29
Radical Production from Alkene Ozonolysis William Bloss 1 , Salim Alam 1 , Andrew Rickard 2 Marie Camredon 1 , Kevin Wyche 3 , Timo Carr 3 , Paul Monks 3 Amalia Munoz 4 , Mila Rodenas 4 , Monica Vasquez 4 1 School of Geography, Earth & Environmental Sciences, University of Birmingham 2 NCAS, School of Chemistry, University of Leeds 3 Department of Chemistry, University of Leicester 4 EUPHORE Laboratories, Fundaçion CEAM, Valencia

Radical Production from Alkene Ozonolysis

Embed Size (px)

Citation preview

Radical Production from Alkene Ozonolysis

William Bloss1, Salim Alam1, Andrew Rickard2

Marie Camredon1, Kevin Wyche3, Timo Carr3, Paul Monks3

Amalia Munoz4, Mila Rodenas4, Monica Vasquez4

1 School of Geography, Earth & Environmental Sciences, University of Birmingham

2 NCAS, School of Chemistry, University of Leeds

3 Department of Chemistry, University of Leicester

4 EUPHORE Laboratories, Fundaçion CEAM, Valencia

Alkenes...

Alkene + O3 OH + HO2 + Semi-Volatile Organics

Atmospheric Oxidants Aerosol Precursors

• Urban environments: Alkenes comprise ca. 15 % of NMHCs

• Account for substantial fraction of chemical reactivity (total OH sink)

Chelmsford, London, 2003

• O3 + alkenes comprise 29% of net OH source

(43% during heatwave)

Midday flux in units of 105 molec cm-3 s-1

TORCH and PUMA

Chelmsford, London, 2003

• O3 + alkenes comprise 29% of net OH source

(43% during heatwave)

Midday flux in units of 105 molec cm-3 s-1

TORCH and PUMA

Current atmospheric models...

• Based upon laboratory measurements of yields for individual alkenes...

Current atmospheric models...

• Based upon laboratory measurements of yields for individual alkenes...

OH

Current atmospheric models...

• Based upon laboratory measurements of yields for individual alkenes...

HO2

Wegener et al., 2007:

Mihelcic et al., 1999: Ethene 0.39 (MIESR)

Qi et al., 2006: Ethene 0.38 (PERCA)

Qi et al., 2009: Propene 0.19

Malkin et al., 2009: Isoprene 0.26 (LIF)

Current atmospheric models...

• Based upon laboratory measurements of yields for individual alkenes...

RO2

Qi et al., 2006: Ethene 0.45 (HO2+RO2)

Qi et al., 2009: Propene 0.19

TRAPOZ...

Total Radical Production from Alkene Ozonolysis

Aims :

• Determination of the total radical yields (OH, HO2, RO2) from the ozonolysis of a

range of alkenes of biogenic, anthropogenic origin

• Measurement and identification of the gas-phase degradation products from the

ozonolysis of selected alkenes, monoterpenes

• Improve representation of alkene ozonolysis in chemical mechanisms (MCM)

Approach

• Large Simulation Chamber Experiments with direct radical observations...

EUPHORE

TRAPOZ approach

Chamber experiments

• European Photoreactor (EUPHORE), Valencia

• 2 campaigns ~ 60 experiments

• Instruments include: LIF, PERCA, FT-IR,

CIR-TOF-MS and CO,

HCHO, O3 monitors

Types of Experiment

Alkene + O3 - direct OH / HO2 measurements

Alkene + O3 + CO

Alkene + O3 +

• Alkenes investigated:

- Observation of secondary organics

- HO2 and kO3 measurements

- indirect OH measurements

- RO2 measurements

Experimental conditions:

• Dark, no NOx

• Ambient T & p

• [Alkene] ~ 100 - 500 ppb

• [O3] ~ 100 - 500 ppb

• [CO] or [Cyclohexane] ~ 100’s ppm

• Time: 1 hour – 3 hours+ terpenes

Analysis Approach

• All experiments analysed via models

(secondary processes)

• Model based upon MCM v3.1

with updated ozonolysis scheme

• Use Data to constrain fast CI chemistry

O3 + Ethene rate constant

• Excess CO experiment: scavenge OH radicals

• Optimise k(O3 + C2H4) to fit observed O3, ethene decay profiles

Ethene & Ozone

300.0

350.0

400.0

450.0

500.0

550.0

0 10 20 30 40 50 60 70 80 90

Time [mins]

MR

[p

pb

]

Ethene Model

O3 Model

Ethene FTIR

O3 FTIR

k298k = (1.59 0.30) x 10-18 cm3 molecules-1 s-1 (IUPAC)

k298k = (1.45 0.23) x 10-18 cm3 molecules-1 s-1

OH yield ()

[OH]ss = k1 [O3] [Ethene] + k2 [HO2] [O3]

k3 [Alkene] (+ other losses)

• Absolute [OH]ss too low to measure

in this (ethene) system

• Determine OH yield indirectly, using

scavenger approach ...

α = 0.54β

OH yield: cyclohexane scavenger

• OH + cyclohexane cyclohexanol / cyclohexanone

1) Measure yield of c-hexanone from c-hexane + OH

2) Measure amount of c-hexanone in O3 - Alkene system

3) Obtain cumulative OH production and hence derive OH yield

OH yield: cyclohexane scavenger

• OH + cyclohexane cyclohexanol / cyclohexanone

1) Measure yield of c-hexanone from c-hexane + OH

2) Measure amount of c-hexanone in O3 - Alkene system

3) Obtain cumulative OH production and hence derive OH yield

But: c-hexanone yield depends upon co-reactant conditions, concentrations :

Include these processes and fit to known c-hexane, c-hexanone, c-hexOOH...

.

(7) HO2 k3

(6b) RO2 k2b

(6a) RO2 k2a

(6c) RO2 k2c

OH

(5a) k1

O2

(5b)

(9) O2

(isomerisation)

OH yield determination from c-hex data

• Fit to observed HO2, chexanone, chexOOH :

• Fit determines [OH] present as f(t)

• Model + known [HO2] also accounts for HO2 + O3 OH + O2 (40 % here)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 50 100 150 200

Time (min)

Mix

ing

Rati

o C

6H

11O

, C

6H

11O

OH

& [

HO

2]/

10

8

HO2

Cyclohexyl

hydroperoxide

Cyclohexanone

OH and HO2 yields

• OH yield = 0.13 0.06

• HO2 data determine an overall

HO2 yield of 0.26 0.07

α = 0.54β = 0.13

γ = 0.07

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 20 40 60 80 100 120 140 160 180 200

Time (min)

[HO

2]

mo

lecu

le.c

m-3

(x

10

8)

Standard MCMv3.1 HO2 yield of 0.13

Radical yields vs literature (ethene)

• OH yield consistent with literature

• Our results, other recent studies indicate HO2 production is substantially higher

than currently assumed

Yield of OH Reference

0.13 (± 0.06) This study

0.13 MCMv3.1

0.16 IUPAC

0.18 (± 0.06) Paulson et al 1999

0.14 Kroll et al., 2001

0.20 (± 0.02) Mihelcic et al 1999

Yield of HO2

0.26 (± 0.07) This study

0.13 MCMv3.1

0.39 (± 0.03) Mihelcic et al., 1999

0.38 (± 0.02) Qi et el., 2006

0.50 (± 0.25) / 0.40 (± 0.20) Wegener et al., 2007

(dry/wet)

0.E+00

2.E+09

4.E+09

6.E+09

8.E+09

1.E+10

0 30 60 90

[HO

2] /m

ole

c/c

m3

Time /mins

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

0 30 60 90

[OH

] /m

ole

c/c

m3

Time / mins

HOx yields from other alkenes

[OH]ss = k1 [O3] [Ethene] + k2 [HO2] [O3]

k3 [Alkene] (+ other losses)

[ use full model for analysis, not steady state expression ]

• For most systems, k1 and k3 are such that [OH] can be observed directly

[cyclohexanone approach not used]

• Model still required to account for HO2 + O3, other 2 chemistry

OH 200 ppb trans-2-butene / 100 ppb O3 HO2

Repeat process for a range of alkenes...

• ethene, propene, cis- / trans-2-butene, isobutene, 1-butene, TME :

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

YO

H

IUPAC YOH

Atkinson et al '97 (cyclohexane) Marston et al '99 (TMB) This study (LIF)

This study (cyclohexane) Mihelcic et al '99 (Prod Alk+OH) Qi et al '09 (PERCA)

C2H4

C3H6

C2B

1-But T2B

i-But TME

Repeat process for a range of alkenes...

• ethene, propene, cis- / trans-2-butene, isobutene, 1-butene, TME :

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

YO

H

IUPAC YOH

Atkinson et al '97 (cyclohexane) Marston et al '99 (TMB) This study (LIF)

This study (cyclohexane) Mihelcic et al '99 (Prod Alk+OH) Qi et al '09 (PERCA)

C2H4

C3H6

C2B

1-But T2B

i-But TME

OH yields consistent with literature

Repeat process for a range of alkenes...

• ethene, propene, cis- / trans-2-butene, isobutene, 1-butene, TME, isoprene :

0.0

0.5

1.0

1.5

2.0

2.5

3.0

HO

2yie

ld

This study (LIF)

Wegener et al '07

MCM Model

Qi et al '06 / '09 (PERCA)

Mihelcic et al '99

Malkin et al '10

Repeat process for a range of alkenes...

• ethene, propene, cis- / trans-2-butene, isobutene, 1-butene, TME, isoprene :

0.0

0.5

1.0

1.5

2.0

2.5

3.0

HO

2yie

ld

This study (LIF)

Wegener et al '07

MCM Model

Qi et al '06 / '09 (PERCA)

Mihelcic et al '99

Malkin et al '10

HO2 yields higher than MCM...

HO2 vs OH

y = 1.9517x - 0.0504R² = 0.8618

0

0.5

1

1.5

2

0 0.25 0.5 0.75 1

HO

2Y

ield

OH Yield

C2H4

C3H6

C2B

1-But

T2B

i-But

TME

C5H8

Atmospheric Implications....

• Compare [HOx] using standard MCMv3.1 and with revised ozonolysis yields.

Mean Nighttime HOx :

• “Small” anthropogenic alkenes only (C2 – C5)

• Model constrained to observations for VOCs, NOx, O3 etc.

Atmospheric Implications....

• Compare [HOx] using standard MCMv3.1 and with revised ozonolysis yields.

Mean Nighttime HOx :

OH HO2 OH HO2

MCMv3.1 4.8104 2.0107 1.2105 4.0107

This Work 6.2104 2.8107 1.30105 5.1107

• Impact upon daytime or diurnal-average HOx is (proportionately) much smaller

Conclusions

• Measured HOx yields for a range of alkenes

• OH yields are consistent with literature

• HO2 yields are larger than MCM currently assumes

• Results in substantially increased night-time HOx, depending upon conditions

Limitations :

• Dependent upon HOx (and other) instrument accuracy...

• Atmospheric implications partially dependent upon mechanism interpretation

• Real atmosphere: H2O, NO, ...

0.0

0.5

1.0

1.5

2.0

2.5

3.0

HO

2yie

ld

This study (LIF)

Wegener et al '07

MCM Model

Qi et al '06 / '09 (PERCA)

Mihelcic et al '99

Malkin et al '10

Acknowledgements

• Salim Alam, Marie Camredon* Birmingham (*now at LISA, Paris)

• Andrew Rickard Leeds

• Kevin Wyche, Timo Carr, Paul Monks Leicester

• Amalia Munoz, Mila Rodenas, EUPHORE

Monica Vasquez, Paco Alacreu,

Antonio Caraccosa

• NERC

• Camredon et al., Atmos. Chem. Phys., 10, 2893, 2010

• Alam et al., Phys. Chem. Chem. Phys., submitted, 2010