13
説� 1.は 結晶表面の最上層には内部と異なる電子状態が形成さ れており,光電子分光法などによってよく研究されてい る。しかし,その「表面電子状態」を通る電気伝導 surface- state conductivity(表面状態伝導)については,あまり 研究が進展していないのが現状である 1。それは,下地 結晶のバルク伝導の方がはるかに大きいので容易にかき 消されてしまい,あるいは表面原子ステップなどの欠陥 によって容易に乱されてしまうため,意味のあるデータ を得るのが難しいためであった。しかし,この最表面の 12 原子層を通る電気伝導の測定は,原子レベル・ナ ノメータスケール極微構造体における電子輸送現象の研 究に極めて重要な意義を持つので,最近急速に注目され 始めている。そこで,そのような研究のために有効なツ ールとなりうるミクロスコピック 4 端子プローブ法を開 発しているので紹介する 25巨視的な間隔をおいて 2 本のリード線を半導体結晶に 表面科学 Vol. 23, No. 12, pp. 740752, 2002 研究紹介 ミクロな 4 端子プローブによる表面電気伝導の測定 長谷川修司・白木一郎・田邊輔仁・保原 金川泰三・谷川雄洋・松田 巌・Christian L. PETERSEN Torben M. HANSSEN ** Peter BOGGILD ** Francois GREY ** 東京大学大学院理学系研究科物理学教室 ! 1130033 東京都文京区本郷 731 Capres AS, DTU Bldg.404 east, DK-2800, Lyngby, Denmark ** デンマーク工科大学マイクロエレクトロニクスセンター DTU Bldg.345 east, DK-2800, Lyngby, Denmark 2002 3 7 日受理) Measurements of Surface Electrical Conductance by Microscopic Four-Point Probes Shuji HASEGAWA, Ichiro SHIRAKI, Fuhito TANABE, Rei HOBARA, Taizo KANAGAWA, Takehiro TANIKAWA, Iwao MATSUDA, Christian L. PETERSEN Torben M. HANSSEN ** , Peter BOGGILD ** and Francois GREY ** Department of Physics, University of Tokyo, 731 Hongo, Bunkyo-ku, Tokyo 1130033 Capres AS, DTU Bldg.404 east, DK-2800, Lyngby, Denmark ** Microelectronics Center, Denmark Technical University, Bldg.345 east, DK-2800, Lyngby, Denmark (Received March 7, 2002) For in -situ measurements of local electrical conductivity of well-defined crystal surfaces in ultrahigh vacuum, we have developed two kinds of microscopic four-point probe methods. One is a ‘four-tip STM prober’, in which inde- pendently driven four tips of scanning tunneling microscope STMare used for four-point probe conductivity measure- ments, whose probe spacing can be changed from 0.5 µm to 1 mm. The other one is monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several µm. These probes are installed in scanning-electron-microscopyelectron-diffraction chambers, in which the structures of sample surfaces and probe posi- tions are in situ observed. The probe can be positioned precisely on aimed areas on the sample with aid of piezo- actuators. With these machines, the surface sensitivity in conductivity measurements has been greatly enhanced com- pared with macroscopic four-point probe method. Then surface-state conductivity and influence of atomic steps upon conductivity can be directly measured. E-mail: [email protected] 6

ミクロな 4 端子プローブによる表面電気伝導の測定 · PDF file3.monolithic マイクロ4 端子プローブ 散乱されるとは限らないということである。

  • Upload
    ngodien

  • View
    223

  • Download
    1

Embed Size (px)

Citation preview

  • 1

    surface-

    state conductivity

    1

    12

    4

    25

    2

    Vol. 23, No. 12, pp. 740752, 2002

    4

    Christian L. PETERSEN

    Torben M. HANSSENPeter BOGGILDFrancois GREY

    1130033 731Capres AS, DTU Bldg.404 east, DK-2800, Lyngby, Denmark

    DTU Bldg.345 east, DK-2800, Lyngby, Denmark

    2002 3 7

    Measurements of Surface Electrical Conductance by Microscopic Four-Point Probes

    Shuji HASEGAWA, Ichiro SHIRAKI, Fuhito TANABE, Rei HOBARA,

    Taizo KANAGAWA, Takehiro TANIKAWA, Iwao MATSUDA, Christian L. PETERSEN

    Torben M. HANSSEN, Peter BOGGILD and Francois GREY

    Department of Physics, University of Tokyo, 731 Hongo, Bunkyo-ku, Tokyo 1130033Capres AS, DTU Bldg.404 east, DK-2800, Lyngby, Denmark

    Microelectronics Center, Denmark Technical University, Bldg.345 east, DK-2800, Lyngby, Denmark

    (Received March 7, 2002)

    For in-situ measurements of local electrical conductivity of well-defined crystal surfaces in ultrahigh vacuum, wehave developed two kinds of microscopic four-point probe methods. One is a four-tip STM prober, in which inde-pendently driven four tips of scanning tunneling microscopeSTMare used for four-point probe conductivity measure-ments, whose probe spacing can be changed from 0.5 m to 1 mm. The other one is monolithic micro-four-pointprobes, fabricated on silicon chips, whose probe spacing is fixed around several m. These probes are installed inscanning-electron-microscopyelectron-diffraction chambers, in which the structures of sample surfaces and probe posi-tions are in situ observed. The probe can be positioned precisely on aimed areas on the sample with aid of piezo-actuators. With these machines, the surface sensitivity in conductivity measurements has been greatly enhanced com-pared with macroscopic four-point probe method. Then surface-state conductivity and influence of atomic steps uponconductivity can be directly measured.

    E-mail: [email protected]

    6

  • Fig. 633-Ag

    77 Fig. 7

    Fig. 7

    33-Ag

    1 m 1

    33-Ag

    4

    14

    4

    3

    4

    1970

    6

    Fig. 7 10 mm

    49

    4

    7733-Ag

    9

    4

    Fig. 7

    33-Ag

    4

    2 d 4

    2d

    RS

    R

    Fig. 7

    Fig. 633-Ag

    RS

    intrinsic

    1 m

    1 m

    33-Ag

    2

    ss ssSFe2L2 h 3

    SFL

    h

    kF kF

    0.150.0211415SF2 kF SF Fig. 7 d1 m ss1.5103 1 L253 nm

    100 nm 1

    diffusive

    25 nm

    746 23 12 2002

    12

  • 3monolithic 4

    L VF L VF

    e m 4 m

    m0.290.05me

    1415 VFhkFm VF

    25050 cm2Vs 1500 cm2Vs

    1

    10 mm

    414 1

    4

    3. 1

    Fig. 8a

    4 SEM

    3

    16 2100 m

    Fig. 8a

    30

    4

    SEM-RHEED

    2 Fig. 9

    UHV-SEMRHEED

    SREM

    4 STM

    SEM

    15

    XYZ 3

    5 mmOmicron

    Microslide

    10

    nm

    Fig. 8bcSi111-77

    8 m SEM SEM

    Fig. 8a

    Fig. 8cFig.

    8b 5 m

    4 STM

    3. 2

    1 mregular stepFig. 8

    8 m 4step bunch-

    ing

    17Fig. 10a

    1 m20 m 1250

    Fig. 10bc

    Si

    747 Christian L. PETERSENTorben M. HANSSENPeter BOGGILDFrancois GREY

    13

  • 28, 7014 (1983).11) J. Viernow, et al.: Phys. Rev B 57, 2321 (1998).12) S. Hasegawa, et al.: Surf. Sci. 386, 322 (1997).13) W. Moench: Semicon-

    ductor Surfaces and Interfaces (Springer, Berlin, 1995)

    14) Y. Nakajima, et al.: Phys. Rev. B 56, 6782 (1997); Phys.Rev. B 54, 14134 (1996).

    15) X. Tong, et al.: Phys. Rev. B 57, 9015 (1998).16) http:www.capres.com17) T. Ogino: Surf. Sci. 386, 137 (1997).18) N. Sato, et al.: Phys. Rev. B 59, 2035 (1999).19) Y. Hasegawa, et al.: Surf. Sci. 358, 32 (1996).20) S. Heike, et al.: Phys. Rev. Lett. 81, 890 (1998).21) E.H. Sondheimer: Adv. Phys. 1, 1 (1952).22) K. Fuchs: Proc. Cambridge Philos. Soc. 34, 100 (1938).

    752 23 12 2002

    18