  L,  Brescia-­‐Morra  V,  Ascione  S,  

Manganelli  F,  Conte  G,  Santoro  L  (2004)  Post-­‐exercise  facilitation  and  depression  of  

motor  evoked  potentials  to  transcranial  magnetic  stimulation:  a  study  in  multiple  

sclerosis.  Clin  Neurophysiol  115:2128-­‐2133  

23.   Polania  R,  Nitsche  MA,  Paulus  W  (2011)  Modulating  functional  connectivity  patterns  and  

topological  functional  organization  of  the  human  brain  with  transcranial  direct  current  

stimulation.  Hum  Brain  Mapp  32:1236-­‐1249  

Tecchio  et  al     MS  fatigue  relief  by  bilateral  S1  tDCS  

22    

24.   Sheean  GL,  Murray  NM,  Rothwell  JC,  Miller  DH,  Thompson  AJ  (1997)  An  

electrophysiological  study  of  the  mechanism  of  fatigue  in  multiple  sclerosis.  Brain  

120:299-­‐315  

25.   Tecchio  F,  Cancelli  A,  Cottone  C,  Tomasevic  L,  Devigus  B,  Zito  G,  Ercolani  M,  Carducci  F  

(2013)  Regional  personalized  electrodes  to  select  transcranial  current  stimulation  target.  

Frontiers  in  human  neuroscience  7:131  

26.   Tecchio  F,  Zito  G,  Zappasodi  F,  Dell'  Acqua  ML,  Landi  D,  Nardo  D,  Lupoi  D,  Rossini  PM,  

Filippi  MM  (2008)  Intra-­‐cortical  connectivity  in  multiple  sclerosis:  a  neurophysiological  

approach.  Brain  131:1783-­‐1792  

27.   Thickbroom  GW,  Sacco  P,  Kermode  AG,  Archer  SA,  Byrnes  ML,  Guilfoyle  A,  Mastaglia  FL  

(2006)  Central  motor  drive  and  perception  of  effort  during  fatigue  in  multiple  sclerosis.  J  

Neurol  253:1048-­‐1053  

28.   Tomasevic  L,  Zito  G,  Pasqualetti  P,  Filippi  M,  Landi  D,  Ghazaryan  A,  Lupoi  D,  Porcaro  C,  

Bagnato  F,  Rossini  P,  Tecchio  F  (2013)  Cortico-­‐muscular  coherence  as  an  index  of  fatigue  

in  multiple  sclerosis.  Mult  Scler  19:334-­‐343  

29.   Yusuf  A,  Koski  L  (2013)  A  qualitative  review  of  the  neurophysiological  underpinnings  of  

fatigue  in  multiple  sclerosis.  Journal  of  the  neurological  sciences  330:4-­‐9