19
Tectono-stratigraphic and kinematic evolution of the southern Apennines/CalabriaPeloritani Terrane system (Italy) Stefano Vitale a, , Sabatino Ciarcia a, b a Dipartimento Scienze della Terra, Università di Napoli Federico II, Largo San Marcellino 10, 80138 Napoli, Italy b Dipartimento di Scienze per la Biologia, la Geologia e l'Ambiente, Università del Sannio, via dei Mulini 59/A, 82100 Benevento, Italy abstract article info Article history: Received 3 March 2012 Received in revised form 30 October 2012 Accepted 3 November 2012 Available online 15 November 2012 Keywords: Foredeep basin Paleogeography Tectonics Thrust front migration Wedge-top basin Temporal controls such as sedimentation ages, in foredeep and wedge-top basins, combined with informa- tion about stratigraphic and metamorphic evolution, ages and characterization of magmatic rocks, deep structures, burial and exhumation histories, allowed us to obtain kinematic estimations of the southern Apennines/CalabriaPeloritani Terrane system evolution from the Late Oligocene to Recent. Calculated thrust front velocities suggest to subdivide the orogenic evolution in main ve kinematic stages character- ized by different velocity trends. Nine kinematic complexes (from A to I), i.e. sets of tectonic units de- formed in the same time range, are determined according to foredeep ages. These complexes, bounded by main regional thrust faults, encompass one or more tectonic sub-units and successions of different paleoenvironment domains. Paleogeographic evolution model indicates, according to available paleomag- netic data, a counterclockwise rotation, with a mean angle of 60°, for the Apennine Platform carbonates, whereas a mean angle of 20° for the eastern sector of the Apennine Platform and western side of Apulian Platform. Shortening estimations for the Apennine successions show values ranging between 55% and 88% and a linear best t indicating an increase from 60% (NW sector) to ca. 90% (SE sector). Such high values are consistent with a deformation dominated by a thin-skinned tectonics, on the contrary, the low value of 28% calculated for Mt. Alpi suggests an exhumation ruled by high-angle deep-seated structures characterized by limited displacements. Tectonic vergences, referred to MiddleLate Miocene, Late Miocene and PlioceneMiddle Pleistocene, when re- stored, indicate an average eastward tectonic transport. Finally, tectonic evolution is summarized in eleven sche- matic cross sections and corresponding paleogeographic maps. © 2012 Elsevier B.V. All rights reserved. 1. Introduction The fold-and-thrust belt of the southern Apennines, a segment of the Alpine system in the central sector of the western Mediterranean Sea (Fig. 1), is characterized by the tectonic superposition of several basin to platform successions (e.g., Bonardi et al., 2009; Casero et al., 1988; Catalano et al., 2004; Cosentino et al., 2010; Doglioni et al., 1996; Faccenna et al., 2001a, 2001b; Frizon de Lamotte et al., 2011; Mazzoli et al., 2008; Menardi Noguera and Rea, 2000; Mostardini and Merlini, 1986; Patacca and Scandone, 2007; Roure et al., 2012; Scrocca, 2010; Shiner et al., 2004). Temporal sequence of orogenic building up is ruled by the ages of foredeep basin deposits, progressively younger from top to bottom of the tectonic thrust pile. Unconformable wedge-top basin deposits, frequently sealing contacts between differ- ent tectonic units, may provide additional information about ages of orogenic pulses (e.g., Bonardi et al., 2009; Cosentino et al., 2003; Roure et al., 2012; Storti and McClay, 1995). The so obtained temporal sequence, combined with information about temporal and chemical patterns of magmatic rocks, metamorphism, deep structure of the oro- genic system, as well as paleogeography reconstructions, allowed to provide several geodynamic evolution models (e.g., Accaino et al., 2011; Bonardi et al., 2009; Ciarcia et al., 2012; Lustrino et al., 2009; Patacca and Scandone, 2007; Scrocca and Tozzi, 1999; Vignaroli et al., 2009; Vitale et al., 2012). In the last years, numerous biostratigraphic and thermochronometric data provided more accurate ages for these deposits (e.g., Ciarcia et al., 2012; Cosentino et al., 2003; Mazzoli et al., 2008; Sgrosso, 1998), whereas structural data, on meso- and macro- scale deformation, claried the tectonic transport and the geodynamic evolution, including oldest stages of the Apennine prism construction (Ciarcia et al., 2012; Vitale et al., 2010, 2011). Furthermore, recent stud- ies about thermochronology (Corrado et al., 2002, 2005; Invernizzi et al., 2008; Mazzoli et al., 2008) yielded useful information on the burial history and subsequent exhumation of several tectonic units. Aim of this paper is provide a comprehensive geodynamic and kinematic sce- nario for the evolution of the southern Apennines/CalabriaPeloritani Terrane (CPT) system, within the framework of Central Mediterranean subduction zone. This is carried out by an effective integration of all available geological and geophysical constraints, and completed by a kinematic analysis of thrust front velocities, rotations, shortening Tectonophysics 583 (2013) 164182 Corresponding author. Tel.: +39 0812538124. E-mail address: [email protected] (S. Vitale). 0040-1951/$ see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tecto.2012.11.004 Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto

Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria–Peloritani Terrane system (Italy)

Embed Size (px)

Citation preview

Tectonophysics 583 (2013) 164–182

Contents lists available at SciVerse ScienceDirect

Tectonophysics

j ourna l homepage: www.e lsev ie r .com/ locate / tecto

Tectono-stratigraphic and kinematic evolution of the southernApennines/Calabria–Peloritani Terrane system (Italy)

Stefano Vitale a,⁎, Sabatino Ciarcia a,b

a Dipartimento Scienze della Terra, Università di Napoli Federico II, Largo San Marcellino 10, 80138 Napoli, Italyb Dipartimento di Scienze per la Biologia, la Geologia e l'Ambiente, Università del Sannio, via dei Mulini 59/A, 82100 Benevento, Italy

⁎ Corresponding author. Tel.: +39 0812538124.E-mail address: [email protected] (S. Vitale).

0040-1951/$ – see front matter © 2012 Elsevier B.V. Allhttp://dx.doi.org/10.1016/j.tecto.2012.11.004

a b s t r a c t

a r t i c l e i n f o

Article history:Received 3 March 2012Received in revised form 30 October 2012Accepted 3 November 2012Available online 15 November 2012

Keywords:Foredeep basinPaleogeographyTectonicsThrust front migrationWedge-top basin

Temporal controls such as sedimentation ages, in foredeep and wedge-top basins, combined with informa-tion about stratigraphic and metamorphic evolution, ages and characterization of magmatic rocks, deepstructures, burial and exhumation histories, allowed us to obtain kinematic estimations of the southernApennines/Calabria–Peloritani Terrane system evolution from the Late Oligocene to Recent. Calculatedthrust front velocities suggest to subdivide the orogenic evolution in main five kinematic stages character-ized by different velocity trends. Nine kinematic complexes (from A to I), i.e. sets of tectonic units de-formed in the same time range, are determined according to foredeep ages. These complexes, boundedby main regional thrust faults, encompass one or more tectonic sub-units and successions of differentpaleoenvironment domains. Paleogeographic evolution model indicates, according to available paleomag-netic data, a counterclockwise rotation, with a mean angle of 60°, for the Apennine Platform carbonates,whereas a mean angle of 20° for the eastern sector of the Apennine Platform and western side of ApulianPlatform. Shortening estimations for the Apennine successions show values ranging between 55% and 88% anda linear best fit indicating an increase from60% (NW sector) to ca. 90% (SE sector). Such high values are consistentwith a deformationdominated by a thin-skinned tectonics, on the contrary, the low value of 28% calculated forMt.Alpi suggests an exhumation ruled by high-angle deep-seated structures characterized by limited displacements.Tectonic vergences, referred to Middle–Late Miocene, Late Miocene and Pliocene–Middle Pleistocene, when re-stored, indicate an average eastward tectonic transport. Finally, tectonic evolution is summarized in eleven sche-matic cross sections and corresponding paleogeographic maps.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The fold-and-thrust belt of the southernApennines, a segment of theAlpine system in the central sector of the western Mediterranean Sea(Fig. 1), is characterized by the tectonic superposition of several basinto platform successions (e.g., Bonardi et al., 2009; Casero et al., 1988;Catalano et al., 2004; Cosentino et al., 2010; Doglioni et al., 1996;Faccenna et al., 2001a, 2001b; Frizon de Lamotte et al., 2011; Mazzoliet al., 2008; Menardi Noguera and Rea, 2000; Mostardini and Merlini,1986; Patacca and Scandone, 2007; Roure et al., 2012; Scrocca, 2010;Shiner et al., 2004). Temporal sequence of orogenic building up isruled by the ages of foredeep basin deposits, progressively youngerfrom top to bottom of the tectonic thrust pile. Unconformablewedge-top basin deposits, frequently sealing contacts between differ-ent tectonic units, may provide additional information about ages oforogenic pulses (e.g., Bonardi et al., 2009; Cosentino et al., 2003;Roure et al., 2012; Storti and McClay, 1995). The so obtained temporalsequence, combined with information about temporal and chemical

rights reserved.

patterns of magmatic rocks, metamorphism, deep structure of the oro-genic system, as well as paleogeography reconstructions, allowed toprovide several geodynamic evolution models (e.g., Accaino et al.,2011; Bonardi et al., 2009; Ciarcia et al., 2012; Lustrino et al., 2009;Patacca and Scandone, 2007; Scrocca and Tozzi, 1999; Vignaroli et al.,2009; Vitale et al., 2012). In the last years, numerous biostratigraphicand thermochronometric data provided more accurate ages for thesedeposits (e.g., Ciarcia et al., 2012; Cosentino et al., 2003; Mazzoli et al.,2008; Sgrosso, 1998), whereas structural data, on meso- and macro-scale deformation, clarified the tectonic transport and the geodynamicevolution, including oldest stages of the Apennine prism construction(Ciarcia et al., 2012; Vitale et al., 2010, 2011). Furthermore, recent stud-ies about thermochronology (Corrado et al., 2002, 2005; Invernizzi etal., 2008; Mazzoli et al., 2008) yielded useful information on the burialhistory and subsequent exhumation of several tectonic units. Aim ofthis paper is provide a comprehensive geodynamic and kinematic sce-nario for the evolution of the southern Apennines/Calabria–PeloritaniTerrane (CPT) system, within the framework of Central Mediterraneansubduction zone. This is carried out by an effective integration of allavailable geological and geophysical constraints, and completed by akinematic analysis of thrust front velocities, rotations, shortening

Fig. 1. Tectonic sketch of western-central Mediterranean orogenic belts (from Mazzoli and Martin-Algarra, 2011, modified).

165S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

estimations, tectonic vergences and paleogeographic and tectonic evo-lution models from the Late Oligocene (Chattian) to Recent.

2. Geological setting

The southern Apennines/CPT system is a part of a very longperi-Mediterranean orogenic belt running from the Alps, ItalianPeninsula, Sicily, northern Africa, southern Spain, Balearic Islandsand part of Corsica Island (Fig. 1). These chains are characterized bythe superposition, from top to bottom, of tectonic units derived from:(i) internal domains (generally made of continental crust and more orless metamorphosed sedimentary covers); (ii) oceanic and thinnedcontinental crust basin realms (Maghrebian Flysch Basin and Liguriandomain; e.g., Ciarcia et al., 2012; Guerrera et al., 2005; Knott, 1987);and (iii) external domains (African and European margin successions).

The analyzed sector (Fig. 2a) includes tectonic units derived fromoceanic to transitional basin successions overlying a tectonic thrustpile formed by continentalmargin successions deposited on theApulian(African) margin (e.g., Mazzoli et al., 2008). The orogenic wedge iscapped by remnants of the overriding plate, including Paleozoic crystal-line basements (Calabria–Peloritani Terrane, CPT; Bonardi et al., 2001).

Considering a geological transect from the northern sector ofCalabrian Arc to the southern Apennines (Fig. 1), the orogenic architec-ture includes threemain tectonic complexes: (i) tectonic units referred tothe Paleozoic continental crust and relative Mesozoic covers character-ized by different grades and ages of metamorphism (Sila, Castagna andBagni Units; Amodio-Morelli et al., 1976; Bonardi et al., 2001) that wecan refer as Internal Units in analogy with the Betic–Rifian–KabilianChain (e.g., Guerrera et al., 2005); (ii) HP–LT ophiolite bearing units(Diamante–Terranova, Malvito, Gimigliano and Frido Units, Amodio-Morelli et al., 1976; Bonardi et al., 2001; Liberi and Piluso, 2009; Liberiet al., 2006; Rossetti et al., 2001, 2004 and references therein) andunmetamorphosed basin deposits of the Ligurian Accretionary Complex(LAC) formed by Nord-Calabrese, Parasicilide and Sicilide Units (Fig. 1;Bonardi et al., 1988a; Ciarcia et al., 2009a; Ciarcia et al., 2012; Ogniben,1969; Selli, 1962; Vitale et al., 2010, 2011); and (iii) External Units(Fig. 1), formed by the tectonic superposition of stratigraphic covers ofthe Apulian (African) block formed by Mesozoic to Neogene successions

(Bigi et al., 1992; Bonardi et al., 1988b, 2009; Cosentino et al., 2003;D'Argenio et al., 1973; Patacca and Scandone, 1989, 2007) partially de-tached to their pre-Triassic basement (e.g., Casero et al., 1988; Cippitelli,2007; Menardi Noguera and Rea, 2000; Shiner et al., 2004). The southernApennines chain structure, at shallow levels (Fig. 2b), is dominated bylow-angle tectonic contacts separating carbonate platform/slope succes-sions of the so-called Apennine Platform (Mostardini and Merlini,1986) in the hanging wall, from pelagic Lagonegro–Molise Basin succes-sions (Scandone, 1967, 1972) in the footwall. On the contrary, at deeplevels, the Apennine structure is characterized by high-angle faults affect-ing both the buried Apulian Platform and allochthonous successions(Fig. 2b). Only part of the inner margin of the Apennine Platform,cropping out in northern Calabria, is affected by HP–LT metamorphism(Lungro–Verbicaro Unit; Iannace et al., 2007; Vitale, 2005).

Similar major units occur along a geological transect from southernCalabrian Arc to SicilianMaghrebides: (i) Internal Units, comprising Pa-leozoic continental crust and more or less metamorphosed Mesozoiccovers (Bonardi et al., 2001); (ii) unmetamorphosed basin deposits ofthe Maghrebian Flysch Basin (Guerrera et al., 2005); and (iii) ExternalUnits, derived from the Hyblean (African) block including carbonateplatform/slope and pelagic basin successions (e.g., Accaino et al.,2011; Catalano et al., 1996). In both belts, several Neogene wedge-topbasin successions progressively covered the tectonic prism (Accaino etal., 2011; Bonardi et al., 2009; Roure et al., 2012).

Being the Late Cretaceous–Recent convergence rate betweenAfricanand European plates relatively low (from 1–2 cm/yr on average in thelast 80 Myr to few mm/yr in the last 20 Ma, e.g., Dewey et al., 1989;Faccenna et al., 2001b), most of the consumption of oceanic lithospherewas probably driven by its negative buoyancy, resulting in trench roll-back (Faccenna et al., 1996; Malinverno and Ryan, 1986). Two maingeodynamic phases characterize the construction of the southernApennines/CPT system (Dewey et al., 1989; Faccenna et al., 2001a):(i) Late Oligocene–Middle Miocene trench migration, accompanied byopening of the Ligurian–Provençal back-arc basin and (ii) Tortonian–Pleistocene migration, with opening of the Tyrrhenian back-arc basin.Subduction of oceanic crust produced widespread orogenic volcanismsince the Eocene–Oligocene (Savelli, 2002) with the maximum devel-opment in Miocene time (Lustrino et al., 2009).

Fig. 2. Tectonic map of the southern Apennines (from Bonardi et al., 1988b; Cosentino et al., 2003; Patacca and Scandone, 2007, modified) and cross sections; B–B′ modified afterMazzoli et al., 2008).

166 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

3. Paleogeography

A large amount of paleogeographic reconstructions of thewestern Mediterranean region were provided in the last decades(e.g., Cosentino et al., 2010; Dercourt et al., 1986; Dewey et al., 1989;Handy et al., 2010; Michard et al., 2002; Nigro and Renda, 2004;

Patacca and Scandone, 2007; Schettino and Turco, 2010; Turco et al.,2012). According to Alvarez and Shimabukuro (2009), most interpreta-tions, referred to a Late Cretaceous paleogeography, can be grouped intwomainmodels: (i) the “one-ocean” and (ii) the “two-ocean”models.

The first was introduced by Boullin (1984) and Knott (1987) andreprised in the last years (e.g., Faccenna et al., 2001a; Rossetti et al.,

167S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

2004; Schettino and Turco, 2010). This model envisages the existenceof a single ocean (Ligurian Ocean, Knott, 1987; Ligurian Tethys,Schettino and Turco, 2010), with the CPT joined to the Europeanplate, and a single NW-subduction starting from 80 to 100 Ma(Dewey et al., 1989; Faccenna et al., 2001a; Schettino and Turco,2010). This model, therefore, implies that the construction of Apen-nines and Sicilian Maghrebides could be coeval with those of theAlps (“ancient Apennines” of Alvarez, 1991).

Second model (Fig. 3a) involves the existence of two oceanicbranches (Alvarez, 1976) separating the CPT, that together withKabilian, Rifian and Betic Internal Units (Fig. 1) formed the AlKaPeCamicroplate (Handy et al., 2010; Michard et al., 2002; meso-Mediterranean microplate, Guerrera et al., 2005), from the Europeanplate to the west and the Apulia–African plate to the east. Western oce-anic branch (Piemontese–Ligurian Ocean, Bonardi et al., 2001; Guerreraet al., 2005;W-Ligurian Ocean, Handy et al., 2010) passed northward toPenninic Ocean (Michard et al., 2002) and southward to Betic Ocean(Michard et al., 2002; Nevado–Filabride Ocean, Guerrera et al., 2005),whereas eastern branch (Lucanian Ocean, Bonardi et al., 2001; LigurianOcean, Michard et al., 2002; E-Ligurian Ocean, Handy et al., 2010),passed northward to Piemont Ocean (Handy et al., 2010). Accordingto this paleogeography, starting from Late Cretaceous, the closure ofwestern branch was driven by the SE-oceanic lithosphere subductionbeneath the AlKaPeCa microplate whereas since Late Oligocene, sub-duction switched with closure of Ligurian Ocean (sensu Michard et al.,2002), located eastward to CPT, with a NW-subduction and formationof the Apennines (“young Apennines” of Alvarez, 1991) and SicilianMaghrebide chains.

Fig. 3. Late Cretaceous (a) and Late Oligocene (b) paleogeography of the central-western MScandone, 2007). (c) Zoom of part of Fig. 3b. CPT (Calabria–Peloritani Terrane), Pe: PeloritaniFrido; NC: Nord-Calabrese. PS: Parasicilide; Sic: Sicilide; Apennine Platform domain, LV: LunMt. Cervati; Ca: Capri Island; Lat: Lattari Mts.; Pi: Picentini Mts.; AV: Avella Mts.; Mad: MaddAurunci Mts.; Sim: Sinbruini Mts.; Er: Ernici; Mat: Matese Mts.; Mar: Marsica Mts.; Mai: MainPo: Porrara Unit; Lag: Lagonegro; Sa: Sannio Unit; Tu: Tufillo Unit; Da: Daunia Unit; To: Va

In order to analyze the kinematic evolution of thrust frontmigration,let us consider the paleogeography, referred to the Late Oligocene,shown in the Fig. 3b; in this time all cited Authors agree with the sub-duction of the westernmost Ligurian lithosphere.

Late Oligocene paleogeography was obtain mainly according to(i) available paleogeographic maps (e.g., Handy et al., 2010; Michardet al., 2002; Patacca and Scandone, 2007); (ii) spatial and temporal dis-tribution of foredeep deposits andmagmatic rocks (Accaino et al., 2011;Bonardi et al., 2009; Ciarcia et al., 2012; Lustrino et al., 2009; Patacca andScandone, 2007; Vitale et al., 2012); and (iii) paleomagnetic data indi-cating a ca. 60–70° counterclockwise rotation for the Apennine succes-sions from Late Oligocene to Recent and a ca. 20° clockwise rotation forthe Crati Basin deposits (northern Calabria) from Late Miocene to Re-cent (Cifelli et al., 2007; Mattei et al., 2007). Furthermore according tothe dinosaur tracks and bones, discovered in Apulian, Mt. Matese andPanormide Platform carbonates, the Panormide–Apennine Platformwas to be considered as a bridge between northern margin of Africancraton and Apulian Platform at least in Cretaceous time (Zarcone etal., 2010). However, in the Paleogene, the Panormide Platform succes-sion evolved to slope–basin environments (Accaino et al., 2011;Grasso et al., 1978), whereas the Apennine Platform continued with ashallow water sedimentation (Bonardi et al., 2009).

We envisage a Late Oligocene paleogeography characterized by theoverriding plate, formed by CPT and European plate separated by thepreviously formed Alpine Chain, and the downgoing plate includingthe Ligurian domain. The latter was characterized by deeper basin suc-cessions deposited onto (i) a true oceanic crust (Calabrian ophiolites);(ii) an Ocean Continent Transition (OCT, Manatschal and Muntener,

editerranean area (modified after Handy et al., 2010; Michard et al., 2002; Patacca andMts.; Se: Serre Massif; Sil: Sila Massif. Ligurian Ocean and Maghrebian Flysch Basin, Fri:gro–Verbicaro Unit; PC: Pollino–Ciagola Unit. Bu: Mt. Bulgheria; Alb: Mt. Alburno; Ce:alena Mts.; Maz: Mt. Marzano; Ci: Circeo Island; Le: Lepini Mts.; Aus: Ausoni Mts.; Aur:arde Mts.; Fro: Frosolone Unit; Ag: Agnone Unit; GS: Mt. Gran Sasso; Mo: Mt. Morrone;lle del Toro Unit. Apulian domain, Maj: Mt. Majella; and Alp: Mt. Alpi.

Fig. 4. Late Oligocene paleogeography showing (a) Apennine thrust front lines and four analyzed paths and (b) motion of the CPT from the Late Oligocene to Recent. See Fig. 3 forthe legend.

Fig. 5. Kinematic complexes map of southern Apennines/CPT system (Neogene wedge-top and extensional basin and Quaternary deposits are not represented) showing Early Miocene,LateMiocene and Pliocene–Middle Pleistocene tectonic vergences (fromAydin et al., 2010; Bravi et al., 2006; Caiazzo et al., 2006; Cavinato et al., 1993; Ferranti et al., 1996; Hippolyte et al.,1994; Mazzoli et al., 2006; Pace et al., 2001; Pantosti et al., 1986; Pertusati and Buonanno, 2009; Piedilato and Prosser, 2005; Scrocca and Tozzi, 1999; Tavani and Cifelli, 2010; Tozzi et al.,1996; Vitale et al., 2012; unpublished data). See the caption of Fig. 3 for abbreviations.

168 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

169S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

Fig. 6. Tectono-stratigraphic schemes of Ligurian and Apennine successions, including pre-, syn- (foredeep basin) and post-orogenic (wedge-top basin) deposits along four tran-sects (see Fig. 4 for their localization): (a) 1; (b) 2; (c) 3 and (d) 4. Pon: Ponticello Fm.; MP: Mt. Pruno Fm.; MS: Mt. Sacro Fm.; Cai: Arenarie di Caiazzo Fm.; and Go: GorgoglioneFm. See the caption of Fig. 3 for further abbreviations.

170 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

2009) such as the Frido succession (Spadea, 1982); (iii) a thinned con-tinental crust such as successions of the Maghrebian Flysch Basin(Guerrera et al., 2005), the latter generally detached from theirpre-Cretaceous basement, and presently cropping out in Sicily and inthe southern Apennines (Nord-Calabrese, Sicilide and Parasicilide

units; Ciarcia et al., 2012; Guerrera et al., 2005; Vitale et al., 2011). Ligu-rian domain passed eastward to amore or less thinned continental lith-osphere where the Apennine Platform domain (e.g., Bonardi et al.,2009; Cosentino et al., 2003; Patacca and Scandone, 2007) extendedfrom the North Africa margin up to NE (Fig. 3b, c). This domain was

171S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

formed (from south to north) by an internal margin–slope sector(Lungro–Verbicaro Unit; Mt. Bulgheria, Capri Island and Circeo succes-sions; Bonardi et al., 2009; Iannace et al., 2007; Pantosti et al., 1986;Patacca and Scandone, 2007; Scandone et al., 1964), a platform setting(Pollino–Ciagola Unit, Cervati, Alburni, Picentini, Lattari, Avella, Lepini,Simbruini, Matese and Marsica Mts. successions; Bonardi et al., 2009;Cosentino et al., 2002, 2003, 2010; Iannace et al., 2007; Patacca andScandone, 2007; Vitale and Mazzoli, 2009) and an external margin–slope sector (Maddalena, Mainarde, and Gran Sasso Mts. successions)(Bonardi et al., 2009; Cosentino et al., 2003, 2010; Patacca andScandone, 2007; Patacca et al., 1992a). Apennine Platform boundedeastward the Lagonegro–Molise Basin (Mostardini and Merlini, 1986),the latter including the successions of Lagonegro, Sannio, Frosolone,Agnone, Tufillo, Daunia and “Vallone del Toro” Units (Basso et al.,2002; Bonardi et al., 2009; D'Argenio et al., 1973; Patacca andScandone, 2007; Patacca et al., 1992a). Finally, the Lagonegro–MoliseBasin passed eastward to the Apulian Platform domain encompassing(i) an internal sector, represented by the Mt. Alpi (Mazzoli et al., 2006)to the south, and Morrone, Porrara, Genzana, and Majella Mts. (Pataccaand Scandone, 2007) to the north (Fig. 2b); (ii) a buried thick successiondrilled for the hydrocarbon exploration (e.g., Sciamanna et al., 2004;Shiner et al., 2004); and finally (iii) an external sector represented bythe Apulian foreland.

4. Kinematic complexes

The Apennines are a classic mountain chain-foredeep system forwhich the transition from passive margin to foreland basin sedimenta-tion is thoroughly documented (e.g., Bonardi et al., 2009; Cosentino etal., 2010; Pescatore and Senatore, 1986; Ricci-Lucchi, 1986). Further-more, fundamental insights into foreland basin evolution and develop-ment ofwedge-top basins (e.g., piggy-back basins, Ori and Friend, 1984;satellite basins, Ricci-Lucchi, 1986; thrust-top basins, Butler and Grasso,1993; and wedge-top basins, DeCelles and Giles, 1996; Roure et al.,1991) have been obtained just from this orogen.

For most of the southern Apennines a typical sedimentary pattern,marking the progressive subsidence of foreland continental margin suc-cessions into foredeep basin, was recognized (e.g., Ascione et al., 2012;Bonardi et al., 2009; Cipollari and Cosentino, 1995; Cosentino et al.,2003, 2010; Patacca and Scandone, 2007; Sgrosso, 1998; Vezzani et al.,2010). In each paleogeographic domain, Neogene foreland basin sedi-mentation was controlled by the combined effect of original physiogra-phy and flexure of the foreland plate. As a result, foreland basindeposition was characterized by: (i) conformable – or nearly so –

transgressive deposits on top of carbonate platform successions; (ii) var-iably discontinuous (due to the common occurrence of hiatuses) pelagicsuccessions showing coarse-grained detrital intercalations in carbonateslope environments; and (iii) essentially continuous pelagic successionsin the basins. Foreland basin sedimentation generally evolved, more orless gradually, from initially carbonate and marly clayey to siliciclastic(arcosic and litharenitic). These arenaceous deposits mark the maindepocentral stage of foreland basin deposition, which normally termi-nates with the first contractional deformation.

In order to individuate sets of tectonic units having the same foredeepbasin age and deformed in a common temporal interval, all pre- andsyn-orogenic stratigraphic successions are grouped in nine kinematiccomplexes (from A to I, Figs. 4a, 5 and 6a–d; Table 1), everyone boundedbymain regional thrust faults, containing one or more tectonic sub-unitsand encompassing successions of different paleoenvironmental domains(Bonardi et al., 2009).

Complex A includes the Frido Unit (Fig. 6d), subducted under theCPT between the Late Oligocene (Bonardi et al., 1993) and before thelatest Aquitanian, oldest age of the foredeep deposits of complex B.The latter, consisting of Nord-Calabrese Unit (Fig. 6c, d; Bonardi etal., 1988a), was accreted in the oceanic accretionary wedge immedi-ately after the earliest Burdigalian time i.e. the age of Sovereto

sandstones (Saraceno Fm., Bonardi et al., 2009). Frido Unit reachedHP–LT metamorphic conditions (Spadea, 1976) and successivelywas exhumed before middle Tortonian (age of the first wedge-top de-posits; Vezzani, 1966).

Complex C encompasses Parasicilide (Fig. 6a–d; Ciarcia et al., 2009a)and Sicilide Units (Fig. 6d; Lentini, 1979; Ogniben, 1969) correspondingto Monte Soro and Troina–Tusa Units of the Sicilian Maghrebides (deCapoa et al., 2002) and Lungro–Verbicaro Unit (Fig. 6d; Iannace et al.,2007; Vitale, 2005) representing the westernmost margin–slope ofthe Apennine Platform (Fig. 3b, c). The age of foredeep basin deposits(“Arenarie di Albanella” Fm., Critelli et al., 1994; Donzelli andCrescenti, 1962; “Tufiti di Tusa”, de Capoa et al., 2002; Ogniben, 1960;Zuppetta et al., 1984; “Arenarie di Corleto” Fm., Lentini, 1979; and“Scisti del Fiume Lao” Fm., Damiani, 1970; Iannace et al., 2007) of allthese successions is middle Burdigalian. Still at Burdigalian, basin suc-cessions were included in the accretionary wedge by means of frontalaccretion mechanisms (Ciarcia et al., 2012) whereas the Lungro–Verbicaro successionwas subducted reachingHP–LTmetamorphic con-ditions (Iannace et al., 2007) and successively exhumed before themid-dle Tortonian (age of first unconformable deposits; Mattei et al., 1999;Perrone et al., 1973).

Platform–margin–slope carbonates of Mt. Bulgheria, Capri Island,Pollino–Ciagola Unit and Alburno, Cervati, Picentini, Avella, Lattari,and Maddalena Mts. (Figs. 3b, c and 6b–d; Bonardi et al., 1988b, 2009;Iannace et al., 2007; Patacca and Scandone, 2007; Patacca et al., 1990)form the complexD, involved in tectonic prism accretion between latestBurdigalian andmiddle Serravallian. These successions, as well as thoseof the outer sectors, never reached metamorphic conditions. This kine-matic complex is divided in two subgroups: (i) D1 with uppermostBurdigalian–Langhian foredeep deposits (Bifurto Fm.; Selli, 1957; Nu-midian Sandstones, Ogniben, 1960; Patacca et al., 1992b) and (ii) D2

with lower-middle Serravallian foredeep deposits (Laviano Fm. sensuSelli, 1957; “Calcareniti di Nerano”; Scandone and Sgrosso, 1965)(Fig. 3b, c; Table 1). These subgroups do not form twodistinct kinematiccomplexes because of lacking of a major thrust between them.

Complex E groups carbonates (Fig. 6a–d) of Circeo (Pantosti et al.,1986), Lepini, Ausoni and Aurunci Mts. (Cosentino et al., 2002) withunnamed foredeep sediments of late Serravallian–earliest Tortonian(?) age (Cosentino et al., 2003) and westernmost successions ofLagonegro–Molise Basin, corresponding to Lagonegro I and II Unitsof Scandone (1967, 1972), characterized by foredeep deposits ofSerra Palazzo Fm. (Selli, 1962).

Strata forming the central part of Lagonegro–Molise Basin (Fig. 6b–d;Sannio successions; Patacca et al., 1992a; Pescatore et al., 2000; and“Coltre Sannitica”; Selli, 1962) and platform carbonates of Ernici,Simbruini and Matese Mts. (Fig. 6a, b; Carminati et al., 2007; Cipollariand Cosentino, 1995; Patacca and Scandone, 2007) are included in thecomplex F characterized by upper Tortonian foredeep deposits ofFrosinone (Accordi, 1964) and Pietraroja Fms. (Selli, 1957). This com-plex was deformed in late Tortonian–early Messinian. Complex G isformed by platform–margin–slope carbonates of Gran Sasso, Marsica,Mainarde, and North-West Matese Mts. (Fig. 6a; Bonardi et al., 2009;Cosentino et al., 2003; Patacca and Scandone, 2007) and successions ofeastern sector of Lagonegro–Molise Basin, i.e. Frosolone, Agnone, Tufilloand Daunia sequences (Fig. 6b–d; Bonardi et al., 2009; D'Argenio et al.,1973). These successions are topped by lower-middle Messinianforedeep basin deposits of Laga Fm. (including evaporites; Scarsella,1953) and Sant'Elena sandstones (Patacca et al., 1992a). This complexwas deformed during late Messinian (Cipollari et al., 1999).

Complex H includes platform–margin–slope carbonates of Genzana,Morrone, Porrara and Alpi Mts. (Fig. 6a, c, d; Cosentino et al., 2003;Patacca and Scandone, 2007) and the mainly siliciclastic succession of“Vallone del Toro” (Fig. 6b, c; Basso et al., 2002; Bonardi et al., 2009) de-posited in thewesternmost sector of Apulian Platformmargin (Fig. 3b, c).Foredeep deposit age is uppermost Messinian (“Lago-mare” facies)–lower Zanclean (e.g., “Flysch di Anversa degli Abruzzi”, Patacca et

Table1

List

ofstratigrap

hicsu

ccession

s,tecton

icun

itsan

dco

rrespo

ndingforede

epde

posits

grou

pedin

thenine

kine

matic

complex

es.F

irst

unco

nformab

lede

posits

ontopof

theprev

ious

lyform

edthrust

shee

tpile

arealso

indicated.

Kinem

atic

complex

esA

BC

DE

FG

HI

Apu

lian

foreland

D1

D2

Stratigrap

hic

succession

san

dtecton

icun

its

FridoUnit

(HP/LT

)Nord-Ca

labrese

Unit

Parasicilid

eSicilid

eun

its

Lung

ro–Verbicaro

Unit(H

P/LT

)

Pollino

–Ciag

olaUnit,

Alburno

,Cerva

ti,

Marzano

,Bulgh

eria

Mts.

CapriI.,

Lattari,Ave

lla,

Picentinia

ndMad

dalena

Mts.

Circeo

,Lep

ini,

Aus

oni,

Aurun

ciMts.,

Lago

negro

units

(Ian

dII)

Matese,

Sinb

ruini,

Ernici

Mts.

Sann

ioUnit

GranSa

sso,

Marsica,M

aina

rde

andNW

MateseMts.,

Frosolon

e,Agn

one,

Tufillo

,Dau

niaun

its

Gen

zana

,Morrone

Porrara,Valle

del

Toro,M

t.Alpi

Mt.Majella

Apu

lian

Platform

Forede

epag

esan

dco

rrespo

nding

depo

sits

Lowermost

Chattian

Upp

ermost

part

ofthe

calcschist

litho

facies

Upp

ermost

Aqu

itan

ian–

lowermost

Burdigalian

Sove

reto

Mb

(Saracen

oFm

.)

MiddleBu

rdigalian

Arena

riedi

Alban

ella,T

ufiti

diTu

sa,A

rena

riedi

Corleto

andFlysch

delF

iumeLao

Fms.

Upp

ermost

Burdigalian–

Lang

hian

BifurtoFm

.(inc

luding

Num

idian

sand

ston

es)

Lower–middle

Serrav

allia

nNeran

oan

dLavian

oFm

s.

Upp

erSe

rrav

allia

n–

lowermost

Torton

ian

Lepini

forede

epde

posits

and

SerraPa

lazzo

Fm.

Upp

erTo

rton

ian

Frosinon

ean

dPietraroja

Fms.

Lower–middleMessinian

Laga

Fm.(ev

aporites

includ

ed)

andSa

nt'Elena

sand

ston

es

Upp

ermost

Messinian

lower

Zanc

lean

Anv

ersa

degli

Abruz

ziFlysch

Upp

erZa

nclean

Majella

Flysch

andCe

llino

Fm.

Lower

Piacen

zian

Recent

Brad

anic

forede

ep

Wed

ge-top

basinag

esan

dco

rrespo

nding

depo

sits

Lang

hian

–lower

Torton

ian

CilentoGroup

Upp

erTo

rton

ian

Gav

igna

no–

Gorga

and

Ponticello

Fms.

Lower

Messinian

Torrice

and

Caiazzo

Fms.

Upp

ermostMessinian

–lower

Zanc

lean

Mt.Co

ppean

dLe

Vicen

neco

nglomerates

andAnz

ano

Fm.

Upp

erZa

nclean

Rigo

pian

oco

nglomerates

andBa

ronia

Synthe

m

Upp

erPiacen

zian

lower

Gelasian

Mutigna

noFm

.and

Sferracava

lloSy

nthe

m

172 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

al., 1992a). This complex was deformed during the upper part ofZanclean.

Complex I comprises remnant successions of internal ApulianPlatform along the northern margin (Fig. 6a; Majella Massif; Agostaet al., 2010) with upper Zanclean foredeep sediments (“Flysch dellaMajella”, Patacca et al., 1992a; Cellino Fm., Casnedi et al., 1976)(Fig. 3b, c; Table 1). Finally Apulian Platform, located ahead of Apen-nine thrust front, is characterized by the lower Piacenzian–RecentBradanic foredeep (Ascione et al., 2012).

Crystalline and metamorphic rocks cropping out in the bathyalplane of Tyrrhenian Sea (e.g., Flavio Gioia and Poseidon seamounts,Bigi et al., 1992) and slope carbonates cropping out in southern Italyoffshore (e.g., Zannone Island; De Rita et al., 1986) allowed us to re-construct the continuation of CPT and of Apennine Platform slope–margin in Tyrrhenian Sea (Fig. 5). Fig. 5 shows also the current Apenninethrust front and the tectonic boundary between Internal (CPT) andsouthern Apennines Units (LAC included).

5. Wedge-top basin deposits

In the southern Apennines, unconformable wedge-top Neogenedeposits, overlying foredeep successions (or directly their substrata),seal previously formed thrust-related structures (Bonardi et al., 2009;Cipollari and Cosentino, 1995; Cosentino et al., 2003; Sgrosso, 1998)such as kinematic complex contacts (Fig. 6a–d; Table 1). Sedimentation,in these wedge-top basins, is generally characterized by, locally sharp,lateral and vertical facies variations. Related successions, whose agesstart from the Middle Miocene, consist of dominantly clastic deposits,locally including olistoliths and olistostromes.

The Langhian–lower Tortonian Cilento Group (Amore et al., 1988;Russo et al., 1995), the first unconformable deposit sealing the LAC(formed by kinematic complexes B and C; Ciarcia et al., 2012; Vitale etal., 2011), is generally synchronouswith the foredeep basin sedimenta-tion in the complexes D1, D2 and E. The latter are capped by upperTortonian (Basso et al., 2002; Cipollari and Cosentino, 1995) wedge-top basin deposits of Gavignano–Gorga (Alberti et al., 1975) andPonticello Fms. (Bonardi et al., 2009; Ciarcia et al., 2009b). All aforemen-tioned complexes (from B to E) are sealed by younger (upperTortonian–lower Messinian) wedge-top basin deposits of Mt. Sacro(Selli, 1962), Mt. Sierio (Castellano and Sgrosso, 1996), PuntaLagno (De Blasio et al., 1981), Oriolo (Selli, 1962), Castelvetere(Pescatore et al., 1970) and Gorgoglione (Selli, 1962) Fms. LowerMessinian deposits (Arenarie di Torrice Fm., La Monica, 1966;Arenarie di Caiazzo Fm., Ogniben, 1957) unconformably cover allprevious complexes including the complex F whereas uppermostMessinian sediments (“Lago-mare” facies)/Zanclean p.p. (Cipollariet al., 1999; Patacca et al., 1992a) of Mt. Coppe (Patacca et al.,1992a), “Le Vicenne” conglomerates (Colacicchi et al., 1967) andAnzano Fm. (Crostella and Vezzani, 1964) or Altavilla Unit (Ippolitoet al., 1973) seal complex G. Finally, upper Zanclean (Amore et al.,1998; Centamore et al., 1992; Cipollari and Pipponzi, 2003; Pataccaet al., 1992a) wedge-top basin deposits of “Conglomerati diRigopiano” Fm. (Centamore et al., 1992), Baronia Synthem (Ciarciaet al., 2003), Mutignano Fm. (Ghisetti and Vezzani, 1988) andPiacentian/Gelasian wedge-top basin deposits (Amore et al., 1998;Vezzani and Ghisetti, 1998) of Sferracavallo Synthem (Ciarcia et al.,2003) cap the whole tectonic prism including also complexes H and I.

6. Kinematic analysis

Plotting together oldest ages of foredeep basin and wedge-top de-posits (Fig. 7a), such as reported in the previously described geological lit-erature, we can appreciate as sedimentation in both tectonic setting wasmore or less synchronous in main orogenic steps of the southern Apen-nine Chain evolution, having constrained the ages of orogenic pulses at:(1) late Burdigalian; (2) Langhian/Serravallian boundary; (3) middle–

Fig. 7. (a) Ages of foredeep and wedge-top basins with respect to kinematic complexes. (b) Diagram of the CPT and thrust front displacements vs. foredeep age. (c) Diagram ofincremental CPT and thrust front rates vs. foredeep age. (d) Diagram of rotation angles vs. distance from the GS–Sim reference line (Fig. 5). (e) Diagram of shortening estimationscalculated for Apennine–Apulia successions (see the text for explication) vs. distances from the Gran Sasso–Simbruini Mts. (GS–Sim) reference line (Fig. 5). (f) Mean values of AFTages calculated for kinematic complexes B, C, D1, E and H. Error bars correspond to the standard deviation.

173S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

late Serravallian; (4) middle–late Tortonian; (5) Tortonian/Messinianboundary; (6) late Messinian; (7) Zanclean; and (8) early Piacenzian.These temporal constraints correspond to the oldest ages of foredeep ba-sins, asmarked by boxes in Fig. 7a. In order to calculate thrust front veloc-ities and according to the International Commission on Stratigraphy(2012), we used discrete values of 16.5, 13.82, 12.25, 8.75, 7.246, 5.5,3.94 and 3.3 Ma, respectively.

Probably in the Aquitanian–middle Burdigalian, the accretionarywedge emerged, and only at the late Burdigalian, the Cilento Groupwedge-top basin formed as a result of an extensional collapse (Ciarciaet al., 2012). It is worth to mention that sedimentation within theCilento Group wedge-top basin was generally synchronous with threeforedeep basins of complexes D1, D2 and E, encompassing also thewest-ernmost sector of Lagonegro–Molise Basin (Fig. 7a). It follows that theLAC tectonically covered the Apennine Platform without a complete

emersion. In fact, sedimentation of Cilento Group was characterized bythe transition (at Langhian/Serravallian boundary) from the LanghianPollica Fm., made of few decimeter-thick arenitic, siliciclastic andcalciclastic, pelitic turbidites, to Serravallian–lowermost Tortonian sedi-ments of San Mauro Fm., characterized by marly megaturbidites andsiliciclastic and calciclastic coarse grained deposits (Critelli, 1999).Thrusting of the LAC at late Burdigalian–Langhian onto the Apen-nine Platform did not triggered regional imbrications in the footwall(i.e. major thrust faults between kinematic complexes D1 and D2),causing a continue sedimentation within the Cilento Group basin(Critelli, 1999) until the early Tortonian (Russo et al., 1995). Onlywhen the thrust front successively migrated toward more external sec-tors, including Lagonegro strata in the tectonic prism, that the top of thetectonic wedge emerged with interruption of wedge-top basin filling.At early Tortonian, the sedimentation within the Cilento Group ended

174 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

and only at late Tortonian, when a new foredeep basin (e.g., Pietrarojaand Frosinone Fms.) developed and a contemporaneous wedge-topbasin formed above the complex E (e.g., Ponticello and Gavignano–Gorga Fms.), sedimentation reprised on top of the LAC with depositionof unconformable Mt. Sacro Fm. (Critelli, 1999).

6.1. Thrust front migration rates

In order to calculate incremental velocities of the thrust front/foredeep migration, from Late Oligocene to Recent, along four pathsacross the southern Apennines (Fig. 6a–d), according to the paleogeo-graphic reconstruction proposed in this study (Fig. 3b), thrust fronttraces are drawn (Fig. 4a). The reference system is fixed to Apulian–Hyblean (African) blocks (i.e. the downgoing plate) assumingthat these moved together at least from Late Oligocene to Recent(e.g., Dewey et al., 1989).

The kinematic constraints, for the subducted slab, are the totallength and the timing of penetration in the mantle. Tomographicimages, across the Tyrrhenian Sea and southern Apennines/CPT(e.g., Lucente et al., 1999; Spakman and Wortel, 2004), show a litho-sphere formed by a ca. 660 km long steep slab and a flat panel lyingalong the transition to lower and upper mantle. The total length, in-cluding the flat portion, is ca. 1200 km (Lucente et al., 1999), further-more according to Faccenna et al. (2001a) the penetration of thesubducted slab to the depth of 660 km occurred between 16 and10 Ma, with a drop of thrust front migration rates.

Further temporal constraints for the kinematic analysis include(i) foredeep andwedge-top basin ages such as described in the previousparagraphs; (ii) timing of volcanic activity in the western Mediterra-nean area (Lustrino et al., 2009; Savelli, 2002); (iii) 40Ar/39Ar dating ofmetamorphism (Rossetti et al., 2004) and (iv) AFT data of ApennineUnits (Ciarcia et al., 2012; Iannace et al., 2007; Invernizzi et al., 2008;Mazzoli et al., 2008). Finally tectonic vergences for LAC (Cesarano etal., 2002; Ciarcia et al., 2009a, 2012; Vitale et al., 2010, 2011) and Apen-nine Units (Aydin et al., 2010; Bravi et al., 2006; Caiazzo et al., 2006;Cavinato et al., 1993; Ferranti et al., 1996; Hippolyte et al., 1994;Mazzoli et al., 2006; Pace et al., 2001; Pantosti et al., 1986; Pertusatiand Buonanno, 2009; Piedilato and Prosser, 2005; Scrocca and Tozzi,1999; Tavani and Cifelli, 2010; Tozzi et al., 1996; Vitale et al., 2012), aswell as rotations carried out from paleomagnetic data (Cifelli et al.,2007; Mattei et al., 2007) were used to better define the tectonic andpaleogeographic evolution.

It is needed to remark that out-of-sequence thrusts (e.g., Cinqueet al., 1993), local thrust imbrications (e.g., Vitale et al., 2011,2012), Pliocene strike–slip faulting (e.g., Catalano et al., 1993) andsyn- and post-orogenic extensions (e.g., Hippolyte et al., 1994)were not considered in the kinematic calculation. Furthermore,Frido and Lungro–Verbicaro Units, belonging to complexes A and C,respectively, having experienced a complex burial (the only twounits reaching HP/LT metamorphic conditions) and exhumation his-tory, are excluded in following kinematic estimations, in fact, theircomplete exhumation occurred only in middle–late Tortonian withdeposition of Perosa Fm. (Vezzani, 1966) and Belvedere–Sant'Agatad'Esaro sandstones and conglomerates (Iannace et al., 2007;Perrone et al., 1973). Finally, it is needed to point out that the provid-ed paleogeographic reconstructions do not take into account of theEarth curvature, however, related uncertainty does not invalidatethe following kinematic analysis, aimed to furnish only a broad esti-mation of lengths and velocities (e.g., Boccaletti et al., 1990; Catalanoet al., 2004; Faccenna et al., 2001a, 2001b).

In order to carry out thrust front velocity estimations, for every pathacross the southern Apennines, distances between the thrust front traceand the start line fixed at Late Oligocene (Fig. 4a) are recorded. Lengthmeasurements are plotted against thrust front ages, the latter corre-sponding to oldest ages of foredeep basin deposits (Fig. 7c).

For the southern Apennines, the total thrust front displacement,from Late Oligocene to Recent, ranges between 900 and 1100 km(Fig. 7b). Thrust front incremental velocities (Fig. 7c) vary between1 cm/yr up to 14 cm/yr, showing a remarkable change betweenLanghian and middle Tortonian suggesting that in this time a majorgeodynamic event has remarkably modified the orogenic evolutionof the southern Apennines. All incremental velocity curves indicatean increase of the velocity from the north to the south showing twomaxima at late Burdigalian and late Messinian, except the first pathwhere the second maximum is reached at late Tortonian. Apart forthe start point, all paths show two minima, at middle Tortonian andRecent time. As suggested by Faccenna et al. (2001a), the period be-tween 15 and 10 Ma, could correspond to a “pause” of the subductionwith a decrease of the subducting plate velocities. The Authors hy-pothesized that this stop, of ca. 5 Myr, is related to the end of the pen-etration of the downgoing slab beyond the 660 km-transition zone inthe lower mantle. This temporal interval corresponds to the eastwardswitch of the Ligurian–Provençal back-arc basin opening to theTyrrhenian Basin opening, starting from the Tortonian (ca. 12 Ma)as recorded by the extensional Amantea Basin deposits in the Calabriaregion (Mattei et al., 2002), with the related stop of the rotation of theSardinia–Corsica block (Dewey et al., 1989).

Fig. 7b and c shows also the displacement and incremental rates ofthe CPT calculated along the migration path shown in Fig. 4b. Total dis-placement, from the LateOligocene to Recent, is ca. 1100 kmwith an in-cremental velocity generally more or less similar to the thrust frontmigration in the first part (Aquitanian–Tortonian) and larger in the sec-ond part (Messinian–Recent), with a maximum (ca. 9 cm/yr) at lateBurdigalian the and a minimum at middle Tortonian. The successivemaximum (ca. 14 cm/yr) is reached at the Piacenzian synchronouslywith the opening of the Vavilov Basin (Savelli, 2002), whereas the suc-cessive minimum is at Recent time with a velocity of ca. 2 cm/yr. Thisvalue and those estimated for the southern Apennines (ca. 1 cm/yr)are larger than current GPS velocities (in the African reference frame)characterized by a maximum of 0.5 cm/yr (D'Agostino et al., 2011).Being these velocities calculated in the Piacenzian–Recent interval,probably higher values occur in the first part synchronously with theopening of the Marsili Basin (1.9–1.6 Ma, Savelli, 2002) with anon-linear decrease toward the Recent time.

6.2. Rotations

In order to compare rotations of Apennine and Apulian Platformsuccessions with those reported in the literature (e.g., Cifelli et al.,2007; Mattei et al., 2007), we calculated the rotation angles for differ-ent sectors (Fig. 7d) from the Late Oligocene (Fig. 3b) to Recent(Fig. 5). Analysis indicates counterclockwise rotations for all succes-sions, however for the successions cropping out in the western sectorof the Apennine Platform all values ranges between 55 and 78°,whereas for those located in the eastern sector of the Apennine Plat-form and western side of the Apulian Platform, rotations show lowervalues between 13 and 27°.

6.3. Shortening estimations

Shortening estimations are calculated for all successions of ApenninePlatform, Lagonegro–Molise Basin and Apulian Platform (Fig. 7e). Weconsidered the original length as the distance between the selected suc-cession, referred to the Late Oligocene paleogeography, and the surfaceprojection of the current buried thrust front (Fig. 4a), whereas the finallength as the same distance in the current geography (Fig. 5). Shorten-ing values are plotted against the distance of the selected succession (inthe current geography) from a reference line passing for Gran Sasso andSimbruiniMts. (GS–Sim; Fig. 5). As previouslymentioned, such an anal-ysis furnishes only finite strain estimations comprising also possiblesyn- and post-orogenic extensions. Shortening values vary between

Fig. 8. Map showing restored Early Miocene–Middle Pleistocene tectonic vergences forsome Apennine successions (see Fig. 5 for comparison with original data).

175S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

55 and 88% for all successions except for the Mt. Alpi where it shows avalue of 28%, with the linear best fit indicating an increase of shorteningfrom NW (60%) to SE (ca. 90%). Such high values are consistent with adeformation dominated by a thin-skinned tectonics whereas the lowvalue of shortening for the Mt. Alpi suggests an exhumation ruled byhigh-angle deep-seated structures characterized by limited displace-ments (e.g., Mazzoli et al., 2006).

6.4. Tectonic exhumation ages

In order to compare thrust front migration ages with tectonicexhumation ages, apatite fission track (AFT) data, carried out fromApennine Units (Ciarcia et al., 2012; Iannace et al., 2007; Invernizziet al., 2008; Mazzoli et al., 2008), are analyzed. Fig. 7f shows meanAFT ages calculated for kinematic complexes B, C, D1, E and H. It isworth to note as complexes B and C recorded an exhumation historysynchronous with the opening of Tyrrhenian Sea, whereas complexesD1, E and H indicate an exhumation following the late Messinian.Probably, as suggested by Mazzoli et al. (2008), tectonic exhumation,for the latter kinematic complexes, is a consequence of the “closure”of the Lagonegro–Molise Basin, involving buttressing of the alloch-thonous wedge against the western crustal ramp of rifted margin ofthe Apulian plate. This feature is consistent with the drop of thethrust front rates calculated after the late Messinian. Summarizingthe tectonic wedge collided with the Apulian Platform as shown bythe position of thrust front at the late Messinian (Fig. 4a) producinga rapid decrease of horizontal velocities and synchronously the upliftand exhumation of the tectonic wedge.

6.5. Tectonic vergences

Fig. 5 shows also the tectonic vergences of some Apennine units indifferent temporal stages of the tectonic evolution (Early–MiddleMiocene, Late Miocene and Pliocene–Middle Pleistocene times).Early/Middle Miocene vergences were recorded in the LAC andLungro–Verbicaro Unit (Ciarcia et al., 2009a, 2012; Vitale, 2005;Vitale and Mazzoli, 2009; Vitale et al., 2010, 2011) showing a preva-lence of a SE tectonic transport. On the contrary, Late Miocenevergences were recorded in the most of Apennine successions(Bravi et al., 2006; Caiazzo et al., 2006; Cavinato et al., 1993;Cesarano et al., 2002; Ferranti et al., 1996; Hippolyte et al., 1994;Pace et al., 2001; Pantosti et al., 1986; Pertusati and Buonanno,2009; Scrocca and Tozzi, 1999; Tavani and Cifelli, 2010; Tozzi et al.,1996; Vitale et al., 2012) providing a tectonic transport rangingfrom NNW to NE. Finally Pliocene–Middle Pleistocene vergences,mostly recorded in the outer sector of the Apennine Chain (Aydin etal., 2010; Hippolyte et al., 1994; Mazzoli et al., 2006; Piedilato andProsser, 2005), indicate a E/NE tectonic transport. In order to restoreoriginal directions let us consider Miocene and Pliocene–Pleistocenerotations inferred by paleomagnetic data (Cifelli et al., 2007; Matteiet al., 2007). Restored Late Miocene and Pliocene–Middle Pleistocenevergences (Fig. 8) indicate a mean eastward tectonic transport havingassumed counterclockwise rotations of 40/60° and 20°, respectively(Cifelli et al., 2007; Mattei et al., 2007). The same result (Fig. 8) isobtained for the Early/Middle Miocene vergences assuming a clock-wise rotation of 20°, i.e. the same rotation experienced by the CPTfrom the Late Miocene to Pliocene (Cifelli et al., 2007; Mattei et al.,2007).

7. Some considerations about Calabria–Peloritani Terrane (CPT)and Calabrian ophiolites

Proposed kinematic analysis is focused on the southern ApennineUnits, however, some considerations can be done about the tectonicevolution of the CPT and related ophiolites. Several geological differ-ences characterize northern and southern sectors of the CPT (Alvarez

and Shimabukuro, 2009; Bonardi et al., 2001), among others (i) thepresence only in the northern sector of ophiolites and slices of the Ap-ennine Platform (Lungro–Verbicaro and Pollino–Ciagola Units) both atfootwall of the CPT Units and (ii) the existence only under the southernsector of a subducting slab (Ionian lithosphere), well-detected in the to-mographic images (Lucente et al., 2006) or by depth earthquake hypo-centers (Neri et al., 2009). The NW-dipping slab formed, in the Ionianoff-shore, a large accretionary prism, characterized by several kmthick sedimentary imbricated successions (Minelli and Faccenna, 2010).

Calabrian ophiolites (Gimigliano, Diamante–Terranova andMalvito;e.g., Amodio-Morelli et al., 1976) show a similar HP–LT metamorphismevolution (Liberi and Piluso, 2009; Liberi et al., 2006) and are character-ized by metasedimentary covers dated as a generic Early Cretaceous byDietrich (1976) or Eocene by Boullin (1984). K/Ar age determinationsonwhole rock samples (ophiolites), providemetamorphic ages rangingbetween 48 and 30 Ma (Beccaluva et al., 1981), whereas more recent40Ar/39Ar dating furnishes ages of 30.8±0.1 and 33.5±0 (Rossetti etal., 2004). In the southern sector of the CPT (Peloritani Mts. and SerreMassif, Fig. 3b), continental crystalline units show sedimentary coversreaching the Aquitanian age (Longi–Taormina Unit, Bonardi et al.,2003) sealed by the middle–late Burdigalian wedge-top succession ofthe Stilo–Capo d'Orlando (Bonardi et al., 2003),whereas in the northernsector, the Sila Unit (Amodio-Morelli et al., 1976; Fig. 3b), which agesrange between the Paleozoic to Early Cretaceous, is unconformably cov-ered by the Oligocene–Burdigalian wedge-top basin deposits of PaludiFm. (Bonardi et al., 2005). Finally, Zr fission-track analysis (Thomson,1998) on CPT units, indicate, normally, a Late Oligocene–Early Mioceneage for the start of the tectonic exhumation.

All these temporal constraints suggest that, according to Rossettiet al. (2004), the Calabrian ophiolites were involved in the Apenninetectonics since the Late Eocene, as well as the CPT units cropping outin the northern Calabria, whereas for those cropping out in the south-ern sector, the orogenic deformation occurred starting from the Aqui-tanian time. This temporal discrepancy can be related to the lacking ofophiolites in the southern sector, and generally in all units derivedfrom the Maghrebian Flysch Basin (Guerrera et al., 2005), whereonly little areas were probably characterized by oceanic crust, as tes-tified by the occurrence of ophiolitic detritus in the MaghrebianFlysch Basin successions (e.g., Durand-Delga et al., 2000). On the con-trary, the northern sector of CPT probably faced to a basin floored byoceanic crust according to the reconstructed Late Cretaceous paleoge-ography (Fig. 3a). In this tectonic framework, we suggest that Calabrianophiolites represent the westernmost sector of the Ligurian Ocean fac-ing the northern sector of the CPT (Fig. 3a) involved in the closure of

176 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

this oceanic domain prior of the 35 Ma (Rossetti et al., 2004). This inter-pretation does not exclude the existence of another oceanic branch lo-cated between the Corsica–Sardinia block and the AlKaPeCa microplate(“two oceans” model of Alvarez and Shimabukuro, 2009), closed be-tween the Late Cretaceous and Eocene times (e.g., Handy et al., 2010).

8. Southern Apennines/CPT system kinematic evolution

Proposed analysis suggests that the kinematic evolution of thesouthern Apennines/CPT system can be divided in five main steps:

(i) An initial low velocity phase (Late Eocene?–latest Aquitanian)characterized by subduction of the westernmost sector of Ligu-rian domain (Calabrian ophiolites and Frido Unit, kinematiccomplex A) with an early slow thrust front migration markedby velocities lesser than 1 cm/yr.

(ii) An increase of the thrust front velocity (latest Aquitanian–Langhian) largely overlapping with the Ligurian–Provençalback-arc basin opening, with values from ca. 1 cm/yr up to amaximum of ca. 14 cm/yr. In this phase a significant accretion-ary wedge formed including the remnant basin successions ofLigurian domain and innermost sector of Apennine Platform(kinematic complexes B and C).

(iii) A second low velocity phase (Serravallian–middle Tortonian)characterized by a drop of thrust front velocity down to1–3 cm/yr at middle Tortonian. This kinematic stage, spanningfor ca. 5 Myr, is probably connected to the end of slab penetra-tion in the upper mantle when it reached the depth of 660 kmwhere is located the boundary with underling lower mantle(Faccenna et al., 2001a). In this period the LAC tectonically cov-ered a large part of Apennine Platform.

(iv) A new increase of thrust front velocity (late Tortonian–lateMessinian), synchronous with the southern Tyrrhenian Seaspreading, characterized by values up to amaximum ranging be-tween 4 and ca. 10 cm/yr realized in the Messinian time. In thisperiod the Lagonegro–Molise Basin completely closed and kine-matic complexes E and F were included in the Apennine wedge.

(v) A final stage (Pliocene–Recent) with a decrease, in the southernApennines, of the thrust front velocity down to 1 cm/yr, probablyrelated to the docking of the allochthonous wedge, formed by atectonic prism encompassing several units derived from Liguriandomain, Apennine Platform, Lagonegro–Molise Basin includingexhumed HP–LT units (Frido and Lungro–Verbicaro Units),with the Apulian Platform. Differently incremental velocities cal-culated for the CPT indicate normally higher velocities with amaximum value (ca. 14 cm/yr) at Piacenzian synchronouslywith Vavilov Basin spreading (Savelli, 2002).

9. Paleogeographic evolution

According to the (i) relativemotion between European and African–Apulian plates (Dewey et al., 1989; Handy et al., 2010; Mazzoli andHelman, 1994), (ii) reconstructed thrust front map (Fig. 4a) and(iii) Tyrrhenian volcanism age (Savelli, 2002) from the Late Oligoceneto Recent, paleogeographic evolution maps were provided (Fig. 9).Starting from Late Oligocene (Fig. 9a) consumption of oceanic litho-sphere produced an embryonic accretionary wedge that successivelyexpandedwith the complete closure of the Ligurian Ocean (late Aquita-nian, Fig. 9b). Frommiddle to late Burdigalian (Fig. 9c and d1), Ligurianbasin successions, deposited on thinned continental crust, were includ-ed in the accretionary wedge and a large foredeep basin formed in theApennine Platform domain. Around the Burdigalian/Langhian bound-ary, Apennine and Panormide Platform foredeep basins, Lagonegro–Molise and Imerese basins were the location of Numidian sand sedi-mentation (Accaino et al., 2011; Bonardi et al., 2009; Grasso et al.,1978; Wezel, 1970) (Fig. 9d1) from a source located southwestward

in the African Craton (e.g., Thomas et al., 2010), meanwhile the col-lapsed LAC was the place of wedge-top basin sedimentation (CilentoGroup). No earlier than 16 Ma (early Langhian) the opening of theLigurian–Provençal Basin and rotation of the Sardinia–Corsica blockended (Speranza and Chiappini, 2002).

Successively (Langhian/Serravallian boundary, Fig. 9d2), a large sec-tor of the Apennine Platform domain was tectonically covered by theLAC whereas in outer sectors new foredeep basins formed. Betweenthe late Serravallian and Tortonian (Fig. 9e, f and g), thrust frontmigratedtoward progressively outer sectors, and CPT separated from Sardinia–Corsica mass. A late Messinian–Piacenzian interval (Fig. 9h and i), theCPT moved southeastward and the Vavilov Basin formed on the rear.Finally, between the Piacenzian to Recent (Fig. 9j), the CPT migrated toits current position (Calabrian Arc) with opening of the Marsili Basinand present orogenic volcanism of Eolian Arc (Savelli, 2002).

10. Tectono-stratigraphic evolution

A schematic tectonic evolution along an ideal geological tran-sect crossing northern CPT, Ligurian domain, Apennine Platform,Lagonegro–Molise Basin and Apulia Platform, referred to paleogeogra-phy at the Late Oligocene, is provided (Fig. 10). According to several au-thors (e.g., Casero et al., 1988;Mazzoli et al., 2001;Menardi Noguera andRea, 2000; Roure et al., 1991; Sciamanna et al., 2004; Speranza andChiappini, 2002), pre-Triassic basement of Apulian plate was involvedin the orogenic belt (thick-skinned tectonics) pairing or replacingshallower deformations (thin-skinned tectonics). Before the LateOligocene, Calabrian ophiolites were already subducted and easternmargin of the CPT was deformed, meanwhile the Frido succession wasin the foredeep stage (Fig. 10a). At latest Aquitanian–earliest Burdigaliantime, the basin succession of Nord-Calabrese Unit was firstly the locationof foredeep sedimentation (Sovereto sandstones Member) and succes-sively was accreted in the rising LAC by means of a dominantthin-skinned tectonics (Fig. 10b). During middle Burdigalian time, inthe easternmost sector of the Ligurian domain (Parasicilide and Sicilidesuccessions) and in the western margin of Apennine Platform (Lungro–Verbicaro succession), foredeep sedimentation occurred (Albanellasandstones and “Scisti del Fiume Lao” Fms.). Successively, Parasicilideand Sicilide successions were frontally accreted in the tectonic wedge,whereas the Lungro–Verbicaro succession was subducted (Fig. 10c).From latest Burdigalian to end of Langhian, the LAC tectonically coveredthe frontal bound of the Apennine Platform (Pollino–Ciagola succession)with deposition, in the latter, of foredeep Numidian sandstones,meanwhile in the collapsed allochthonous wedge, sedimentationoccurred in wedge-top basins (Pollica Fm.) (Fig. 10d1). At earliest–middle Serravallian, the LAC moved toward more external sectors ofthe Apennine Platform forming a new foredeep basin with depositionof Laviano Fm. whereas a different sedimentation occurred in thewedge-top basin of Cilento Group (San Mauro Fm.) (Fig. 10d2). Sincethe late Serravallian to earliest Tortonian, the whole tectonic wedge,formed by LAC and Apennine Platform, overthrust Lagonegro–MoliseBasin strata, by means of a deep rooted thrust fault (thick-skinned tec-tonics; e.g., Cippitelli, 2007), with deposition, in the westernmost sec-tor, of Serra Palazzo Fm. foredeep succession (Fig. 10e). From the lateTortonian to late Calabrian, the tectonic wedge included several basinsuccessions newly by means of a dominant thin-skinned tectonics(Lagonegro, Sannio, Daunia, Tufillo, Vallone del Toro, Genzana, Porrara,Morrone andMajella successions) (Fig. 10f, g, h, i, j) with themigrationof thrust front in progressively outer sectors of the Apulian Platform andnew foredeep basinswere created. Finally the external sector of the Ap-ennine Chain was affected by a thick-skinned tectonics (e.g., Shiner etal., 2004), probably starting in the Piacenzian, involving the buried Apu-lian Platformwith development of reverse faults with a convex geome-try and related structures in the hanging wall, such as long-wavelengthopen folds (see cross sections of Fig. 2b).

177S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

The total length of the Ligurian lithosphere, comprising the thinnedcontinental sector underlying the Nord-Calabrese, Parasicilide andSicilide successions, calculated along the transect 4 in the Late Oligocenepaleogeography (Fig. 4a), is ca. 650 km. This value is an underestimate ofthe total length of the subducted Ligurian slab, however, it is consistentwith the horizontal size of the flat slab observed in the tomographic im-ages, currently lying along the upper and lower mantle boundary(Lucente et al., 1999). On the other hand, the 660 km long steep slab cur-rently located under the Apennine Chain, could partly correspond to thecontinental lithosphere below theApennine Platform, Lagonegro–MoliseBasin and Apulian Platform such asmodeled in the Late Oligocene paleo-geography (Fig. 3b).

11. Conclusions

A large amount of geological data, acquired formore than two centu-ries, allowed us to reconstruct a kinematic model of the Late Oligocene–Recent thrust frontmigration for the southernApennines/CPT system. In

Fig. 9. Paleogeographic evolution maps from Late Oligocen

the ApennineChain, characterized by theNeogene toMiddle Pleistocenesuperposition of several tectonic units, nine kinematic complexes havebeen determined (Figs. 4, 5 and 6a–d; Table 1), everyone bounded bymain regional thrust faults and characterized by sets of tectonic units in-cluding foredeep basin deposits having the same age and deformed inthe same temporal interval. Results carried out from thrust front migra-tion analysis suggest to divide the Late Oligocene to Recent tectonic evo-lution in five kinematic stages. It must be pointed out that all calculatedvelocities are only broad estimations strongly depending by the paleo-geography model adopted in this study as well as by several geologicfeatures not considered in this paper such as strike–slip and extensionaltectonics or out-of-sequence thrusting.

Very low thrust front rates (ca. 1 cm/yr) characterized the first period(Late Eocene?–latest Aquitanian), whereas from latest Aquitanian- toLanghian, the velocity increased up to a maximum of 14 cm/yr. This sec-ond stagewas coevalwith the openingof the Ligurian–Provençal back-arcbasin. Successively, (Serravallian–middle Tortonian) a slowing down ofthe subduction process with a thrust front velocity decreasing to a

e to Recent. See the caption of Fig. 3 for abbreviations.

Fig. 9 (continued).

178 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

minimum of ca. 1 cm/yr, was followed by a new growth (late Tortonian–lateMessinian) up to amaximumof ca. 10 cm/yr (for the southern sectorof the southern Apennines) and the synchronous opening of theTyrrhenian back-arc basin. Finally (latest Messinian–Recent) the thrustfront velocity decreased again to ca. 1 cm/yr. The kinematic analysis ofthe CPT migration shows a similar trend, with a maximum at the lateZanclean of ca. 14 cm/yr. The transition from Serravallian to middleTortonian, corresponding to the end of the Ligurian–Provençal Basinopening and the start of the Tyrrhenian back-arc basin, resulted in anabrupt change in the thrust front velocity. This geodynamic change canbe related to the end of the penetration of the downgoing Apulian platebeyond the 660 km-transition zone in the lower mantle (Faccenna etal., 2001a).

A second abrupt change in the tectonic evolution occurred in thelate Messinian, as resulting from a drop of the thrust front velocity(i.e. horizontal velocity) and the start of tectonic exhumation of theApennine prism, both related to the docking of the allochthonouswedge and the Apulian Platform western ramp (Mazzoli et al., 2008).

Stratigraphic evolution of pre-, syn- and post-orogenic successionsinvolved in the Apennine accretionary prism construction, added tothe sedimentation timing of the wedge-top and foredeep basins,allowed to shed further light onto the Late Oligocene–Recent geo-dynamic evolution of the southern Apennines. Generally, sedimenta-tion occurred more or less contemporaneously both in the foredeepand wedge-top basins, however in the first stages, between earliestChattian to latest Burdigalian, the tectonic wedge (i.e. LAC; Ciarcia etal., 2012) was probably emerged without a wedge-top basin develop-ment. A peculiar condition was verified between latest Burdigalianand middle Serravallian when the wedge-top basin sedimentation ofthe Cilento Group was mostly contemporaneous with three foredeepbasins (kinematic complexes D1, D2 and E). Only since the earlyTortonian (when the Lagonegro strata were included in the tectonicprism) that a new foredeep formed in the complex F (e.g., Pietrarojaand Frosinone Fms.) and a newwedge-top basin was created on topof the thrust sheet pile (e.g., Ponticello and Gavignano–GorgaFms.).

Fig. 10. Cartoons showing the tectonic evolution of the southern Apennines/CPT system from the Late Oligocene to Recent. Vertical lengths are not to scale. Alb: “Arenarie diAlbanella” Fm.; SFL: “Scisti del Fiume Lao” Fm.; and Mu: Mutignano Fm.

179S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

Calculated shortening estimations for some selected Apenninesuccessions, indicate values ranging from 55 to 90% with an increas-ing trend, marked by the linear best-fit, from 60 (NW) to 90% (SE).Evaluations of rotation angles, from the period Late Oligocene to Re-cent, show values ranging between 55 and 80° for successions ofthe western sector of the Apennine Platform and lesser values forthe eastern sector and for the western side of the Apulian Platform.These values are consistent with rotations carried out from paleo-magnetism (Cifelli et al., 2007; Mattei et al., 2007). Finally, tectonicvergences, recorded in the whole Apennine Chain, when restoredaccording to rotations from the Miocene to Recent Apennine andCPT successions (Cifelli et al., 2007; Mattei et al., 2007) indicate amain E tectonic transport.

The tectonic evolution proposed in this study (Fig. 10), although onlyan approximate model of a more complex geodynamic evolution, can

help us to have an overall view of the southern Apennine/CPT history.This model integrated the first stages of the orogen construction withthe Calabria–Ligurian wedge accretion, from Late Oligocene to EarlyMiocene (e.g., Ciarcia et al., 2012; Rossetti et al., 2004; Thomson, 1998;Vitale and Mazzoli, 2009) and the well-known Late Miocene–Recentevolution of the more external zones of the Apennine Platform/Lagonegro–Molise Basin/Apulian Platform domains (e.g., Bonardi et al.,2009; Cosentino et al., 2010; Patacca and Scandone, 2007). Proposedtectonic evolution envisages an interplay between different tectonicstyles such as thin- and thick-skinned tectonics acting in different mo-ments of the orogenic construction, with a dominant shallow deforma-tion for the basin domains (Ligurian and Lagonegro–Molise basins)and a deeply rooted thrusting, affecting also the pre-Triassic basement(e.g., Cippitelli, 2007; Menardi Noguera and Rea, 2000), in the platformdomains (Apennine and Apulian platforms).

180 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

Acknowledgments

We greatly thank François Roure, Domenico Cosentino and an anon-ymous referee for their constructive and useful reviews that largely im-proved this manuscript, as well as the comments of Editor LaurentJolivet.

References

Accaino, F., Catalano, R., Di Marzo, L., Giustiniani, M., Tinivella, U., Nicolich, R., Sulli, A.,Valenti, V., Manetti, P., 2011. A crustal seismic profile across Sicily. Tectonophysics508, 52–61.

Accordi, B., 1964. Lineamenti strutturali del Lazio e dell'Abruzzo meridionale. Memoriedella Società Geologica Italiana 4, 595–633.

Agosta, F., Alessandroni, M., Antonellini, M.E., Tondi, E., Giorgioni, M., 2010. From frac-tures to flow: a field-based quantitative analysis of an outcropping carbonate res-ervoir. Tectonophysics 490, 197–213.

Alberti, A.U., Bergomi, C., Catenacci, V., Centamore, E., Cestari, G., Chiocchini, M.,Chiocchini, U., Manganelli, V., Molinari-Paganelli, V., Panseri-Crescenzi, C., Salvati,L., Tilia-Zuccari, A., 1975. Note illustrative del Foglio 389 Anagni. Carta Geologicad'Italia, scala 1:50.000. Servizio Geologico d'Italia, Istituto Poligrafico e Zeccadello Stato.

Alvarez, W., 1976. A former continuation of the Alps. Geological Society of America Bul-letin 87, 891–896.

Alvarez, W., 1991. Tectonic evolution of the Corsica–Apennines–Alps region studied bythe method of successive approximations. Tectonics 10, 936–947.

Alvarez, W., Shimabukuro, D.H., 2009. The geological relationships between Sardiniaand Calabria during Alpine and Hercynian times. Italian Journal of Geosciences128, 257–268.

Amodio-Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G., Ippolito, F., Liguori, V.,Lorenzoni, S., Paglionico, A., Perrone, V., Piccarreta, G., Russo, M., Scandone, P., Zanetti-Lorenzoni, E., Zuppetta, A., 1976. L'Arco Calabro-Peloritano nell'orogene appenninico-maghrebide. Memorie della Società Geologica Italiana 17, 1–60.

Amore, O., Bonardi, G., Ciampo, G., de Capoa, P., Perrone, V., Sgrosso, I., 1988. Relazionitra “flysch interni” e domini appenninici: Reinterpretazione delle formazioni diPollica, San Mauro e Albidona e il problema dell'evoluzione inframiocenicadelle zone esterne appenniniche. Memorie della Societa Geologica Italiana 41,285–299.

Amore, O., Basso, C., Ciarcia, S., Di Nocera, S., Matano, F., Torre, M., Ciampo, G., DiDonato, V., Esposito, P., Staiti, D., 1998. Nuovi dati stratigrafici sul Plioceneaffiorante tra il fiume Ufita e il torrente Cervaro (Irpinia, Appennino meridionale).Bollettino della Societa Geologica Italiana 117, 455–466.

Ascione, A., Ciarcia, S., Di Donato, V., Mazzoli, S., Vitale, S., 2012. The Pliocene–Quaternarywedge-top basins of southern Italy: an expression of propagating lateral slab tear be-neath the Apennines. Basin Research 24, 456–474.

Aydin, A., Antonellini, M., Tondi, E., Agosta, F., 2010. Deformation along the leadingedge of the Majella thrust sheet in central Italy. Journal of Structural Geology 32,1291–1304.

Basso, C., Ciampo, G., Ciarcia, S., Di Nocera, S., Matano, F., Torre, M., 2002. Geologia delsettore irpino-dauno dell'Appennino meridionale: implicazioni sui domini paleo-geografici delle unità bacinali meso-cenozoiche e nuovi vincoli stratigraficinell'evoluzione tettonica mio-pliocenica del settore esterno della catena. StudiGeologici Camerti 2, 7–27.

Beccaluva, L., Chiesa, S., Delaloye, M., 1981. K/Ar age determinations on someTethyan ophiolites. Rendiconti Società Italiana di Mineralogia e Petrologia 37,869–880.

Bigi, G., Cosentino, D., Parotto, M., Sartori, R., Scandone, P. (Eds.), 1992. Structuralmodel of Italy and gravity map, scale 1:500,000, Progetto Finalizzato GeodinamicaCNR, Quad. Ric. Sci. 3, 114.

Boccaletti, M., Ciaranfi, N., Cosentino, D., Deiana, G., Gelati, R., Lentini, F., Massari, F.,Moratti, G., Pescatore, T., Ricci-Lucchi, F., Tortorici, L., 1990. Palinspastic restorationand paleogeographic reconstruction of the peri-Tyrrhenian area during the Neo-gene. Palaeogeography, Palaeoclimatology, Palaeoecology 77, 41–50.

Bonardi, G., Amore, F.O., Ciampo, G., de Capoa, P., Miconnet, P., Perrone, V., 1988a. IlComplesso Liguride Auct.: stato delle conoscenze e problemi aperti sulla suaevoluzione pre-appenninca ed i suoi rapporti con l'arco calabro. Memorie dellaSocietà Geologica Italiana 41, 17–35.

Bonardi, G., D'Argenio, B., Perrone, V., 1988b. Carta Geologica dell'AppenninoMeridionale. Memorie della Società Geologica Italiana 41, scale 1:250,000, 1 sheet.

Bonardi, G., de Capoa, P., Fioretti, B., Perrone, V., 1993. L'Age desmetacalcaires de l'unité duFrido (region Calabro-Lucanienne, Italie) et ses implications geodynamiques.Comptes Rendus de l'Académie des Sciences 317, 955–962.

Bonardi, G., Cavazza, W., Perrone, V., Rossi, S., 2001. Calabria–Peloritani terrane andnorthern Ionian Sea. In: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: TheApennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers,Dordrecht, pp. 287–306.

Bonardi, G., de Capoa, P., Di Staso, A., Estevez, A., Martın-Martın, M., Martın-Rojas, I.,Perrone, V., Tent-Manclus, J.E., 2003. Oligocene to Early Miocene depositionaland structural evolution of the Calabria–Peloritani Arc southern subterrane(Italy) and geodynamic correlations with the Spain Betics and Morocco Rif.Geodinamica Acta 16, 149–169.

Bonardi, G., de Capoa, P., Di Staso, A., Perrone, V., Sonnino, M., Tramontana, M., 2005.The age of the Paludi Formation: a major constraint to the beginning of the

Apulia-verging orogenic transport in the northern sector of the Calabria–PeloritaniArc. Terra Nova 17, 331–337.

Bonardi, G., Ciarcia, S., Di Nocera, S., Matano, F., Sgrosso, I., Torre, M., 2009. Carta delleprincipali Unità Cinematiche dell'Appennino meridionale. Nota illustrativa. ItalianJournal of Geosciences 128, 47–60, scale 1:250,000, 1 sheet.

Boullin, J.P., 1984. Nouvelle interprétation de la liason Apennin-Maghrebides enCalabre: consequences sur la palaéogéographie téthysienne entre Gibraltar et lesAlpes. Revue de Geologie Dynamique et de Geographie Physique 25, 321–338.

Bravi, S., Civile, D., Martino, C., Putignano, M.L., 2006. La struttura da interferenza neicarbonati mesozoici della dorsale di Monte Fellino (Appennino Campano).Bollettino della Societa Geologica Italiana 125, 105–116.

Butler, R.W.H., Grasso, M., 1993. Tectonic controls on base level variations and deposi-tional sequences within thrust-top and foredeep basins: examples from the Neo-gene thrust belt of central Sicily. Basin Research 5, 137–151.

Caiazzo, C., Ascione, A., Cinque, A., 2006. Late Tertiary–Quaternary tectonics of the south-ern Apennines (Italy): new evidences from the Tyrrhenian slope. Tectonophysics 421,23–51.

Carminati, E., Corda, L., Mariotti, G., Brandano, M., 2007. Tectonic control on the archi-tecture of a Miocene carbonate ramp in the Central Apennines (Italy): insightsfrom facies and backstripping analyses. Sedimentary Geology 198, 233–254.

Casero, P., Roure, F., Endignoux, L., Moretti, I., Muller, C., Sage, L., Vially, R., 1988. Neo-gene geodynamic evolution of the Southern Apennines. Memorie della SocietàGeologica Italiana 41, 109–120.

Casnedi, R., Follador, V., Moruzzi, G., 1976. Geologia del campo gassifero di Cellino(Abruzzo). Bollettino della Societa Geologica Italiana 95, 891–901.

Castellano, M.C., Sgrosso, I., 1996. Eta' e significato dei depositi miocenici dellaformazione di M. Sierio e possibile evoluzione cinematica dell'unita' Monti dellaMaddalena nell'Appennino campano-lucano. Memorie della Società GeologicaItaliana 51, 239–249.

Catalano, R., Di Stefano, P., Sulli, A., Vitale, F.P., 1996. Paleogeography and structure of thecentral Mediterranean: Sicily and its offshore area. Tectonophysics 260, 291–323.

Catalano, S., Monaco, C., Tortorici, L., Tansi, C., 1993. Pleistocene strike–slip tectonics inthe Lucanian Apennine (Southern Italy). Tectonics 12, 656–665.

Catalano, S., Monaco, C., Tortorici, L., Paltrinieri, W., Steel, N., 2004. Neogene–Quaternarytectonic evolution of the southern Apennines. Tectonics 23, TC2003.

Cavinato, G.P., Corrado, S., Sirna, M., 1993. Geometrie ed evoluzione cinematica delsettore centrale della catena Simbruino-Ernica (Lazio, Appennino centrale).Geologica Romana 29, 435–453.

Centamore, E., Bigi, S., Berti, D., Micarelli, A., Morelli, C., 1992. Nuovi dati sui depositineogenici di avanfossa del Pescarese. Bollettino della Societa Geologica Italiana111, 437–447.

Cesarano, M., Pierantoni, P.P., Turco, E., 2002. Structural analysis of the Albidona For-mation in the Alessandria del Carretto-Plataci area (Calabro-Lucanian Apennines,southern Italy). Bollettino della Società Geologica Italiana, Special Issue 1, 669–676.

Ciarcia, S., Di Nocera, S., Matano, F., Torre, M., 2003. Evoluzione tettono-sedimentaria epaleogeografica dei depocentri “wedge-top” nell'ambito del “foreland basin system”

pliocenico dell'Appennino meridionale (settore Irpino-Dauno). Bollettino dellaSocieta Geologica Italiana 122, 117–137.

Ciarcia, S., Vitale, S., Di Staso, A., Iannace, A., Mazzoli, S., Torre, M., 2009a. Stratigraphyand tectonics of an Internal Unit of the southern Apennines: implications for thegeodynamic evolution of the peri-Tyrrhenian mountain belt. Terra Nova 21,88–96.

Ciarcia, S., Torre, M., Mitrano, T., 2009b. Stratigrafia della Formazione del Ponticello(Miocene Superiore, Appennino campano). Bollettino della Societa GeologicaItaliana 128, 715–721.

Ciarcia, S., Mazzoli, S., Vitale, S., Zattin, M., 2012. On the tectonic evolution of the Ligu-rian accretionary complex in southern Italy. Geological Society of America Bulletin124, 463–483.

Cifelli, F., Mattei, M., Rossetti, F., 2007. Tectonic evolution of arcuate mountain belts ontop of a retreating subduction slab: the example of the Calabria Arc. Journal of Geo-physical Research 112, B09101.

Cinque, A., Patacca, E., Scandone, P., Tozzi, M., 1993. Quaternary kinematic evolution ofthe Southern Apennines. Relationships between surface geological features anddeep lithospheric structures. Annali di Geofisica 36, 249–260.

Cipollari, P., Cosentino, D., 1995. Miocene unconformities in the central Apennines:geodynamic significance and sedimentary basin evolution. Tectonophysics 252,375–389.

Cipollari, P., Pipponzi, G., 2003. Le “Calciruditi di Calaturo” (Montagna del Morrone): undeposito tardo-orogenico della fine del Pliocene inferiore. Studi Geologici CamertiVolume speciale 2003, 73–83.

Cipollari, P., Cosentino, D., Esu, D., Girotti, O., Gliozzi, E., Praturlon, A., 1999. Thrust-toplacustrine-lagoonal basin development in accretionary wedges: late Messinian(Lago-Mare) episode in the central Apennines (Italy). Palaeogeography, Palaeo-climatology, Palaeoecology 151, 149–166.

Cippitelli, G., 2007. The CROP-04 seismic profile. Interpretation and structural setting ofthe Agropoli–Barletta Geotraverse. Bollettino della Societa Geologica Italiana vol-ume speciale 7, 267–281.

Colacicchi, R., Devoto, G., Praturlon, A., 1967. Depositi messiniani oligoalini al bordoorientale del Fucino e descrizione di Tyrrhenocythere ruggierii Devoto, nuova speciedi ostracode. Bollettino della Societa Geologica Italiana 86, 21–37.

Corrado, S., Invernizzi, C., Mazzoli, S., 2002. Tectonic burial and exhumation in a fore-land fold and thrust belt: the Monte Alpi case history (Southern Apennines,Italy). Geodinamica Acta 15, 159–177.

Corrado, S., Aldega, L., Di Leo, P., Giampaolo, C., Invernizzi, C., Mazzoli, S., Zattin, M., 2005.Thermal maturity of the axial zone of the Southern Apennines fold-and-thrust belt(Italy) frommultiple organic and inorganic indicators. Terra Nova 17, 56–65.

181S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

Cosentino, D., Cipollari, P., Di Donato, V., Sgrosso, I., Sgrosso, M., 2002. The Volsci Rangein the kinematic evolution of the northern and southern Apennine orogenetic sys-tem. Bollettino della Società Geologica Italiana volume speciale 1, 209–218.

Cosentino, D., Cipollari, P., Pipponzi, G., 2003. Il sistema orogenico dell'Appennino centrale:vincoli stratigrafici e cronologia della migrazione. In: Cipollari, P., Cosentino, D. (Eds.),Evoluzione cinematica del sistema orogenico dell'Appennino centro-meridionale:caratterizzazione stratigrafico-strutturale dei bacini sintettoniciStudi Geologici Camerti,Numero Speciale 2003, 85–99.

Cosentino, D., Cipollari, P., Marsili, P., Scrocca, D., 2010. Geology of the central Apennines:a regional review. The geology of Italy: tectonics and life along plate margins: In:Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S., Doglioni, C. (Eds.), Journal ofthe Virtual Explorer, 36. http://dx.doi.org/10.3809/jvirtex.2010.00223 (paper 12).

Critelli, S., 1999. The interplay of lithospheric flexure and thrust accommodation informing stratigraphic sequences in the southern Apennines foreland basin system,Italy. Rendiconti di Fisica Accademia dei Lincei 10, 257–326.

Critelli, S., de Capoa, P., le Pera, E., Perrone, V., 1994. Stratigrafia e petrografia delleArenarie di Albanella (valle del Calore, Appennino campano). Bollettino dellaSocieta Geologica Italiana 113, 451–463.

Crostella, A., Vezzani, L., 1964. La geologia dell'Appennino foggiano. Bollettino dellaSocieta Geologica Italiana 83, 121–142.

D'Agostino, N., D'Anastasio, E., Gervasi, A., Guerra, I., Nedimović, M.R., Seeber, L.,Stekler, M., 2011. Forearc extension and slow rollback of the Calabria–Peloritaniterrane from GPS measurements. Geophysical Research Letters 38, L17304.

Damiani, A.V., 1970. Osservazioni geologiche in alcune tavolette del F.220 nella Calabrianord occidentale. Parte 1 — stratigrafia. Bollettino della Societa Geologica Italiana89, 65–80.

D'Argenio, B., Pescatore, T., Scandone, P., 1973. Schema geologico dell'Appenninomeridionale (Campania e Lucania). Atti Accademia Nazionale Lincei — Quaderni183, 49–72.

De Blasio, I., Lima, A., Perrone, V., Russo, M., 1981. Nuove vedute sui depositi miocenicidella Penisola Sorrentina. Bollettino della Societa Geologica Italiana 100, 57–70.

de Capoa, P., Di Staso, A., Guerrera, F., Perrone, V., Tramontana, M., Zaghloul, M.N.,2002. The Lower Miocene volcaniclastic sedimentation in the Sicilian sector of theMaghrebian Flysch Basin: geodynamic implications. Geodinamica Acta 15, 141–157.

DeCelles, P.G., Giles, K.A., 1996. Foreland basin systems. Basin Research 8, 105–123.Dercourt, J., Zonenshain, L.P., Ricou, L.E., Le Pichon, X., Knipper, A.L., Grandjaquet, C.,

Sbortshikov, I.M., Geussant, J., Lepvrier, C., Pechersku, D.H., Boulin, J., Bazhenov,M.L., Lauer, J.P., Biju-Duval, B., 1986. Geological evolution of the Tethys belt fromthe Atlantic to the Pamirs since the Lias. Tectonophysics 123, 241–315.

De Rita, D., Funiciello, R., Patosti, D., Salvino, F., Sposato, A., Velonà, M., 1986. Geologicaland structural characteristics of the Pontine islands (Italy) and implications withthe evolution of the Tyrrhenian margin. Memorie della Societa Geologica Italiana36, 55–65.

Dewey, J.F., Helman, M.L., Turco, E., Hutton, D.H.W., Knott, S.D., 1989. Kinematics of thewestern Mediterranean. Alpine tectonics: In: Coward, M.P., Dietrich, D., Park, R.G.(Eds.), Geological Society, London, Special Publications, 45, pp. 265–283.

Dietrich, D., 1976. La geologia della Catena Costiera calabra tra Cetraro e GuardiaPiemontese. Memorie della Società Geologica Italiana 17, 61–121.

Doglioni, C., Harabaglia, P., Martinelli, G., Mongelli, F., Zito, G., 1996. A geodynamicmodel of the Southern Apennines accretionary prism. Terra Nova 8, 540–547.

Donzelli, G., Crescenti, U., 1962. Lembi di Flysch oligocenico affiorante a SE della Pianadel Sele. Memorie della Societa Geologica Italiana 3, 569–592.

Durand-Delga, M., Rossi, P., Olivier, P., Puglisi, D., 2000. Structural setting and ophioliticnature of Jurassic basic rocks associated with the Maghrebian flyschs in the Rif(Morocco) and Sicily (Italy). Comptes Rendus de l'Academie des Sciences 331,29–38.

Faccenna, C., Davy, P., Brun, J.P., Funiciello, R., Giardini, D., Mattei, M., Nalpas, T., 1996.The dynamics of back-arc extension: an experimental approach to the opening ofthe Tyrrhenian Sea. Geophysical Journal International 126, 781–795.

Faccenna, C., Becker, T.W., Lucente, F.P., Jolivet, L., Rossetti, F., 2001a. History of subduc-tion and back-arc extension in the Central Mediterranean. Geophysical Journal In-ternational 145, 809–820.

Faccenna, C., Funiciello, F., Giardini, D., Lucente, P., 2001b. Episodic back-arc extensionduring restricted mantle convection in the Central Mediterranean. Earth and Plan-etary Science Letters 187, 105–116.

Ferranti, L., Oldow, J.S., Sacchi, M., 1996. Pre-Quaternary orogen-parallel extension inthe southern Apennine belt, Italy. Tectonophysics 260, 325–347.

Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J.-C., Blanpied, C.,Ringenbach, J.-C., 2011. The southernmost margin of the Tethys realm during theMesozoic and Cenozoic: initial geometry and timing of the inversion processes.Tectonics 30, TC3002. http://dx.doi.org/10.1029/2010TC002691.

Ghisetti, F., Vezzani, L., 1988. Rapporti strutturali tra il fronte del Gran Sasso ed il flyschdella Laga (Appennino centrale). Memorie della Societa Geologica Italiana 41,1171–1178.

Grasso, M., Lentini, F., Vezzani, L., 1978. Lineamenti stratigrafico-strutturali delleMadonie (Sicilia centro-settentrionale). Geologica Romana 17, 45–69.

Guerrera, F., Martín-Martín, M., Perrone, V., Tramontana, M., 2005. Tectono-sedimentaryevolution of the southern branch of the Western Tethys (Maghrebian Flysch Basinand Lucanian Ocean): consequences for Western Mediterranean geodynamics. TerraNova 17, 358–367.

Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E., Bernoulli, D., 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record ofspreading and subduction in the Alps. Earth-Science Reviews 102, 121–158.

Hippolyte, J.-C., Angelier, J., Roure, F., 1994. A major geodynamic change revealed byQuaternary stress patterns in the Southern Apennines (Italy). Tectonophysics230, 199–210.

Iannace, A., Vitale, S., D'Errico, M., Mazzoli, S., Di Staso, A., Macaione, E., Messina, A.,Reddy, S.M., Somma, R., Zamparelli, V., Zattin, M., Bonardi, G., 2007. The carbonatetectonic units of northern Calabria (Italy): a record of Apulian paleomargin evolu-tion and Miocene convergence, continental crust subduction, and exhumation ofHP–LT rocks. Journal of the Geological Society 164, 1165–1186.

International Commission on Stratigraphy, 2012. International ChronostratigraphicChart. http://www.stratigraphy.org/ics%20chart/ChronostratChart2012.pdf.

Invernizzi, C., Bigazzi, G., Corrado, S., Di Leo, P., Schiattarella, M., Zattin, M., 2008. Newthermo-baric constraints on the exhumation history of the Liguride accretionarywedge, southern Italy. Ofioliti 33, 21–32.

Ippolito F., D'Argenio, B., Pescatore, T., Scandone, P., 1973. Unità stratigrafico-strutturalie schema tettonico dell'Appennino meridionale. Trad. da “The guide-book of Italy”,134–155. Petroleum Exploration Society of Libia. Ist. Geol. Geof. Univ., pubbl. n.s.,15, Napoli.

Knott, S.D., 1987. The Liguride Complex of southern Italy — a Cretaceous to Paleogeneaccretionary wedge. Tectonophysics 142, 217–226.

La Monica, G.B., 1966. Caratteristiche granulometriche e sedimentologiche dellearenarie di Torrice (Frosinone–Lazio meridionale). Atti Accademia Gioenia ScienzeNaturali 18, 285–312.

Lentini, F., 1979. Le Unità Sicilidi della Val d'Agri (Appennino Lucano). GeologicaRomana 18, 215–224.

Liberi, F., Piluso, E., 2009. Tectonometamorphic evolution of the ophiolitic sequencesfrom Northern Calabria–Peloritani terrane. Italian Journal of Geosciences 128,483–493.

Liberi, F., Morten, L., Piluso, E., 2006. Geodynamic significance of ophiolites within theCalabria–Peloritani terrane. Island Arc 15, 26–43.

Lucente, F., Chiarabba, C., Cimini, G., Giardini, D., 1999. Tomographic constraints on thegeodynamic evolution of the Italian region. Journal of Geophysical Research 104(B9).

Lucente, F.P., Margheriti, L., Piromallo, C., Barruol, G., 2006. Seismic anisotropy revealsthe long route of the slab through the western-central Mediterranean mantle.Earth and Planetary Science Letters 241, 517–529.

Lustrino, M., Morra, V., Fedele, L., Franciosi, L., 2009. The beginning of the Apenninesubduction system in central–western Mediterranean: constraints from Cenozoic‘orogenic’ magmatic activity of Sardinia (Italy). Tectonics 28, TC5016.

Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrhenian Sea and shortening inthe Apennines as a result of arc migration driven by sinking of the lithosphere. Tec-tonics 5, 227–243.

Manatschal, G., Muntener, O., 2009. A type sequence across an ancient magma-poorocean–continent transition: the example of the western Alpine Tethys ophiolites.Tectonophysics 473, 4–19.

Mattei, M., Speranza, F., Argentieri, A., Rossetti, F., Sagnotti, L., Funiciello, R., 1999. Ex-tensional tectonics in the Amantea basin (Calabria, Italy): a comparison betweenstructural and magnetic anisotropy data. Tectonophysics 307, 33–49.

Mattei, M., Cipollari, P., Cosentino, D., Argentieri, A., Rossetti, F., Speranza, F., Di Bella, L.,2002. The Miocene tectonosedimentary evolution of the Southern Tyrrhenian Sea:stratigraphy, structural and paleomagnetic data from the onshore Amantea basin(Calabrian Arc, Italy). Basin Research 14, 147–168.

Mattei, M., Cifelli, F., D'Agostino, N., 2007. The evolution of the Calabrian Arc: evidencefrom paleomagnetic and GPS observations. Earth and Planetary Science Letters263, 259–274.

Mazzoli, S., Helman, M., 1994. Neogene patterns of relative plate motion for Africa–Europe: some implications for recent central Mediterranean tectonics. GeologischeRundschau 83, 464–468.

Mazzoli, S., Barkham, S., Cello, G., Gambini, R., Mattioni, L., Shiner, P., Tondi, E., 2001.Reconstruction of continental margin architecture deformed by the contractionof the Lagonegro Basin, southern Apennines, Italy. Journal of the Geological Society158, 309–319.

Mazzoli, S., Aldega, L., Corrado, S., Invernizzi, C., Zattin, M., 2006. Pliocene–Quaternarythrusting, synorogenic extension and tectonic exhumation in the SouthernApennines(Italy). Insights from the Monte Alpi area. Styles of Continental Contraction: In:Mazzoli, S., Butler, R.W.H. (Eds.), Geological Society of America, Special Paper, 414,pp. 55–77.

Mazzoli, S., D'Errico, M., Aldega, L., Corrado, S., Invernizzi, C., Shiner, P., Zattin, M., 2008.Tectonic burial and ‘young’ (b10 Ma) exhumation in the southern Apennines foldand thrust belt (Italy). Geology 36, 243–246.

Mazzoli, S., Martin-Algarra, A., 2011. Deformation partitioning during transpressionalemplacement of a ‘mantle extrusion wedge’: the Ronda peridotites, westernBetic Cordillera, Spain. Journal of Geological Society 168, 373–382.

Menardi Noguera, A., Rea, G., 2000. Deep structure of the Campanian–Lucanian Arc(southern Apennines). Tectonophysics 324, 239–265.

Michard, A., Chalouan, A., Feinberg, H., Goffé, B., Montigny, R., 2002. How does theAlpine belt end between Spain and Morocco? Bulletin de la Société Géologiquede France 173, 3–15.

Minelli, L., Faccenna, C., 2010. Evolution of the Calabrian accretionary wedge (centralMediterranean). Tectonics 29, TC4004.

Mostardini, F., Merlini, S., 1986. Appennino centro-meridionale: sezioni Geologiche eproposta di modello strutturale. Memorie della Società Geologica Italiana 35, 177–202.

Neri, G., Orecchio, B., Totaro, C., Falcone, G., Presti, D., 2009. Subduction beneath south-ern Italy close the ending: results from seismic tomography. Seismological Re-search Letters 80, 63–70.

Nigro, F., Renda, P., 2004. Sequence of deformation in the Sicilidi Units (Northern Sicilianchain). Bollettino della Societa Geologica Italiana 123, 97–110.

Ogniben, L., 1957. Flysch miocenico autoctono e parautoctono e argille scagliosealloctone nella zona di Caiazzo (Caserta). Bollettino della Societa Geologica Italiana75, 169–179.

182 S. Vitale, S. Ciarcia / Tectonophysics 583 (2013) 164–182

Ogniben, L., 1960. Nota illustrativa dello Schema geologico della Sicilia Nord-orientale.Rivista Mineraria Siciliana 64 (65), 183–212.

Ogniben, L., 1969. Schema introduttivo alla geologia del confine calabro-lucano.Memorie della Società Geologica Italiana 8, 453–763.

Ori, G.G., Friend, P.F., 1984. Sedimentary basins formed and carried piggyback on activethrust sheets. Geology 12, 475–478.

Pace, B., Di Matteo, P., Boncio, P., Lavecchia, G., 2001. Considerazioni sull'evoluzionegeologica della Marsica Sud-Orientale (Abruzzo, Appennino centrale) sulla basedi un'analisi integrata di dati stratigrafici e strutturali. Bollettino della SocietaGeologica Italiana 120, 139–150.

Pantosti, D., Salvini, F., Velonà, M., 1986. Assetto geologico strutturale del promontoriodel Circeo (Italia centrale). Memorie della Società Geologica Italiana 35, 611–621.

Patacca, E., Scandone, P., 1989. Post-Tortonian mountain building in the Apennines.The role of the passive sinking of a relict lithospheric slab. The lithosphere inItaly: advances in Earth Science Research: In: Boriani, A., Bonafede, M., Piccardo,G.B., Vai, G.B. (Eds.), Atti Conv. Lincei, 80, pp. 157–176.

Patacca, E., Scandone, P., 2007. Geology of southern Apennines. Results of the CROPProject, Sub-project CROP-04: In: Mazzotti, A., Patacca, E., Scandone, P. (Eds.),Bollettino della Società Geologica Italiana, Special Issue, 7, pp. 75–119.

Patacca, E., Scandone, P., Bellatalla, M., Perilli, N., Santini, U., 1992a. La zona digiunzione tra l'arco appenninico settentrionale e l'arco appenninico meridionalenell'Abruzzo e nel Molise. In: Tozzi, M., Cavinato, G.P., Parotto, M. (Eds.), Studipreliminari all'acquisizione dati del profilo CROP 11 Civitavecchia-VastoStudiGeologici Camerti, Volume Speciale 1991-2, 417–441.

Patacca, E., Scandone, P., Bellatalla, M., Perilli, N., Santini, U., 1992b. The Numidian-sandevent in the southern Apennines. Memorie di Scienze Geologiche 18, 297–337.

Patacca, E., Sartori, R., Scandone, P., 1990. Tyrrhenian basin and Apenninic arcs: kinematicrelations since Late Tortonian times. Memorie della Società Geologica Italiana 45,425–451.

Perrone, V., Torre, M., Zuppetta, A., 1973. Il Miocene della Catena Costiera calabra. 1°contributo: zona Diamante-Bonifati-Sant'Agata d'Esaro (Cosenza). Rivista ItalianaPaleontologia Stratigrafia 79, 157–205.

Pertusati, S., Buonanno, A., 2009. Structural evolution of a foreland basin succession:the Dauna Unit in the Sannio–Molise sector of the Southern Apennines. ItalianJournal of Geosciences 128, 551–564.

Pescatore, T.S., Senatore,M.R., 1986. A comparison betweena present-day (Gulf of Taranto)and a Miocene (Irpinian Basin) foredeep of the Southern Apennines (Italy). ForelandBasins. In: Allen, P.A., Homewood, P. (Eds.), Special Publications, 8. IAS, pp. 169–182.

Pescatore, T.S., Sgrosso, I., Torre, M., 1970. Lineamenti di tettonica e sedimentazione nelMiocene dell'Appennino campano-lucano. Memorie della Società Naturalisti inNapoli 78, 337–408.

Pescatore, T.S., Di Nocera, S., Matano, F., Pinto, F., 2000. L'unità del Fortore nel quadrodella geologia del settore orientale dei Monti del Sannio (Appennino meridionale).Bollettino della Societa Geologica Italiana 119, 587–601.

Piedilato, S., Prosser, G., 2005. Thrust sequences and evolution of the external sector ofa fold and thrust belt: an example from the Southern Apennines (Italy). Journal ofGeodynamics 39, 386–402.

Ricci-Lucchi, F., 1986. The Oligocene to recent foreland basin of the Northern Apennines.In: Allen, P.A., Homewood, P. (Eds.), Foreland basinsIAS, Special Publications 8,105–139.

Rossetti, F., Faccenna, C., Goffé, B., Monié, P., Argentieri, A., Funiciello, R., Mattei, M.,2001. Alpine structural and metamorphic signature of the Sila Piccola Massifnappe stack (Calabria, Italy): insights for the tectonic evolution of the Calabria–Peloritani terrane. Tectonics 20, 112–133.

Rossetti, F., Goffé, B., Monié, P., Faccenna, C., Vignaroli, G., 2004. Alpine orogenicP–T–t-deformation history of the Catena Costiera area and surrounding regions(Calabria Arc, southern Italy): thenappe edifice of north Calabria revisedwith insightson the Tyrrhenian–Apennine system formation. Tectonics 23, TC6011.

Roure, F., Casero, P., Vially, R., 1991. Growth processes and melange formation in thesouthern Apennines accretionary wedge. Earth and Planetary Science Letters 102,395–412.

Roure, F., Casero, P., Addoum, B., 2012. Alpine inversion of the North African marginand delamination of its continental lithosphere. Tectonics 31, TC3006. http://dx.doi.org/10.1029/2011TC00298.

Russo, M., Zuppetta, A., e Guida, A., 1995. Alcune precisazioni stratigrafiche sul Flyschdel Cilento (Appennino meridionale). Bollettino della Societa Geologica Italiana114, 353–359.

Savelli, C., 2002. Time–space distribution of magmatic activity in the westernMediterraneanand peripheral orogens during the past 30 Ma (a stimulus to geodynamic consid-erations). Journal of Geodynamics 34, 99–126.

Scandone, P., 1967. Studi di geologia lucana; la serie calcareo silico marnosa e i suoirapporti con l'Appennino calcareo. Bollettino della Società Naturalisti in Napoli76, 301–469.

Scandone, P., 1972. Studi di Geologia lucana:carta dei terreni della serie calcareo-silico-marnosa e note illustrative. Bollettino della Società Naturalisti in Napoli 81,225–300.

Scandone, P., Sgrosso, I., 1965. Sulla paleogeografia della Penisola Sorrentina dalCretacico superiore al Miocene. Bollettino della Società Naturalisti in Napoli 74,159–177.

Scandone, P., Sgrosso, I., Bruno, F., 1964. Appunti di Geologia sul M. Bulgheria.Bollettino della Società Naturalisti in Napoli 72, 19–27.

Scarsella, F., 1953. Relazioni preliminari sui ri1evamenti geologici fatti durante i1 1953 neifogli 139–1'Aquila e 140 - Teramo. Bollettino Servizio Geologico d'Italia 73, 309–320.

Schettino, A., Turco, E., 2010. Tectonic history of the western Tethys since the Late Tri-assic. Geological Society of America Bulletin 123, 89–105.

Sciamanna, S., Sassi,W., Gambini, R., Rudkiewicz, J.L.,Mosca, F., Nicolai, C., 2004. Predictinghydrocarbon generation and expulsion in the southern Apennines thrust belt by 2-Dintegrated structural and geochemicalmodeling: Part I— structural and thermal evo-lution. In: Swennen, R., Roure, F., Granath, J.W. (Eds.), Deformation, fluid flow, andreservoir appraisal in foreland fold and thrust belts: AAPG Hedberg Series, 1, pp.51–67.

Scrocca, D., 2010. Southern Apennines: structural setting and tectonic evolution. Thegeology of Italy: tectonics and life along plate margins: In: Beltrando, M.,Peccerillo, A., Mattei, M., Conticelli, S., Doglioni, C. (Eds.), Journal of the Virtual Ex-plorer, 36 (paper 13).

Scrocca, D., Tozzi, M., 1999. Tettogenesi mio-pliocenica dell'Appennino molisano.Bollettino della Societa Geologica Italiana 118, 423–441.

Selli, R., 1957. Sulla trasgressione del Miocene nell'Italia meridionale. Giornale diGeologia 26, 1–54.

Selli, R., 1962. Il Paleogene nel quadro della geologia dell'Italia centro meridionale.Memorie della Società Geologica Italiana 3, 737–789.

Sgrosso, I., 1998. Possibile evoluzione cinematica miocenica nell'orogene centro-sudappenninico. Bollettino della Societa Geologica Italiana 117, 679–724.

Shiner, P., Beccacini, A., Mazzoli, S., 2004. Thin-skinned versus thick-skinned structuralmodels for Apulian Carbonate Reservoirs: constraints from the Val D'Agri Fields.Marine and Petroleum Geology 21, 805–827.

Spadea, P., 1976. I carbonati nelle rocce metacalcaree della Formazione del Frido dellaLucania. Ofioliti 1, 431–456.

Spadea, P., 1982. Continental crust rocks associated with ophiolites in Lucanian Apennine(Southern Italy). Ofioliti 7, 501–522.

Spakman, W., Wortel, M.J.R., 2004. A tomographic view on western Mediterraneangeodynamics. In: Cavazza, W., Roure, F.M., Spakman, W., Stampfli, G.M., Ziegler,P.A. (Eds.), The TRANSMED Atlas — The Mediterranean Region from Crust to Man-tle. Springer-Verlag, Berlin, pp. 31–52.

Speranza, F., Chiappini, M., 2002. Thick-skinned tectonics in the external Apennines,Italy: new evidence from magnetic anomaly analysis. Journal of Geophysical Re-search 107, 2290.

Storti, F., McClay, K., 1995. Influence of syntectonic sedimentation on thrust wedges inanalogue models. Geology 23, 999–1002.

Tavani, S., Cifelli, F., 2010. Deformation pattern analysis and tectonic implications of adécollement level within the Central Apennines (Italy). Geological Journal 45,582–596.

Thomas, M.F.H., Bodin, S., Redfern, J., Irving, D.H.B., 2010. A constrained African cratonsource for the Cenozoic Numidian Flysch: implications for the palaeogeography ofthe western Mediterranean basin. Earth-Science Reviews 101, 1–23.

Thomson, S.N., 1998. Assessing the nature of tectonic contacts using fission-trackthermochronology: an example from the Calabria–Peloritani terrane, southernItaly. Terra Nova 10, 32–36.

Tozzi, M., Menconi, A., Sciamanna, S., 1996. Studio strutturale del M. Bulgheria (Cilentomeridionale) e sue implicazioni per la tettogenesi dell'Appennino campano.Bollettino della Societa Geologica Italiana 115, 249–278.

Turco, E., Macchiavelli, C., Mazzoli, S., Schettino, A., Pierantoni, P.P., 2012. Kinematicevolution of Alpine Corsica in the framework of Mediterranean mountain belts.Tectonophysics. http://dx.doi.org/10.1016/j.tecto.2012.05.010.

Vezzani, L., 1966. La sezione tortoniana di Perosa sul Fiume Sinni presso Episcopia(Potenza). Geologica Romana 5, 263–290.

Vezzani, L., Ghisetti, F.C., 1998. Carta geologica dell'Abruzzo, scala 1:100,000. RegioneAbruzzo, Settore urbanistica-beni ambientali e cultura. S.EL.CA., Firenze.

Vezzani, L., Festa, A., Ghisetti, F.C., 2010. Geology and tectonic evolution of the central-southern Apennines, Italy. Geological Society of America Special Papers 469, 1–58.

Vignaroli, G., Faccenna, C., Rossetti, F., Jolivet, L., 2009. Insights from the apenninesmetamorphic complexes, their bearing on the kinematics evolution of the Orogen.In: Van Hinsbergen, D.J.J., Edwards, M.A., Govers, R. (Eds.), Geodynamics of colli-sion and collapse at the Africa–Arabia–Eurasia subduction zoneGeological Society,London, Special Publications 311, 235–256.

Vitale, S., 2005. Revisione delle unità carbonatiche in Calabria settentrionale: analisistrutturale e studio della deformazione finita. Ph.D. thesis, University Federico II,Naples.

Vitale, S., Mazzoli, S., 2009. Finite strain analysis of a natural ductile shear zone in lime-stones: insights into 3-D coaxial vs. non-coaxial deformation partitioning. Journalof Structural Geology 31, 104–113.

Vitale, S., Ciarcia, S., Mazzoli, S., Iannace, A., Torre, M., 2010. Structural analysis of the‘Internal’ Units of Cilento, Italy: new constraints on the Miocene tectonic evolutionof the southern Apennine accretionary wedge. Comptes Rendus Geosciences 342,475–482.

Vitale, S., Ciarcia, S., Mazzoli, S., Zaghloul, M.N., 2011. Tectonic evolution of the‘Liguride’ accretionary wedge in the Cilento area, southern Italy: a record of earlyApennine geodynamics. Journal of Geodynamics 51, 25–36.

Vitale, S., Dati, F., Mazzoli, S., Ciarcia, S., Guerriero, V., Iannace, A., 2012. Modes andtiming of fracture network development in poly-deformed carbonate reservoir an-alogues, Mt. Chianello, southern Italy. Journal of Structural Geology 37, 223–235.

Wezel, F.C., 1970. Numidian flysch: an Oligocene to early Miocene continental rise de-posit of the African platform. Nature 228, 275–276.

Zarcone, G., Petti, F.M., Cillari, A., Di Stefano, P., Guzzetta, D., Nicosia, U., 2010. A possi-ble bridge between Adria and Africa: new palaeobiogeographic and stratigraphicconstraints on the Mesozoic palaeogeography of the Central Mediterranean area.Earth-Science Reviews 103, 154–162.

Zuppetta, A., Russo, M., Turco, E., 1984. Alcune osservazioni sulle Tufiti di Tusa nell'areacompresa tra la Valsinni e Rocca Imperiale (confine calabro-lucano). Bollettinodella Societa Geologica Italiana 103, 623–627.