7
J. Math. Anal. Appl. 346 (2008) 425–431 Contents lists available at ScienceDirect J. Math. Anal. Appl. www.elsevier.com/locate/jmaa Some remarks on the Chebyshev functional Marek Niezgoda a,, Josip Peˇ cari ´ c b a Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland b Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia article info abstract Article history: Received 20 December 2007 Available online 23 May 2008 Submitted by B. Bongiorno Keywords: Chebyshev functional Bilinear form Dual basis Difference operator Identities are provided for the Chebyshev functional defined on a real linear space equipped with a bilinear form. In addition, some inequalities for the functional are discussed. © 2008 Elsevier Inc. All rights reserved. 1. Introduction Let V be a real linear space endowed with a symmetric bilinear form ·,· (e.g, an inner product on V ). We do not assume that ·,· is positive definite. Let 0 = v V . The Chebyshev functional is defined on V × V by T v (x, y) = v , v x, yx, v y, v for x, y V . (1) Usually, one assumes that V is an algebra with the unit v V and v , v = 1. For example, for V = R n and v = (1,..., 1) with the inner product x, y= 1 n n i=1 x i y i for x, y R n , the Chebyshev functional takes the form: T v (x, y) = 1 n n i=1 x i y i 1 n 2 n i=1 x i n i=1 y i for x, y R n . (2) For the Hilbert space V = L 2 (a, b) equipped with the inner product x, y= 1 ba b a x(t ) y(t ) dt for x, y L 2 (a, b), and for the function v (t ) = 1 with t (a, b), the functional (1) is given by T v (x, y) = 1 b a b a x(t ) y(t ) dt 1 (b a) 2 b a x(t ) dt b a y(t ) dt for x, y L 2 (a, b). (3) In recent years the problem of estimating the functionals (1)–(3) under various assumptions has been studied by several authors (e.g. [1–5,12]). As noted in [6,9,11], an initial step in this direction is to establish an appropriate identity for the functional. Because of applications, identities involving the derivatives of functions or the difference operator on sequences are of particular interest [3,7,8,10,11]. * Corresponding author. E-mail addresses: [email protected] (M. Niezgoda), [email protected] (J. Peˇ cari ´ c). 0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.05.052

Some remarks on the Chebyshev functional

Embed Size (px)

Citation preview

J. Math. Anal. Appl. 346 (2008) 425–431

Contents lists available at ScienceDirect

J. Math. Anal. Appl.

www.elsevier.com/locate/jmaa

Some remarks on the Chebyshev functional

Marek Niezgoda a,∗, Josip Pecaric b

a Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Polandb Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

a r t i c l e i n f o a b s t r a c t

Article history:Received 20 December 2007Available online 23 May 2008Submitted by B. Bongiorno

Keywords:Chebyshev functionalBilinear formDual basisDifference operator

Identities are provided for the Chebyshev functional defined on a real linear spaceequipped with a bilinear form. In addition, some inequalities for the functional arediscussed.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let V be a real linear space endowed with a symmetric bilinear form 〈·,·〉 (e.g, an inner product on V ). We do notassume that 〈·,·〉 is positive definite. Let 0 �= v ∈ V . The Chebyshev functional is defined on V × V by

T v (x, y) = 〈v, v〉〈x, y〉 − 〈x, v〉〈y, v〉 for x, y ∈ V . (1)

Usually, one assumes that V is an algebra with the unit v ∈ V and 〈v, v〉 = 1.For example, for V = R

n and v = (1, . . . ,1) with the inner product 〈x, y〉 = 1n

∑ni=1 xi yi for x, y ∈ R

n , the Chebyshevfunctional takes the form:

T v (x, y) = 1

n

n∑i=1

xi yi − 1

n2

n∑i=1

xi

n∑i=1

yi for x, y ∈ Rn . (2)

For the Hilbert space V = L2(a,b) equipped with the inner product 〈x, y〉 = 1b−a

∫ ba x(t)y(t)dt for x, y ∈ L2(a,b), and for the

function v(t) = 1 with t ∈ (a,b), the functional (1) is given by

T v (x, y) = 1

b − a

b∫a

x(t)y(t)dt − 1

(b − a)2

b∫a

x(t)dt

b∫a

y(t)dt for x, y ∈ L2(a,b). (3)

In recent years the problem of estimating the functionals (1)–(3) under various assumptions has been studied by severalauthors (e.g. [1–5,12]). As noted in [6,9,11], an initial step in this direction is to establish an appropriate identity for thefunctional. Because of applications, identities involving the derivatives of functions or the difference operator on sequencesare of particular interest [3,7,8,10,11].

* Corresponding author.E-mail addresses: [email protected] (M. Niezgoda), [email protected] (J. Pecaric).

0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.doi:10.1016/j.jmaa.2008.05.052

426 M. Niezgoda, J. Pecaric / J. Math. Anal. Appl. 346 (2008) 425–431

In this paper, the aim is to derive some identities for the Chebyshev functional (1) with arbitrary vector v ∈ V andsymmetric bilinear form 〈·,·〉 on V (e.g., see Theorem 2.3). We focus on finite-dimensional spaces V to use a method basedon dual bases in V (cf. [7]). We are interested in identities involving the difference operator. In consequence, we obtain ageneralization of an identity due to Pecaric [10, p. 482]. In Section 3, we give some estimations for (1). Using Theorem 2.3,we extends [10, Theorems 3 and 4] from R

n to V .

2. Identities for the Chebyshev functional

In this section we present a method for producing identities for the Chebyshev functional (1).It is not hard to check that T v (x, v) = 0, in consequence, for any μ ∈ R we have

T v (x, y) = ⟨〈v, v〉x − 〈x, v〉v, y⟩ = ⟨〈v, v〉x − 〈x, v〉v, y − μv

⟩= (

1/〈v, v〉)⟨〈v, v〉x − 〈x, v〉v, 〈v, v〉y − 〈y, v〉v⟩

for x, y ∈ V , (4)

which is an identity of Sonin type (provided 〈v, v〉 �= 0).From now on, given a sequence of scalars (or vectors) α1, . . . ,αn of length n, we define the difference operator � by

�αi = αi+1 − αi for i < n, and �αn = −αn.

Likewise, for given 1 � i � n, we denote

�iα j = α j+1 − α j for 1 � j < i, and �iαi = −αi .

A variety of identities can be obtained from (4) via the following technique. Let V be a Hilbert space with inner prod-uct 〈·,·〉. Let A, B : V → V be linear operators satisfying B∗ A = I , where I denotes the identity operator on V , and B∗ is thedual operator of B (with respect to 〈·,·〉), that is 〈a, Bb〉 = 〈B∗a,b〉 for a,b ∈ V . Then

〈a,b〉 = 〈Aa, Bb〉 for a,b ∈ V . (5)

Example 2.1 (Abel identity). The well-known Abel identity says that for ai,bi ∈ R, i = 1, . . . ,n,

n∑i=1

aibi =n−1∑i=1

(ai − ai+1)(b1 + · · · + bi) + an(b1 + · · · + bn) = −n∑

i=1

�ai

i∑j=1

b j . (6)

It is interesting that (6) can be obtained from (5) for the standard inner product on V = Rn by putting

A =

⎛⎜⎜⎜⎜⎝

1 −1 0 . . . 0 00 1 −1 0 0...

. . .. . .

0 0 0 1 −10 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎝

1 0 . . . 0 01 1 0 0...

.

.

.. . .

.

.

.

1 1 . . . 1 01 1 . . . 1 1

⎞⎟⎟⎟⎟⎠ . (7)

Applying Abel identity to Rn and R

i leads to

n∑i=1

aibi pi =n∑

i=1

�ai

i∑j=1

P j�ib j for ai,bi, pi ∈ R, i = 1, . . . ,n, (8)

where P j = p1 + · · · + p j . This is a counterpart of (6) for three factors. It will be used frequently in our considerations.

In what follows, for a, z ∈ V with 〈v,a〉 �= 0, we denote

wa(z) = 〈z,a〉〈v,a〉 v − z. (9)

Observe that

T v (z,a) = 〈waz, v〉〈v,a〉. (10)

In the sequel, we assume that V is an n-dimensional real linear space with a basis {ei: i = 1,2, . . . ,n}. As previously,〈·,·〉 is a real symmetric bilinear form (not necessarily positive definite) defined on V × V . It is also assumed that {di: i =1,2, . . . ,n} is the dual basis of {ei} with respect to the form 〈·,·〉, i.e., 〈ei,d j〉 = δi j , the Kronecker symbol, i, j = 1, . . . ,n(e.g., see Example 2.5). Then

〈a,b〉 =n∑

i=1

〈a, ei〉〈b,di〉 for a,b ∈ V . (11)

Some preliminary identities can be obtained using a method for deriving inequalities presented in [7, pp. 541–542].

M. Niezgoda, J. Pecaric / J. Math. Anal. Appl. 346 (2008) 425–431 427

Lemma 2.2. Under the above assumptions, for v ∈ V with 〈v, ei〉 �= 0, i = 1, . . . ,n, the following identities are valid:

T v (x, y) =n∑

i=1

〈wei x, v〉〈v, ei〉〈y,di〉 for x, y ∈ V , (12)

T v (x, y) = (1/〈v, v〉) n∑

i=1

〈wei x, v〉〈v, ei〉〈wdi y, v〉〈v,di〉 for x, y ∈ V (if 〈v,di〉 �= 0 and 〈v, v〉 �= 0). (13)

Proof. It follows from (4) and (11) that

T v (x, y) =n∑

i=1

⟨〈v, v〉x − 〈x, v〉v, ei⟩〈y,di〉 =

n∑i=1

T v (x, ei)〈y,di〉 (14)

and

T v (x, y) = (1/〈v, v〉) n∑

i=1

⟨〈v, v〉x − 〈x, v〉v, ei⟩⟨〈v, v〉y − 〈y, v〉v,di

⟩ = (1/〈v, v〉) n∑

i=1

T v (x, ei)T v (y,di). (15)

Using (10) and (14)–(15) gives (12)–(13). �Easy consequences of (8) and (12) are the following two identities:

T v (x, y) =n∑

i=1

�〈wei x, v〉i∑

j=1

〈v, E j〉〈y,�id j〉 for x, y ∈ V , (16)

T v (x, y) =n∑

i=1

〈y,�di〉i∑

j=1

〈v, E j〉�i〈we j x, v〉 for x, y ∈ V , (17)

where E j = e1 + · · · + e j , j = 1, . . . ,n.It easily seen that for 1 � j � i � n

�i〈we j x, v〉 = 〈v, v〉( 〈x, e j+1〉

〈v, e j+1〉 − 〈x, e j〉〈v, e j〉

)= 〈v, v〉�i

〈x, e j〉〈v, e j〉 (18)

with the convention 〈x,ei+1〉〈v,ei+1〉 = 〈x,v〉

〈v,v〉 for j = i.A variant of (12) is the following

T v (x, y) =n∑

i=1

〈wei x, v〉〈v,di〉〈v, ei〉 〈y,di〉〈v,di〉 for x, y ∈ V , (19)

where the denominator is nonzero.For given vector v ∈ V and bases {ei} and {di}, we denote

S j =j∑

k=1

〈v,dk〉〈v, ek〉 and S j+1 = Sn − S j for j = 1, . . . ,n. (20)

Notice that 〈v, v〉 = Sn , because v = ∑nk=1〈v,dk〉ek by the duality of {ei} and {di}.

In the next theorem we present our final identity for the Chebyshev functional. This result extends an identity due toPecaric [10, p. 482] from R

n to an n-dimensional linear space V endowed with a symmetric bilinear form 〈·,·〉 on V andwith a pair of dual bases {ei: i = 1, . . . ,n} and {di: i = 1, . . . ,n} in V . See Example 2.5 for details.

Theorem 2.3. Let v ∈ V with 〈v, ei〉 �= 0 and 〈v,di〉 �= 0 for i = 1, . . . ,n. Then the following identity is valid:

T v (x, y) =n−1∑i=1

�〈y,di〉〈v,di〉

(i−1∑j=1

Si+1 S j�〈x, e j〉〈v, e j〉 +

n−1∑j=i

Si S j+1�〈x, e j〉〈v, e j〉

)for x, y ∈ V . (21)

Proof. Applying (8) to (19) and using (18), we derive

T v (x, y) =n∑

�〈y,di〉〈v,di〉

i∑S j Sn�i

〈x, e j〉〈v, e j〉 for x, y ∈ V . (22)

i=1 j=1

428 M. Niezgoda, J. Pecaric / J. Math. Anal. Appl. 346 (2008) 425–431

Denoting

ti =i∑

j=1

S j Sn�i〈x, e j〉〈v, e j〉 for i = 1, . . . ,n,

from (22) we get

T v (x, y) =n∑

i=1

ti�〈y,di〉〈v,di〉 =

n−1∑i=1

ti�〈y,di〉〈v,di〉 − tn

〈y,dn〉〈v,dn〉 for x, y ∈ V . (23)

Set y = v . Then 〈y,di〉〈v,di〉 = 1 for i = 1, . . . ,n, and therefore (23) gives

T v (x, v) =n−1∑i=1

ti�1 − tn = −tn for x ∈ V . (24)

On the other hand, it follows from (1) that

T v (x, v) = 0 for x ∈ V .

Therefore (24) forces tn = 0. Thus (23) implies

T v (x, y) =n−1∑i=1

�〈y,di〉〈v,di〉

i∑j=1

Sn S j�i〈x, e j〉〈v, e j〉 for x, y ∈ V . (25)

Fix arbitrarily x, y ∈ V . On account of (18) we have

�i〈x, ei〉〈v, ei〉 = 〈x, v〉

〈v, v〉 − 〈x, ei〉〈v, ei〉 = 〈x, v〉

〈v, v〉 − 〈x, en〉〈v, en〉 +

n−1∑j=i

( 〈x, e j+1〉〈v, e j+1〉 − 〈x, e j〉

〈v, e j〉)

.

From (25) we now derive

T v (x, y) =n−1∑i=1

�〈y,di〉〈v,di〉 Sn

(i−1∑j=1

S j�〈x, e j〉〈v, e j〉 +

n−1∑j=i

Si�〈x, e j〉〈v, e j〉 + Si

( 〈x, v〉〈v, v〉 − 〈x, en〉

〈v, en〉))

. (26)

Furthermore, using (11), (6) and the facts⟨x − 〈x, en〉

〈v, en〉 v, en

⟩= 0 and

⟨v,

e j

〈v, e j〉 − e j+1

〈v, e j+1〉⟩= 0,

we deduce that

〈v, v〉( 〈x, v〉

〈v, v〉 − 〈x, en〉〈v, en〉

)=

⟨x − 〈x, en〉

〈v, en〉 v, v

⟩=

n∑j=1

⟨x − 〈x, en〉

〈v, en〉 v,e j

〈v, e j〉⟩〈v,d j〉〈v, e j〉

=n−1∑j=1

S j

⟨x − 〈x, en〉

〈v, en〉 v,e j

〈v, e j〉 − e j+1

〈v, e j+1〉⟩+ Sn

⟨x − 〈x, en〉

〈v, en〉 v,en

〈v, en〉⟩

=n−1∑j=1

S j

⟨x − 〈x, en〉

〈v, en〉 v,e j

〈v, e j〉 − e j+1

〈v, e j+1〉⟩

=n−1∑j=1

S j

⟨x,

e j

〈v, e j〉 − e j+1

〈v, e j+1〉⟩= −

n−1∑j=1

S j�〈x, e j〉〈v, e j〉 . (27)

Combining (26) and (27) yields

T v (x, y) =n−1∑i=1

�〈y,di〉〈v,di〉

(i−1∑j=1

Sn S j�〈x, e j〉〈v, e j〉 +

n−1∑j=i

Sn Si�〈x, e j〉〈v, e j〉 −

n−1∑j=1

Si S j�〈x, e j〉〈v, e j〉

). (28)

Since Sn = Si + Si+1 = S j + S j+1, it is obvious that (28) implies (21), as required. �

M. Niezgoda, J. Pecaric / J. Math. Anal. Appl. 346 (2008) 425–431 429

Denote

P j =j∑

k=1

〈v,dk〉 and P j+1 = Pn − P j for j = 1, . . . ,n, (29)

Q j =j∑

k=1

〈v, ek〉 and Q j+1 = Q n − Q j for j = 1, . . . ,n. (30)

Corollary 2.4. If v = En = e1 + · · · + en and 〈v, ei〉 �= 0 for i = 1, . . . ,n, then (21) reduces to

T v (x, y) =n−1∑i=1

�〈y,di〉(

i−1∑j=1

Q i+1 Q j�〈x, e j〉〈v, e j〉 +

n−1∑j=i

Q i Q j+1�〈x, e j〉〈v, e j〉

)for x, y ∈ V . (31)

If v = Dn = d1 + · · · + dn and 〈v,di〉 �= 0 for i = 1, . . . ,n, then (21) reduces to

T v (x, y) =n−1∑i=1

�〈y,di〉〈v,di〉

(i−1∑j=1

P i+1 P j�〈x, e j〉 +n−1∑j=i

P i P j+1�〈x, e j〉)

for x, y ∈ V . (32)

Proof. To show (31), observe that S j = Q j and S j = Q j for v = e1 + · · · + en , since 〈v,dk〉 = 〈ek,dk〉 = 1 (see (20) and (30)).Next, apply (21).

Likewise, to prove (32) in the case v = d1 +· · ·+dn , use (21) with 〈v, e j〉 = 1, S j = P j and S j = P j (see (20) and (29)). �We now give an interpretation of Theorem 2.3 for V = R

n .

Example 2.5. A special case of (21) (and of (32)) is the following identity due to Pecaric [10, p. 482]:

T v (x, y) =n−1∑i=1

�yi

(i−1∑j=1

P i+1 P j�x j +n−1∑j=i

P j+1 Pi�x j

)for x, y ∈ R

n , (33)

where

P j =j∑

k=1

pk and P j+1 = Pn − P j for j = 1, . . . ,n.

To see this, take V = Rn and v = (1, . . . ,1)T ∈ R

n and ei = (1/pi)(0, . . . ,0,1,0, . . . ,0)T and di = (0, . . . ,0,1,0, . . . ,0)T

with one at ith position, and with pi �= 0, i = 1, . . . ,n. Define

〈a,b〉 =n∑

i=1

aibi pi for a = (a1, . . . ,an)T and b = (b1, . . . ,bn)T . (34)

It is easy to check that for j = 1, . . . ,n,

〈v, e j〉 = 1 and 〈v,d j〉 = p j,

〈x, e j〉〈v, e j〉 = x j and

〈y,d j〉〈v,d j〉 = y j,

S j =j∑

k=1

〈v,dk〉〈v, ek〉 = P j .

It is now readily seen that (21) becomes (33).

3. Inequalities for the Chebyshev functional

We now apply the identity from Theorem 2.3 to get some estimations for the Chebyshev functional.A basis {ei: i = 1, . . . ,n} in V is said to be orthogonal with respect to the form 〈·,·〉, if 〈ei, e j〉 = 0 for j �= qi and

〈ei, ei〉 �= 0 for all i.The next result extends [10, Theorem 4] from R

n to an n-dimensional linear space V .

430 M. Niezgoda, J. Pecaric / J. Math. Anal. Appl. 346 (2008) 425–431

Theorem 3.1. Under the assumptions of Theorem 2.3, assume the basis {ei: i = 1, . . . ,n} is orthogonal with respect to the form 〈·,·〉.Set

v = e1 + · · · + en, x0 = e1 + 2e2 + · · · + nen and x0 = ne1 + (n − 1)e2 + · · · + en. (35)

Suppose that∣∣∣∣� 〈x, ei〉〈v, ei〉

∣∣∣∣ � M and

∣∣∣∣� 〈y,di〉〈v,di〉

∣∣∣∣ � R for i = 1, . . . ,n − 1. (36)

(a) If

0 � Si � Sn for i = 1, . . . ,n − 1, (37)

then ∣∣T v (x, y)∣∣ � M RT v (x0, x0) for x, y ∈ V . (38)

(b) If

0 � Sn � Si for i = 1, . . . ,n − 1, (39)

then ∣∣T v (x, y)∣∣ � M R T v (x0, x0) for x, y ∈ V . (40)

Proof. By virtue of (21) and (36) we have

∣∣T v (x, y)∣∣ � M R

n−1∑i=1

(i−1∑j=1

|Si+1||S j| +n−1∑j=i

|Si ||S j+1|)

for x, y ∈ V . (41)

Since {ei} is orthogonal, the dual basis of {ei} is given by di = (1/〈ei, ei〉)ei , i = 1, . . . ,n. So, it is not hard to verify that

〈x0, ei〉〈v, ei〉 = 〈x0,di〉

〈v,di〉 = i and �〈x0, ei〉〈v, ei〉 = �

〈x0,di〉〈v,di〉 = 1 for i = 1, . . . ,n − 1, (42)

and

〈x0,di〉〈v,di〉 = n + 1 − i and �

〈x0,di〉〈v,di〉 = −1 for i = 1, . . . ,n − 1. (43)

According to (21) and (42)–(43), we have

T v (x0, x0) =n−1∑i=1

(i−1∑j=1

Si+1 S j +n−1∑j=i

Si S j+1

)(44)

and

T v (x0, x0) = −n−1∑i=1

(i−1∑j=1

Si+1 S j +n−1∑j=i

Si S j+1

). (45)

(a) It now follows from (37) and (44) that (41) implies (38), as desired.(b) Utilizing (39) and (45) one sees that (41) forces (40). �

Theorem 3.2 is a generalization of [10, Theorem 3].

Theorem 3.2. Under the assumptions of Theorem 2.3, assume the basis {ei: i = 1, . . . ,n} is orthogonal with respect to the form 〈·,·〉.Let v, x0 and x0 be given by (35). Suppose that∣∣∣∣� 〈x, ei〉

〈v, ei〉∣∣∣∣ � m and

∣∣∣∣� 〈y,di〉〈v,di〉

∣∣∣∣ � r for i = 1, . . . ,n − 1. (46)

(a) Assume that (37) holds.If the sequences

i → 〈x, ei〉 and i → 〈y,di〉, i = 1, . . . ,n, (47)

〈v, ei〉 〈v,di〉

M. Niezgoda, J. Pecaric / J. Math. Anal. Appl. 346 (2008) 425–431 431

are monotonic in the same sense, then

T v (x, y) � mrT v(x0, x0) � 0 for x, y ∈ V . (48)

If the sequences (47) are monotonic in the opposite sense, then

T v (x, y) � mrT v(x0, x0) � 0 for x, y ∈ V . (49)

(b) Assume that (39) holds.If the sequences (47) are monotonic in the same sense, then the reverse inequalities in (48) hold.If the sequences (47) are monotonic in the opposite sense, then the reverse inequalities in (49) hold.

Proof. Observe that (44) and (45) are valid.

(a) To show (48) and (49), apply (21) together with (46) and (44)–(45).(b) The proof of (b) is analogous to (a). �Acknowledgment

The authors wish to thank an anonymous referee for his/her helpful comments improving the readability of the paper.

References

[1] S.S. Dragomir, A generalization of Grüss’s inequality in inner product spaces and applications, J. Math. Anal. Appl. 237 (1999) 74–82.[2] S.S. Dragomir, Some Grüss type inequalities in inner product spaces, J. Inequal. Pure Appl. Math. 4 (2) (2003), Article 42.[3] A.M. Fink, A treatise on Grüss’ inequality, in: T.M. Rassias, H.M. Srivastava (Eds.), Analytic and Geometric Inequalities and Applications, Kluwer Aca-

demic, 1999.[4] S. Izumino, J.E. Pecaric, B. Tepeš, A Grüss-type inequality and its applications, J. Inequal. Appl. 3 (2005) 277–288.[5] X. Li, R.N. Mohapatra, R.S. Rodriguez, Grüss-type inequalities, J. Math. Anal. Appl. 267 (2002) 434–443.[6] J. Ma, An identity in real inner product spaces, J. Inequal. Pure Appl. Math. 8 (2) (2007) Article, 48.[7] M. Niezgoda, On the Chebyshev functional, Math. Inequal. Appl. 10 (3) (2007) 535–546.[8] B.G. Pachpatte, On Grüss type inequality for double integrals, J. Math. Anal. Appl. 267 (2002) 454–459.[9] B.G. Pachpatte, On Cebyšev–Grüss type inequalities via Pecaric’s extension of the Montgomery identity, J. Inequal. Pure Appl. Math. 7 (1) (2006),

Article 11.[10] J.E. Pecaric, On the Ostrowski generalization of Cebyšev’s inequality, J. Math. Anal. Appl. 102 (1984) 479–487.[11] J. Pecaric, I. Peric, Identities for the Chebyshev functional involving derivatives of arbitrary order and applications, J. Math. Anal. Appl. 313 (2006)

475–483.[12] I. Peric, R. Rajic, Grüss inequality for completely bounded maps, Linear Algebra Appl. 390 (2004) 287–292.