44
урал ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ НАЦИОНАЛЬНЫЙ С ТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 52736- 2007 Короткие замыкания в электроустановках МЕТОДЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОГО И ТЕРМИЧЕСКОГО ДЕЙСТВИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ Издание официальное Москва Стандартинформ 2007 Текст стандарта предоставлен бесплатно для ознакомления

ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

  • Upload
    others

  • View
    35

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

урал

ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ

СТАНДАРТ

РОССИЙСКОЙ

ФЕДЕРАЦИИ

ГОСТ Р 52736-

2007

Короткие замыкания в электроустановках

МЕТОДЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОГО

И ТЕРМИЧЕСКОГО ДЕЙСТВИЯ ТОКА

КОРОТКОГО ЗАМЫКАНИЯ

Издание официальное

Москва Стандартинформ

2007

Текст стандарта предоставлен бесплатно для ознакомления

Page 2: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «0 техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Филиалом ОАО «НТЦ электроэнергетики» - ВНИИЭ, Московским энергетичес­ким институтом (Техническим университетом) (МЭИ (ТУ))

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 437 «Токи короткого замыкания»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 12 июля 2007 г. № 174-ст

4 ВЗАМЕН ГОСТ Р 50254-92

Информация об изменениях к настоящему стандарту публикуется ежегодно в издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежеме­сячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответству­ющая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2007

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и рас­пространен в качестве официального издания без разрешения Федерального агентства по техническо­му регулированию и метрологии

11

Page 3: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

1 Область применения . . .

2 Нормативные ссылки . . .

3 Термины и определения .

4 Общие положения . . . .

Содержание

5 Электродинамическое действие тока короткого замыкания.

5.1 Расчет электродинамических сил взаимодействия проводников

5.2 Выбор расчетной механической схемы шинных конструкций и гибких проводников .

5.3 Допустимые механические напряжения в материале проводников и механические нагрузки

. 1

. 1

. 1

. 2

. 3

3

5

на опоры при коротком замыкании . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.4 Определение механических напряжений в материале проводников и механических нагрузок на опоры при коротком замыкании . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.5 Проверка шинных конструкций, гибких проводников и электрических аппаратов на электро-динамическую стойкость при коротком замыкании . . . . . . . . . . . . . . . . . . . . . . . 1 5

6 Термическое действие тока короткого замыкания . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

6.1 Определение интеграла Джоуля и термически эквивалентного тока короткого замыкания 1 6

6.2 Проверка электрических аппаратов на термическую стойкость при коротком замыкании 21

6.3 Проверка проводников на термическую стойкость при коротком замыкании . . . . . . . 21

6.4 Проверка силовых кабелей на невозгораемость при коротком замыкании . . . . . . . . 27

Приложение А (рекомендуемое) Расчетные выражения для определения коэффициента Л(Z) 29

Приложение Б (рекомендуемое) Методика проверки токопроводов на электродинамическую стойкость при повторном включении на короткое замыкание . . . . . . . . . . . 30

Приложение В (рекомендуемое) Методика расчета гибких проводников на электродинамическую стойкость. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Приложение Г (рекомендуемое) Примеры расчета электродинамической стойкости шинных конструкций . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

111

Page 4: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Н АЦИ О НАЛЬН Ы Й С Т А Н Д А Р Т Р О С С ИЙ С К О Й ФЕ Д Е Р АЦИ И

Короткие замыкания в электроустановках

М ЕТ ОДЫ РАС ЧЕТ А ЭЛЕ КТ РОДИНА М ИЧЕС К ОГ О И Т Е РМИЧЕС К ОГ О ДЕЙСТВИЯ Т О К А К О РОТ К ОГ О З А М Ы КАНИЯ

Short-circuits in electrical installations. Calculation methods of electrodynamics and thermal effects of short-circuit current

Дата введения - 2008-07-01

1 Область применения

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет методы расчета и проверки проводников и электрических аппаратов на электродинами­ческую и термическую стойкость при коротких замыканиях (КЗ).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты: ГОСТ 687-78 Выключатели переменного тока на напряжение свыше 1 ООО В. Общие технические

условия ГОСТ 1 6442-80 Кабели силовые с пластмассовой изоляцией. Технические условия ГОСТ 1 8410-73 Кабели силовые с пропитанной бумажной изоляцией. Технические условия

П р и м е ч а н и е - При пользовании настоящим стандартом целесообразно проверить действие ссылоч­ных стандартов в информационной системе общего пользования - на официальном сайте Федерального агент­ства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационно­му указателю «Национальные стандарты» , который опубликован по состоянию на 1 января текущего года, и посоответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться за­меняющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором да­на ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями: 3.1

термическое действие тока короткого замыкания в электроустановке: Изменение темпера­туры элементов электроустановки под действием тока короткого замыкания.

[ГОСТ 26522-85, статья 87]

3.2

электродинамическое действие тока короткого замыкания в электроустановке: Механи­ческое действие электродинамических сил, обусловленных током короткого замыкания, на элементы электроустановки.

[ГОСТ 26522-85, статья 88]

Издание официальное

Текст стандарта предоставлен бесплатно для ознакомления

Page 5: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

3.3

интеграл Джоуля: Условная величина, характеризующая тепловое действие тока короткого замыкания на рассматриваемый элемент электроустановки, численно равная интегралу от квадрата тока короткого замыкания по времени, в пределах от начального момента короткого замыкания до момента его отключения.

[ГОСТ 26522-85, статья 89]

3.4

ток термической стойкости электрического аппарата при коротком замыкании (ток терми­ческой стойкости): Нормированный ток, термическое действие которого электрический аппарат спо­собен выдержать при коротком замыкании в течение нормированного времени термической стойкости.

[ГОСТ 26522-85, статья 90]

3.5

ток электродинамической стойкости электрического аппарата при коротком замыкании (ток электродинамической стойкости): Нормированный ток, электродинамическое действие кото­рого электрический аппарат способен выдержать при коротком замыкании без повреждений, препят­ствующих его дальнейшей работе.

[ГОСТ 26522-85, статья 91 ]

4 Общие положения

4.1 Исходные положения

4 .1.1 При проверке проводников и электрических аппаратов электроустановок на электродинами­ческую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т. е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а так­же расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на тер­мическую стойкость проводников и электрических аппаратов, а также при проверке на невозгораемость кабелей).

4.1.2 Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним сле­дует относить также ремонтные и послеаварийные режимы работы.

4.1.3 В качестве расчетного вида КЗ следует принимать: - при проверке электрических аппаратов и жестких проводников с относящимися к ним поддержи­

вающими и опорными конструкциями на электродинамическую стойкость - трехфазное КЗ;

- при проверке электрических аппаратов и проводников на термическую стойкость - трех- или однофазное КЗ, а на генераторном напряжении электростанций - трех- или двухфазное КЗ, в зависи­мости от того, какое из них приводит к большему термическому воздействию;

- при проверке гибких проводников по условию их допустимого сближения во время КЗ - двух­фазное КЗ.

4.1.4 В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

П р и м е ч а н и е - Исключения из этого требования допустимы лишь при учете вероятностных характерис­тик КЗ и должны быть обоснованы требованиями соответствующих ведомственных нормативных документов.

4.1 .5 Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость - путем ело-

2

Page 6: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

жения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

4.1 .6 При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

5 Электродинамическое действие тока короткого замыкания

5.1 Расчет электродинамических сил взаимодействия проводников

5.1 .1 Электродинамические силы взаимодействия F, Н, двух параллельных проводников с токами следует определять по формуле

где 2 .10-7 - постоянный параметр, Н/д2; i1, i2 - мгновенные значения токов проводников, А;

1- длина проводников, м; а - расстояние между осями проводников, м;

КФ- коэффициент формы.

(1)

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным на рисунке 1 .

о 0,4 0,8 1 ,2 1 ,6 а - Ь h+b

Рисунок 1 - Диаграмма для определения коэффициента формы проводников прямоугольного сечения

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводни­ков (шин) корытообразного сечения с высотой профиля О, 1 м и более следует принимать КФ = 1 ,0.

5.1 .2 Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

5.1 .3 Максимальную силу F ��х, Н, (эквивалентную равномерно распределенной по длине пролета

нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, сле­дует определять по формуле

3

Page 7: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

(2)

где / - длина пролета, м; i��) - ударный ток трехфазного КЗ, А;

Красп - коэффициент, зависящий от взаимного расположения проводников.

Значения коэффициента Красп для некоторых типов шинных конструкций (рисунок 2) указаны в таб­лице. 1 .

а б

в г

Рисунок 2 - Схемы взаимного расположения шинных конструкций

Т а б л и ц а 1 - Значения коэффициента Красп

Значен ие коэффициен та Красп для нагрузок Расположение шин Расчетная

фаза результиру- изгибающей растягива- сжимающей ющей ющей

в ОДНОЙ ПЛОСКОСТИ (рисунок 2 а) в 1 ,00 1 ,00 о о По вершинам равностороннего тре- А 1 ,00 0,94 0,25 0,75

угольника (рисунок 2 б) в 1 ,00 0,50 1 ,00 о с 1 ,00 0,94 0,25 0,75

По вершинам прямоугольного равно- А 0,87 0,87 0,29 0,87 бедренного треугольника (рисунок 2 в) в 0,95 0,43 0,83 0,07

с 0,95 0,93 0 , 14 0,43

По вершинам равностороннего тре- А, В, С 1 ,00 0,50 1 ,00 о угольника, но оси изоляторов расположе-ны под углом 2п/3 друг к другу (рисунок 2 г)

4

Page 8: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

При двухфазном КЗ максимальную силу определяют по формуле

(2) - 2 . 1 0-7 ·(2) 2 F max - -- ! (1уд ) КФКрасп• а где i��) - ударный ток двухфазного КЗ, А.

гост р 52736-2007

(3)

5.2 Выбор расчетной механической схемы шинных конструкций и гибких проводников

5.2.1 Методику расчета электродинамической стойкости шинных конструкций и гибких проводни­ков следует выбирать на основе расчетной механической схемы, учитывающей их особенности.

5.2.2 Следует различать: - статические системы, обладающие высокой жесткостью, у которых шины и изоляторы при КЗ

остаются неподвижными; - динамические системы с жесткими опорами, у которых изоляторы при КЗ считаются неподвиж­

ными, а шины колеблются; - динамические системы с упруго податливыми опорами, в которых при КЗ колеблются и шины, и

опоры; - динамические системы с гибкими проводниками. 5.2.3 Расчетные механические схемы шинных конструкций различных типов, обладающих высо­

кой жесткостью, представлены в таблице 2.

Т а б л и ц а 2 - Расчетные схемы шинных конструкций

Номер Коэффициен т Расчетн ая схема Тип балки и опоры схемы 'А 13 Г1

1

Однопролетная: А и В - простые опоры 8 1 3 , 14

tA tв 2 � Однопролетная:

д А - неподвижная опора 8 1 ,25 3,93 В - простая опора

tA tв

3 � � Однопролетная: А и В - неподвижные опоры 12 1 4,73

tA tв 4

рр

Двухпролетная: А и В - простые опоры 8 1 ,25 3,93

д tA tв �

5 д д д д

Трех и более пролетная: 1 0* 1 , 1 3 А и В - простые опоры 1 2** 1 4,73

tA tв tв � * Для крайних пролетов. ** Для средних пролетов. П р и м е ч а н и е - Коэффициент 'А используют при определении максимального напряжения в матери-

але проводника, 13 - при определении нагрузки на изолятор, r1 - параметр основной частоты собственных ко-лебаний шины.

5

Page 9: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Расчетные схемы имеют вид равнопролетной балки, лежащей или закрепленной на жестких опо­рах и подвергающейся воздействию равномерно распределенной нагрузки.

Различают следующие типы шинных конструкций и соответствующих расчетных механических схем:

- шинная конструкция, длина которой равна длине одного пролета; для нее расчетной схемой является балка с шарнирным опиранием на обеих опорах пролета (таблица 2, схема № 1 );

- шинная конструкция, длина которой равна длине одного пролета, с одной простой и одной непод­вижной опорами; для нее расчетной схемой является балка с шарнирным опиранием на простой опоре и жестким опиранием (защемлением) на неподвижной опоре пролета (таблица 2, схема № 2);

- шинная конструкция, длина которой равна длине одного пролета, с неподвижными опорами; для нее расчетной схемой является балка с жестким опиранием (защемлением) на обеих опорах пролета (таблица 2, схема № 3);

- шинные конструкции, длина которых равна длине двух, трех и более пролетов; для них расчетной схемой является балка с шарнирным опиранием на каждой из опор (таблица 2, схемы № 4 и 5).

5.2.4 Расчетной схемой шинной конструкции с упруго податливыми опорами следует считать схе­му, в которой масса шины распределена по длине пролета, а опоры представлены телами с эквивалент­ной массой Ми пружинами с жесткостью Соп·

5.2.5 Для гибких проводников в качестве расчетной схемы применяют схему с жестким стержнем, ось которого очерчена по цепной линии. Гирлянды изоляторов вводят в механическую схему в виде жес­тких стержней, шарнирно соединенных с проводниками и опорами. Размеры стержней расчетной схемы определяют из статического расчета на действие сил тяжести.

5.3 Допустимые механические напряжения в материале проводников и механические нагрузки на опоры при коротком замыкании

5.3.1 Допустимое напряжение в материале жестких шин сrдоп• Па, следует принимать равным 70 % временного сопротивления разрыву материала шин crp

(4)

Допустимое напряжение в материале шин должно быть ниже предела текучести этого материала. Временные сопротивления разрыву и допустимые напряжения в материалах шин приведены в таб­

лице 3. В зоне сварных соединений шин их временное сопротивление разрыву снижается. Его значение

обычно определяют экспериментально; при отсутствии экспериментальных данных значения времен­ного сопротивления разрыву, а также допустимого напряжения следует принимать, используя данные таблицы 3.

Т а б л и ц а 3 - Основные характеристики материалов шин

Временное сопротивление Допустимое напряжен ие, МПа разрыву, МПа Модуль Материал шины Марка в области в области упругости,

10 10 Па материала сварного материала сварного соединения соединения

Алюминий АО, А 1 1 8 1 1 8 82 82 7 АДО 59-69 59-69 41-48 41-48 7 АД31 Т 1 27 1 20 89 84 7

Алюминиевый АД31 Т1 1 96 1 20 1 37 84 7 сплав АВТ1 304 1 52 2 13 1 06 7

1 9 1 5Т 353 3 18 247 223 7 мгм 245-255 - 1 71 ,5-1 78 - 1 0

Медь мгт 245-294 1 71 ,5-206 1 0 - -

5.3.2 В зависимости от взаимного расположения шин и изоляторов последние при воздействии на них электродинамических сил работают на изгиб или растяжение (сжатие) или одновременно на изгиб и растяжение (сжатие). В общем случае допустимую нагрузку на изолятор (изоляционную опору) Fдоп сле-

6

Page 10: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

дует принимать равной 60 % минимальной разрушающей нагрузки Fразр• приложенной к вершине изоля­тора (опоры) при изгибе или разрыве

Fдоп = О,6Fразр · (5) 5.З.З В случае работы изолятора на изгиб или растяжение (сжатие) значения допустимых нагрузок

на изолятор (опору) Fдоп.изг и Fдоп.р • Н, следует принимать соответственно равными:

Fдоп.из�:_ = 0,6 Fразр.изг; ) Fдоп.р - 0,6 Fразр.р •

(6)

где Fразр.изг и Fразр.р - задаваемые предприятием-изготовителем минимальные разрушающие нагрузки соответственно при изгибе и растяжении (сжатии) изолятора, Н.

5.З.4 Допустимую нагрузку на спаренные изоляторы (опоры) следует принимать равной 50 % сум­марного разрушающего усилия изоляторов (опор)

Fдоп = О,5Fразр L' (7) где Fразр 2:- суммарное разрушающее усилие спаренных изоляторов (опор), Н.

5.З.5 При удалении центра масс шины от вершины опорного изолятора, например, когда плоская шина поставлена на ребро (рисунок За, 6), значение допустимой нагрузки на опорный изолятор при изги­бе следует пересчитать в соответствии с формулой

Fдоп = NFразр. изг h IH, (8) где N- коэффициент допустимой нагрузки, равный 0,6 или 0,5 (5.З.2-5.З.4); h и Н - расстояния от опасного сечения изолятора соответственно до его вершины и центра масс

поперечного сечения шины, м. Опасное сечение опорно-стержневых изоляторов с внутренним креплением арматуры (рису­

нок За) следует принимать у опорного фланца, опорно-стержневых изоляторов с внешним креплением арматуры (рисунок З6, в) - у кромки нижнего фланца, а опорно-штыревых изоляторов (рисунок Зг) - на границе контакта штыря с фарфоровым телом изолятора.

Допустимую изгибающую нагрузку многоярусных изоляционных опор (колонок изоляторов) (рису­нок Зг, д) следует принимать равной допустимой нагрузке наименее прочного яруса, определяемой по формуле (8).

::r::

а б

. "' --1 ::r::

::r:: .с: "' ::r:::s 1

. " ,,, ,,

в г д

Рисунок 3 - Определение допустимых нагрузок на изоляторы и изоляционные опоры

7

Page 11: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

5.3.6 При расположении фаз по вершинам треугольника (рисунок 26, в, г) изоляторы одновремен­но испытывают как растягивающие (сжимающие), так и изгибающие усилия. Допустимые изгибающую Fдоп.изг и растягивающую Fдоп.р нагрузки в ньютонах следует определять по формулам (6).

ным 5.3. 7 Допустимое напряжение в материале гибких проводников сrдоп• МПа, следует принимать рав-

<rдоп = Ncrпp• (9) где N - коэффициент допустимой нагрузки, равный 0,35-0,50;

<rпр - предел прочности при растяжении, Н.

5.3.8 Допустимую нагрузку на подвесные изоляторы следует принимать равной 30 % разрушаю­щей нагрузки, т. е.

(1 О) 5.3.9 Расстояния между проводниками фаз АФ-Ф' а также между проводниками и заземленными

частями Ар-з шинных конструкций напряжением 35 кВ и выше и проводников ошиновки распределитель­ных устроиств и воздушных линий, а также токопроводов к моменту отключения КЗ должны оставаться больше допустимых изоляционных расстояний, определяемых при рабочих напряжениях, т. е.

Аф-ф > Аф-ф.доп; ) Аф-з > Аф-з.доп•

( 1 1 )

где Аф-ф.доп и Аф-з.доп - минимально допустимые расстояния по условиям пробоя соответственно между проводниками фаз и проводниками и заземленными частями при рабочем напряжении.

5.4 Определение механических напряжений в материале проводников и механических нагрузок на опоры при коротком замыкании

5.4.1 Расчет шинных конструкций, обладающих высокой жесткостью 5.4.1 .1 При расчете шинной конструкции, обладающей высокой жесткостью, шину в любом проле­

те между изоляторами, кроме крайних, следует рассматривать как стержень (балку). Наличие ответвле­ний допускается не учитывать.

5.4.1.2 Максимальное напряжение в материале шины crmax• Па, и нагрузку на изолятор шинной конструкции высокой жесткости F J;), Н, при трехфазном КЗ следует определять по формулам:

М изг F �3J.xz. <rmax = -- = --W Л.W

F(З) = АF(З) из 1-' max •

( 1 2)

( 13)

где F ��х - максимальная сила, возникающая в многопролетной балке при трехфазном КЗ, Н, опреде­ляемая по формуле (2);

1- длина пролета, м; Ли 13- коэффициенты, зависящие от условия опирания (закрепления) шин, а также числа проле­

тов конструкции с неразрезными шинами (таблица 2); W - момент сопротивления поперечного сечения шины, мЗ; формулы для его расчета приведе­

ны в таблице 4.

Т а б л и ц а 4 - Формулы для определения момента инерции J и момента сопротивления W поперечных сече­ний шин

Форма поперечного сечен ия Расчетные формулы и расположен ие шин

J, м 4 W,м 3

~ Ьhз Ьh2

Jy =� Wy=-6

8

Page 12: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

Продолжение таблицы 4

Форма поперечного сечения и расположен ие шин

j�y v" 1/ /А V/ 1/ /А .Q '1"// V/ х '1"// V/

h

1 " х

� н

у

J, м4

4 J _ nD у - 64

Расчетные формулы

гост р 52736-2007

W,м 3

нз w. -­y-6.fi.

9

Page 13: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Окончание таблицы 4

Форма поперечного се чения и расположен ие шин

у

х

ь

У Уо <:]

х

Расчетные формулы

J, м4

н4 - h4 J y =-- 1 -2 -

J _hе3 - (h - 2Л)(е - л)3+2Л(Ь - е)3 у - 3

ЬЛ(Ь - Л) Л где е = hb - (Ь - Л)(h - 2Л)

+ 2

W,м 3

н4 - h4 w. - ---у - 6H.J2

J w. __ у_ у - Ь - е

П р и м е ч а н и е - Когда прокладки приварены к обеим полосам пакета, то вместо формул, отмеченных * и **, следует применять формулы:

* J = hb (За2 + Ь 2 ) . W. = hb (За�+ Ь 2 ) . У 6 п ' У 3 (ап + Ь) '

{ } � ** J y0 = 2 J y+[hb - (b - Л)(h - 2Л)(B - e)] ; Wy0 =h 12

.

При двухфазном КЗ

F.(2 ) l cr _ max . max - Л.W,

F (2) = AF (2) из 1-' max•

( 14)

( 1 5)

где F ��х - максимальная сила, возникающая в многопролетной балке при двухфазном КЗ, Н, и опре­деляемая по формуле (3).

При расчете напряжений в области сварных соединений, находящихся на расстоянии Z от опорно­го сечения, в формулы (12) и (1 4) следует подставлять значения Л(Z), вычисленные в соответствии с таб­лицей А.1 (приложение А).

5.4.1 .3 Электродинамические нагрузки на отдельные проводники составных шин (рисунок 4) обусловлены взаимодействием их токов с токами проводников других фаз и с токами других элементов проводника одной и той же фазы. Максимальное напряжение в материале составных шин при КЗ допус­кается определять по формуле

( 1 6)

1 0

Page 14: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

где crф.max -

<r эл.mах -

гост р 52736-2007

максимальное напряжение в материале шины, обусловленное взаимодействием тока данного проводника с токами проводников других фаз, Па, которое в зависимости от вида КЗ следует определять по формулам (12) или (14); максимальное напряжение в материале шины, обусловленное взаимодействием токов отдельных элементов проводника одной фазы, Па, которое следует определять по фор­муле

2.1 0-7z2 к. ( · J 2 _ эл· ЧJ lуд cr - � эл .mах АЭэлWэл п ,

( 1 7)

где / эл - расстояние между осями прокладок, м; а эл - расстояние между осями поперечных сечений элементов составных шин, м (рисунок 4);

W эл - момент сопротивления поперечного сечения элемента составной шины, м3; iуд - ударный ток трехфазного или двухфазного КЗ, А;

п - число проводников в одной фазе.

ь

Рисунок 4 - Двухполосная шина

5.4.2 Расчет шинных конструкций с жесткими опорами 5.4.2.1 Шинную конструкцию, изоляторы которой обладают высокой жесткостью, в расчетах на

динамическую стойкость при КЗ следует представлять как стержень с защемленными концами, имею­щий лишь основную частоту собственных колебаний.

5.4.2.2 Максимальное напряжение в материале шин crmax• Па, и нагрузку на изоляторы F из• Н, при расположении шин в одной плоскости и высокой жесткости изоляторов шинной конструкции следует определять по формулам:

при трехфазном КЗ

( 1 8)

F (3) = AF (3) У\' из 1-' max , ( 1 9)

1 1

Page 15: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

при двухфазном КЗ

F,(2) l cr _ max "'" max - Л.W . ,,

(2) - (2) Fиз -/ЗFmaxY\,

(20)

(21 )

где У\ - коэффициент динамической нагрузки, зависящий от основной частоты собственных колеба­ний шины f 1 (5.4.2.3) и от ударного коэффициента тока Х· Значения коэффициента У\ для двух­фазного и трехфазного КЗ в зависимости от отношения f 1/fсинх (fсинх = 50 Гц) при разных коэффициентах х следует определять по графикам, приведенным на рисунке 5.

2,0

1 ,0

о 0,02

� 1-"" � "" --" �

0,05

5 4 / J"·�� ......

� �� "'/ ;:::: " �� � �"" � 2

= "�

О, 1 0,2

1 1 Трехфазное кз

Г"""" 1 '

J J Двухфазное

кз � ,,.. r t....o ...... 1-"" .... !..;'

� 1-"" ....... .... 1...о�

�"" \ 1

0,5 2

Рисунок 5 - Зависимость коэффициента динамической нагрузки для изоляторов и шин от частоты собственных колебаний шины при различных ударных коэффициентах х: 1 - х ;::: 1 ,6; 2 - х = 1 ,4; 3 - х = 1 ,25; 4 - х = 1 , 1 ;

5 - х = 1 ,0

5.4.2.3 Расчетную частоту собственных колебаний шины f 1 , Гц, следует определять по формуле

f = _d_ {EJ (22) 1 2пz2 Vm' где r 1 - параметр основной частоты собственных колебаний шины. Значения этого параметра зави­

сят от типа шинной конструкции и указаны в таблице 2; Е - модуль упругости материала шины, Па; J- момент инерции поперечного сечения шины, м4;

т - масса шины на единицу длины, кг/м. 5.4.2.4 Максимальную нагрузку на проходные изоляторы Fиз• Н, следует определять по формуле

- .J3 . 1 0-7 ·(3) 2 (23) Fиз - /3 l пр(lуд ) КфКраспУJ, а где / пр - расстояние от торца проходного изолятора до ближайшего опорного изолятора фазы, м.

5.4.2.5 Максимальное напряжение crmax (Па) в материале составных шин шинной конструкции с жесткими опорами допустимо определять по формуле (1 6). При этом максимальное напряжение в мате­риале шин, обусловленное взаимодействием проводников других фаз, crфmax следует определять в зависимости от вида КЗ по формуле (1 8) или (20), а максимальное напряжение в материале шин, обусловленное взаимодействием отдельных элементов проводника одной фазы, сrэл . max - по формуле

1 2

Page 16: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

2.10-712 к. (. J 2 _ эл· ЧJ lуд <rэл max - /..а W n У\эл • ЭЛ ЭЛ

(24)

где У\эл - коэффициент динамической нагрузки, зависящий от расчетной основной частоты собственных колебаний элементов составной шины f1эл • который следует определять по расчетным графикам, приведенным на рисунке 5.

Расчетную основную частоту собственных колебаний элементов составной шины фазы f1эл • Гц, определяют по формуле

Г-2 �J f - 1 1эл --2- - -, 2пlэл mэл

где /эл - расстояние между осями прокладок, м; J - момент инерции поперечного сечения элемента шины, м4;

mэл - масса элемента шины на единицу длины, кг/м.

(25)

5.4.2.6 Максимальное напряжение в материале шин crmax• Па, и максимальную нагрузку на опор­ные и проходные изоляторы Fиз• Н, при расположении шин по вершинам треугольника (рисунок 26, в, г) следует определять с учетом их пространственных колебаний, используя формулы:

F(З) l (26) cr - Y\J: . max - f..W "cr '

FJ�) = F��xY\�F; (27)

(2) - (2) Fиз - FmaxY\�F, (28)

где W-меньший из двух моментов сопротивления поперечного сечения шины, мз, т. е. момента сопротивления при изгибе в плоскости, проходящей через ось изоляторов, и момента сопротивления при изгибе шины в плоскости, проходящей через другую ось шины;

F��x и F��x -Электродинамические силы, определяемые соответственно по формулам (2) и (3);

�cr и � F-коэффициенты, значения которых для наиболее распространенных типов шинных конструкций (рисунок 2, б, в, г) приведены в таблице 5.

Т а б л и ц а 5 - Значения коэффициентов l;cr и l;F шинных конструкций

Значен ие коэффициен та C,cr Схема кон струкции Значение Расположен ие шин на рисунке 2 коэффициен та C,F для шин дл я шин круглого и

кольцевого сечен ий квадратного сечен ия

По вершинам прямоугольного в 0,95 0,95 1, 16 равнобедренного треугольника

По вершинам равностороннего б 1,0 1,0 1,39 треугольника г 1,0 1,0 1,21

5.4.3 Расчет подвесного самонесущего токопровода 5.4.3.1 Расчетное максимальное напряжение в материале проводников подвесного самонесуще­

го токопровода сrрасч. max• Па, следует определять с учетом собственного веса, веса изоляционных рас­порок и льда, а также действия напора ветра, т. е.

(29) где crmax - максимальное напряжение в материале проводников вследствие электродинамического

действия тока КЗ; сrв - напряжение в материале проводников от собственного веса, веса изоляционных распорок

и льда, а также действия напора ветра. Нагрузку на изолятор подвесного самонесущего токопровода следует определять по форму­

ле (1 3).

13

Page 17: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

5.4.4 Расчет шинных конструкций с упругоподатливыми опорами 5.4.4.1 Максимальное напряжение в материале шин и максимальную нагрузку на изоляторы шин­

ных конструкций с упругоподатливыми опорами следует определять соответственно по формулам (1 8) и (19) или (20) и (21 ), а частоту собственных колебаний - по формуле (22), учитывая при этом, что пара­метр основной частоты r 1 является функцией безразмерных величин С0 п/ 3/EJ и M/m / , где С0 п - жест­кость опор, а М - приведенная масса. Значения жесткости опор определяют экспериментально, а приведенной массы - согласно 5.4.4.2. Кривые для определения r 1 шин с жестким закреплением на опорах приведены на рисунке 6, а для шин с шарнирным закреплением - на рисунке 7. Для шин с чере­дующимися жесткими и шарнирными закреплениями на опорах значение параметра r 1 допустимо при­близительно оценивать как среднее между его значениями, найденными по кривым рисунков 6 и 7.

1.___.__.__.__._........._.._��---'-�--'-�..__._.._.__._ .......... ���_._�_.____._з_.

30 50 100 200 300 500 1000 2000 СОП/ IEJ

Рисунок 6 - Кривые для определения параметра основной частоты собственных колебаний шины при ее жестком закреплении на упругоподатливых опорах

2,5

2,0 ......... 1,5 �

1оо"" """"

1,0

10

Ml =О 0,5 т \ \ \ '

\ ,_,. ;, ... �� "=

loo""" ,,,,. :, .... .... ,,,,. --.... 1-" "' ,,,,,,.. ,,.. ..... '""'" --� "" ..... _,,..loo"

'""'" ,.,

20 30 50

2 Ml =5 \ т \

\ \ � - -� ,,.. ....... " ..... ---........ ,,,,. 1..оо" � .... ,,,,.

100 200 300 500 1000

Рисунок 7 - Кривые для определения параметра основной частоты собственных колебаний шины при ее шарнир­ном закреплении на упругоподатливых опорах

Значения r 1 для шин с жестким закреплением на опорах при С0 п/ 3/EJ'?.5000 и для шин с шарнирным закреплением на опорах при C0 пf 3/EJ '?. 3000 приведены в таблице 2.

5.4.4.2 Приведенную массу опоры М , кг, определяют по приближенной формуле

где М0 п - масса опоры, кг;

М = М (Нц. onJ2 оп Н, , ц. ш

(30)

Нц.оп и Нц.ш - расстояния от основания опоры соответственно до центра масс опоры (изолятора) и цен­тра масс поперечного сечения шины (рисунок 8), м.

14

Page 18: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

При известной частоте собственных колебаний опоры, закрепленной на упругом основании, приведенную массу М, кг, следует определять по фор­муле

М = Con 2, (2nf0n)

(31)

где С0п - жесткость опоры, практически равная жесткости изолятора Сиз• Н/м;

f0n - частота собственных колебаний опоры, Гц, равная частоте колебаний изолятора fиз·

гост р 52736-2007

F

i::: о

5.4.5 Проверка токопроводов на электродинамическую стойкость Рисунок 8 - К расчету при­при наличии устройств АПВ веденной массы опоры

5.4.5.1 При наличии быстродействующих АПВ токопроводы электро­установок напряжением 35 кВ и выше следует проверять на электродинамическую стойкость при повтор­ном включении на КЗ.

Методика проверки приведена в приложении Б. Такая проверка не требуется, если продолжитель­ность бестоковой паузы t6. n, с

t >� б. п - f18,

где f1 - первая (основная) частота собственных колебаний ошиновки, Гц;

(32)

8- логарифмический декремент затухания токопровода при горизонтальных колебаниях, значе­ние которого определяется экспериментально для каждой конкретной конструкции токопро­вода.

5.4.6 Расчет гибких проводников 5.4.6.1 При расчете гибких проводников следует определять максимальное тяжение в проводни­

ках и максимальное отклонение проводников при КЗ и после его отключения (приложение В).

5.5 Проверка шинных конструкций, гибких проводников и электрических аппаратов на электродинамическую стойкость при коротком замыкании

5.5.1 При проверке шинных конструкций на электродинамическую стойкость расчетными величи­нами являются максимальное напряжение в материале шин crmax (Па) и максимальная нагрузка на изо­ляторы F max (Н).

Для проверки электродинамической стойкости шинных конструкций следует использовать следу­ющие неравенства:

cr max � cr доп ;} Fmax �Fдоп•

(33)

где сrдоп и Fдоп - допустимое механическое напряжение в материале шин, Па, и допустимая механи­ческая нагрузка на изоляторы, Н, которые следует определять в соответствии с 5.3.

Примеры расчета электродинамической стойкости шинных конструкций приведены в приложе­нии Г.

5.5.2 При проверке гибких проводников на электродинамическую стойкость расчетными величи­нами являются максимальное тяжение F max f и максимальное сближение проводников при КЗ.

Для проверки электродинамической стойкости гибких проводников следует использовать следую­щие неравенства:

Fmaxf �Fдоп; } а - 2(s - Гр)� aдon. min•

где Fдоп - допустимое тяжение проводников, которое следует определять в соответствии с 5.3; а - расстояние между проводниками фаз при отсутствии их смещения; s - расчетное смещение проводников;

(34)

гр - радиус расщепления фазы; адоп. min - наименьшее допустимое расстояние между проводниками разных фаз при наибольшем

рабочем напряжении. 5.5.3 Электродинамическая стойкость электрических аппаратов в зависимости от типа и конструк­

ции характеризуется их предельными сквозными токами i пр.скв и /пр.скв и номинальными токами электро-

15

Page 19: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

динамической стойкости iдин и /дин или кратностью тока электродинамической стойкости iдинf(,,/2/ном ) = = Кдин ·

Электродинамическая стойкость электрического аппарата обеспечена, если выполняются уело-вия:

(35)

где Iпо - начальное действующее значение периодической составляющей тока КЗ в цепи с электри­ческим аппаратом;

iуд - ударный ток КЗ.

6 Термическое действие тока короткого замыкания

6.1 Определение интеграла Джоуля и термически эквивалентного тока короткого замыка-ния

6.1.1 Степень термического воздействия тока КЗ на проводники и электрические аппараты опре­деляется значением интеграла Джоуля Вк, А2 ·с

tоткл Вк = f i;

tdt,

(36)

о

где iкt - ток КЗ в произвольный момент времени t, А; tоткл - расчетная продолжительность КЗ в электроустановке (4.1 .5), с.

Степень термического воздействия тока КЗ на проводники и электрические аппараты допустимо также определять с использованием значений термически эквивалентного тока КЗ

J - �к

тер. эк - -t -ОТКЛ (37)

и расчетной продолжительности КЗ. 6.1 .2 Интеграл Джоуля Вк допускается определять приближенно как сумму интегралов от перио­

дической Вк.п и апериодической Вк.а составляющих тока КЗ, т. е.

Вк ""' Вк.п + Вк.а · (38) 6.1 .3 Методика аналитических расчетов интеграла Джоуля и термически эквивалентного тока КЗ

зависит от расчетной схемы электроустановки, положения расчетной точки КЗ и ее удаленности от гене­раторов, синхронных компенсаторов и электродвигателей. При этом возможны следующие случаи:

а) исходная расчетная схема электроустановки имеет произвольный вид, но для всех генераторов и синхронных компенсаторов КЗ является удаленным, т. е. отношение действующего значения периоди­ческой составляющей тока любого генератора или синхронного компенсатора в начальный момент КЗ к его номинальному току менее двух. В этом случае все источники электрической энергии и связывающие их с точкой КЗ элементы расчетной схемы путем преобразования схемы замещения должны быть заме­нены общим эквивалентным источником (системой), ЭДС которого принимается неизменной по ампли­туде, а индуктивное сопротивление равным результирующему эквивалентному индуктивному сопротивлению элементов расчетной схемы;

б) исходная расчетная схема содержит один или несколько однотипных и одинаково удаленных от расчетной точки КЗ генераторов или синхронных компенсаторов, причем расчетное КЗ для них является близким, т. е. начальное действующее значение периодической составляющей тока каждого генератора или синхронного компенсатора превышает его номинальный ток в два и более раза;

в) исходная расчетная схема содержит различные источники энергии, а расчетная точка КЗ делит схему на две независимые части, одна из которых содержит источники энергии, для которых расчетное КЗ является удаленным, а другая - один или несколько генераторов (синхронных компенсаторов), находящихся в одинаковых условиях относительно точки КЗ и связанных с точкой КЗ по радиальной схе-

16

Page 20: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

ме, причем для этой машины или группы машин расчетное КЗ является близким. В этом случае эквива­лентную схему замещения следует преобразовать в двухлучевую: все источники энергии, для которых расчетное КЗ является удаленным, и связывающие их с точкой КЗ элементы представить в виде одной ветви с неизменной по амплитуде эквивалентной ЭДС и результирующим эквивалентным сопротивле­нием, а машину или группу машин, для которых расчетное КЗ является близким, - в виде другой ветви с изменяющейся во времени ЭДС и соответствующим эквивалентным сопротивлением;

г) исходная расчетная схема содержит различные источники энергии, а расчетная точка КЗ делит схему на две независимые части, одна из которых содержит источники энергии, для которых расчетное КЗ является удаленным, а другая - группу однотипных электродвигателей (синхронных или асинхрон­ных), для которых расчетное КЗ является близким. В этом случае эквивалентную схему замещения так­же следует преобразовать в двухлючевую: все источники энергии, для которых расчетное КЗ является удаленным, и связывающие их с точкой КЗ элементы представить в виде одной ветви с неизменной по амплитуде эквивалентной ЭДС и результирующим эквивалентным сопротивлением, а группу электро­двигателей - эквивалентной ЭДС и эквивалентным сопротивлением.

6.1 .4 При определении интеграла Джоуля и термически эквивалентного тока КЗ допускается при­нимать, что апериодическая составляющая тока КЗ от той части расчетной схемы, которая содержит удаленные от места КЗ источники энергии, независимо от конфигурации этой схемы изменяется по экс­поненциальному закону с эквивалентной постоянной времени. Последнюю следует определять по одной из следующих формул:

_ Хэк (R=О) Та. эк - -----ФсинхRэк (х= О)

т : lm�ЭK ;1 ) а. эк Re Z Фсинх -эк

Т = 2 5 lm �эк(20) а эк ,

R z , . fficинx е -ЭК(20)

(39)

(40)

(41)

где Хэк (R=O) и Rэк (х=О) - эквивалентные индуктивное и активное сопротивления относительно точки КЗ, определяемые из схем замещения, в которых все элементы исходной расчетной схемы учтены соответственно только индуктивными и только активными сопротивлениями;

�эк - комплексное эквивалентное сопротивление схемы замещения относительно расчетной точки КЗ, определяемое при частоте 50 Гц;

lm �эк и Re �эк - соответственно мнимая и действительная составляющие этого сопротивле­ния;

�эк(2о) - комплексное эквивалентное сопротивление схемы замещения относительно расчетной точки КЗ, определяемое при частоте 20 Гц;

lm Ьк(2о) и Re Ьк(2о) - соответственно мнимая и действительная составляющие этого сопротивле­ния.

П р и м е ч а н и е - При определении эквивалентной постоянной времени Та.эк по любой из этих формул синхронные и асинхронные машины должны быть учтены индуктивным сопротивлением обратной последователь­ности и активным сопротивлением обмотки статора.

6.1 .5 В тех случаях, когда исходная расчетная схема имеет произвольный вид, но для всех генера­торов и синхронных компенсаторов КЗ является удаленным (6.1 .3, перечисление а), интеграл Джоуля Вк, д2 . с, следует определять по формуле

(42)

где In.c - действующее значение периодической составляющей тока КЗ от эквивалентного источни­ка энергии (системы), А.

1) Знак «-», расположенный под обозначением�), означает комплексную величину (здесь и далее).

17

Page 21: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

В этом случае термически эквивалентный ток КЗ /тер.эк• А, равен

[ 2tоткл]

l = 1 1 + Та. эк

1 - е - та. эк . тер. эк п. с t ОТКЛ

При tоткл > ЗТа.эк интеграл Джоуля допустимо определять по формуле

Вк = I�. с (tоткл + Та. эк),

(43)

(44)

а термически эквивалентный ток КЗ по формуле

/тер.эк= In.c т 1+�. tоткл

(45)

6.1.6 В тех случаях, когда исходная расчетная схема содержит один или несколько однотипных и одинаково удаленных от расчетной точки КЗ генераторов (синхронных компенсаторов), причем расчет­ное КЗ для них является близким (6.1 .3, перечисление 6), интеграл Джоуля, А2 ·с, следует определять по формуле

(46)

где Iпог - начальное действующее значение периодической составляющей тока КЗ от генератора (генераторов, синхронных компенсаторов), А;

В 1 ) - относительный интеграл Джоуля: *к. г tоткл J In�rdt

Вк. г=---со-g--, tnогfоткл

(47)

где /ntr - действующее значение периодической составляющей тока КЗ отгенератора (генераторов, синхронных компенсаторов) в произвольный момент времени, А;

Та.г - постоянная времени затухания апериодической составляющей тока КЗ от генератора (генераторов, синхронных компенсаторов), с.

Значения относительного интеграла Джоуля ?кг учитывающего влияние изменения во времени амплитуды периодической составляющей тока КЗ, при разных системах возбуждения генераторов и раз­ных удаленностях расчетной точки КЗ от генераторов, т. е. разных отношениях действующего значения периодической составляющей тока генератора в начальный момент КЗ к номинальному току машины могут быть определены по кривым на рисунках 9-1 1 .

При рассматриваемой исходной расчетной схеме термически эквивалентный ток КЗ, А, следует определять по формуле

- 1) Та. г - Та. г r [ 2tоткл ]-

/тер.эк - Iпог f}к. г + tоткл

1 - е ·

При tоткл > ЗТа.г интеграл Джоуля допустимо определять по формуле

Вк""' I�Ог(Вк. гf откл +Та. г ),

а термически эквивалентный ток КЗ по формуле

т /тер. эк= Iпог �к. г + � tоткл

(48)

(49)

(50)

1) Знак<< * >>, расположенный под обозначением (В), означает, что данная величина выражена в относитель-ных единицах (здесь и далее). *

18

Page 22: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

�к.г �к.г �к.г 0,9 0,9 0,9

0,81---\-v��.....,,...-­--..... --+---t

0,7

0,6

0,5

0,4

0,3 ,___ _________ ____. 0,3 1---+----+---+----+-----I с о 0,1 0,2 0,3 1 ---, 0,4 t, с О, 1 0,2 0,3 0,4 t, с

ос 1 О, 1 0,2 0,3 0,4 t, с

Рисунок 9 - Кривые для опреде­ления ?к.г от синхронных генера­торов с тиристорной независимой

Рисунок 1 О - Кривые для опре­деления ?к.гот синхронных гене­раторов с тиристорной системой

Рисунок 11 - Кривые для опре­деления �к.г от синхронных гене­раторов с диодной бесщеточной

системой возбуждения самовозбуждения системой самовозбуждения

6.1 .7 В тех случаях, когда исходная расчетная схема содержит различные источники энергии, а расчетное КЗ делит схему на две независимые части, одна из которых содержит источники энергии, для которых КЗ является удаленным, а другая - один или несколько генераторов (синхронных компенсато­ров), находящихся в одинаковых условиях относительно точки КЗ и связанных с точкой КЗ по радиальной схеме, причем для этой машины или группы машин расчетное КЗ является близким (6.1 .3, перечисле­ние в), интеграл Джоуля следует определять по формуле

[ 2tоткл ] [ 2tоткл ] Вк = (/�.с + 2/п. с Iпог9к. г + /�ог f}к. г)tоткл + l�. с Та. эк 1 - е та. эк + l�ог Та. г 1- е та. г + [ tоткл(Т а. эк+ Та. г) j +

4/n.сlnогТа.экТа. г 1_е Та.экТа.г , Та.эк+ Та.г

(51)

где 9к.г - относительный интеграл от периодической составляющей тока в месте КЗ, обусловленно­го действием генератора (синхронного компенсатора):

tоткл f lntrdt

Q =�о __

* к.г lnогfоткл

(52)

Значения относительного интеграла 9к.г при разных системах возбуждения генераторов и разных удаленностях расчетной точки КЗ отгенераторов могут быть определены по кривым на рисунках 1 2-1 4.

В тех случаях, когда 3 Та.г > tоткл � 3 Та.эк• интеграл Джоуля допустимо определять по формуле

--- 41 1 т т _ 2 + + 2 + 2 + 2 Та. г + n.c n Ог а. эк а. г [ 2tоткл ] Вк - (/ п. с 2/п. с Iпог9к. г I пог '?к. г)tоткл I п. с Та. эк I пог Та. г 1- е т + т ' а. эк а.г

а в случае, когда tоткл > 3 Таг интеграл Джоуля можно определять по формуле

(53)

19

Page 23: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

0,5 1-----+----+--+----+----< г 1

о 0,1 1 1

0,2 0,3 1 ----,

0,4 t, с

Рисунок 12 - Кривые для опреде­ления 9к.г от синхронных генера­торов с тиристорной независимой

системой возбуждения

г 1 о 0,1

1 1 0,2 0,3

1 ::J 0,4 t, с

Рисунок 1 3 - Кривые для опре­деления 9к.г от синхронных гене­раторов с тиристорной системой

самовозбуждения

0,51-----+---+-----<>---+---t г 1

о 0,1 0,2 г 1 ::J

0,3 0,4 t, с

Рисунок 1 4 - Кривые для опре­деления 9к.г от синхронных гене­раторов с диодной бесщеточной

системой самовозбуждения

2 2 2 2 4/n.сlnогТа.экТа. г (54) Вк = (/ п. с + 2/п. с Iпог9к. г + I пОг ?к. г)fоткл + I п. с Та. эк+ I пОг Та. г + Т. + Т. а. эк а.г

При рассматриваемой расчетной схеме термически эквивалентный ток КЗ следует определять по формуле (37), предварительно найдя значение Вк с помощью формулы (51) или (53), или (54).

6.1.8 В тех случаях, когда исходная расчетная схема содержит различные источники энергии, а расчетная точка КЗ делит схему на две независимые части, одна из которых содержит источники энер­гии, для которых расчетное КЗ является удаленным, а другая - группу однотипных электродвигателей, для которых расчетное КЗ является близким (6.3.1, перечисление г), интеграл Джоуля следует опреде­лять по методике, изложенной в 6.1 .7, т. е. с использованием формул (51 ), (53)или (54), в которые вместо InOP Таг f}к.г и 9к.г следует подставлять соответственно начальное значение периодической состав­ляющей тока КЗ от эквивалентного двигателя /под• постоянную времени затухания апериодической составляющей его тока Та.д и значения функций f}к.д и 9к.д для эквивалентного электродвигателя. Значе­ния этих функций для синхронных электродвигателей могут быть определены по кривым на рисунках 1 5 и 16, а для асинхронных электродвигателей - по кривым на рисунках 1 7 и 1 8.

0,31------+---+---+-----1

г 1 о 0,1

1 1 1 --, 0,2 0,3 0,4 t, с

Рисунок 1 5 - Кривые для определения �к.д от син­хронного электродвигателя

20

0,51----+---+----+--____,1-----1

г о 0,1 0,2

] 0,3 0,4 t, с

Рисунок 1 6 - Кривые для определения 9к.д от синхронного электродвигателя

Page 24: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

0,8 18'---r----т--т---т-----1

0,6

о

6 5

О, 1 0,2 0,3 0,4 t, с 0,1 0 ,2 0 ,3 0,4 t, с

Рисунок 1 7 - Кривые для определения ?к.д от асин­хронного электродвигателя

Рисунок 1 8 - Кривые для определения 9к.д от асин­хронного электродвигателя

Термически эквивалентный ток КЗ следует определять по формуле (37).

6.2 Проверка электрических аппаратов на термическую стойкость при коротком замыкании

6.2.1 Термическая стойкость электрических аппаратов при сквозных КЗ характеризуется их нор-мированным током термической стойкости /тер.норм в амперах и допустимым временем воздействия это­го тока tтер.норм в секундах (ГОСТ 687) .

6.2.2 Расчетное выражение, которое следует использовать при проверке коммутационных аппа­ратов на термическую стойкость, зависит от расчетной продолжительности КЗ.

В тех случаях, когда расчетная продолжительность КЗ tоткл в секундах равна или больше допусти­мого времени воздействия нормированного тока термической стойкости tтер.норм в секундах, для провер­ки коммутационных аппаратов следует использовать выражение

Вк :<::: I�ер. н орм fтер. норм · (55)

В случае же, когда расчетная продолжительность КЗ меньше допустимого времени воздействия нормированного тока термической стойкости, условием термической стойкости коммутационных аппа­ратов является выполнение соотношения

(56)

6.2.3 Допускается проверку коммутационных электрических аппаратов на термическую стойкость при КЗ проводить путем сравнения термически эквивалентного тока КЗ с допустимым током термической стойкости, учитывая при этом соотношение между допустимым временем воздействия нормированного тока термической стойкости и расчетной продолжительностью КЗ. При tоткл �tтер.норм проверку коммута­ционных аппаратов на термическую стойкость при КЗ следует проводить, используя соотношение

/тер. эк :<::: /тер. норм � f тер. н орм / f откл , (57)

а при tоткл < tтер.норм условием термической стойкости коммутационного аппарата является выполнение соотношения

/тер.эк :<::: /тер.норм· (58)

6.3 Проверка проводников на термическую стойкость при коротком замыкании

6.3.1 Проверка проводников на термическую стойкость при КЗ заключается в определении их тем­пературы нагрева к моменту отключения КЗ и сравнении этой температуры с предельно допустимой тем-

21

Page 25: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

пературой нагрева при КЗ. Проводник удовлетворяет условию термической стойкости, если температура нагрева проводника к моменту отключения КЗ Эк не превышает предельно допустимую температуру нагрева соответствующего проводника при КЗ эк.до п• т. е. если выполняется условие

эк :<::: эк.до п· (59)

6.3.2 Допускается проверку проводников на термическую стойкость при КЗ проводить также путем сравнения термически эквивалентной плотности тока КЗ Jтер.эк с допустимой в течение расчетной про­должительности КЗ плотностью тока Jтер.до п (6.3.7). Проводник удовлетворяет условию термической стойкости при КЗ, если выполняется соотношение

Jтер.эк :<::: Jтер.доп · (60)

6.3.3 Определение температуры нагрева проводников к моменту отключения КЗ следует прово­дить с использованием кривых зависимости температуры нагрева проводников Э от величины А3. Такие кривые приведены на рисунке 1 9 - для жестких шин, кабелей и некоторых проводов и на рисунке 20 - для проводов других марок. Расчеты необходимо вести в следующей последовательности:

Материалы проводников: 1 - ММ; 2 - МТ; 3 - АМ; 4 - АТ; 5 - АДО, АСТ; 6 - АД31Т1 ; 7 - АД31Т; 8 - СтЗ

Рисунок 1 9 - Кривые для определения температуры нагрева шин, кабелей и проводов из различных материалов при КЗ

Э, 0С

200 1-�--+��---�-#---+---I

Материалы проводов: 1 - сплавы АЖ и АЖКП; 2 - сплавы АН и АНКП; 3 - алюминий марок А, АКП, АпКП и сталеалюминий марок АС, АСКП,

АСКС, АСК, АпС, АпСКС, АпСК

Рисунок 20 - Кривые для определения температуры нагрева проводов при КЗ

1 ) на рисунке 1 9 или 20 выбрать кривую, соответствующую материалу проводника, и по этой кри_

вой, исходя из начальной температуры проводника Эн, определить значение функции А3 н , А · с2/мм4, при этой температуре;

2) в соответствии с 6.1 .5-6.1 .8 определить значение интеграла Джоуля Вк при расчетных услови­ях КЗ;

3) найти значение функции А3 к , соответствующее конечной температуре нагрева проводника Эк, по формуле

(61 )

где S - площадь поперечного сечения проводника, мм2, а для сталеалюминиевых проводов - пло­щадь поперечного сечения алюминиевой части провода;

4) по найденному значению функции А3 , используя выбранную кривую на рисунке 1 9 или 20, к определить конечную температуру нагрева проводника Эк и сравнить ее с предельно допустимой темпе-ратурой. Предельно допустимые температуры нагрева проводников при КЗ приведены в таблице 6. Тер­мическая стойкость проводника обеспечивается, если выполняется условие (59).

22

Page 26: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Т а б л и ц а 6 - Предельно допустимые температуры нагрева проводников при КЗ

Вид проводников itк.доп• ос

Шины алюминиевые 200 Шины медные 300 Шины стальные, не имеющие непосредственного соединения с аппаратами 400 Шины стальные, имеющие непосредственное соединение с аппаратами 300 Кабели бронированные и небронированные с бумажной пропитанной изоляцией на напряжение,

кВ: 1 250 6-10 200 20-35 130 110-220 125

Кабели и изолированные провода с медными и алюминиевыми жилами и изоляцией: из поливинилхлоридного пластиката 160 резины 160 полиэтилена (кабели до 35 кВ) 130 вулканизированного (сшитого) полиэтилена (кабели до 35 кВ) 250 Медные неизолированные провода при тяжениях, Н/мм2: менее 20 250 20 и более 200 Алюминиевые неизолированные провода при тяжениях, Н/мм2: менее 10 200 10 и более 160 Алюминиевая часть сталеалюминиевых проводов 200 Самонесущие изолированные провода на напряжение до 1 кВ с изоляцией из: термопластичного полиэтилена 135 вулканизированного (сшитого) полиэтилена 250 Провода с защитной оболочкой на напряжения 6-20 кВ 250

6.3.4 В тех случаях, когда определяющим условием при выборе сечения проводника является его термическая стойкость при КЗ, следует определить минимальное сечение проводника по условию тер­мической стойкости Sтер. min • мм2, используя выражение

sтер. min = 8к А, - А-. "к. доп " н

(62)

где А3 - значение функции А", соответствующее предельно допустимой температуре нагрева к. доп � проводника при КЗ (таблица 6);

А3 н - значение этой функции, соответствующее температуре проводника до КЗ.

Термическая стойкость проводника обеспечивается, если площадь сечения S, мм2, удовлетворяет неравенству

S � Sтер. min · (63) 6.3.5 В тех случаях, когда нагрузка проводника до КЗ близка к продолжительно допустимой, мини­

мальное сечение проводника, отвечающее требованию термической стойкости при КЗ, следует опреде­лять по формуле

где Стер =�А" - An , А . с112/мм2; � к. доп � ном

Sтер. min = f, тер

А3 - значение функции А" при продолжительно допустимой температуре проводника. ном �

(64)

Значения параметра Стер для жестких шин приведены в таблице 7, для кабелей - в таблице 8, для проводов - в таблице 9.

23

Page 27: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Т а б л и ц а 7 - Значения параметра Стер для жестких шин

Система Материал проводника или марка Значение Стер• А · с 112/мм2, при начальной температуре, 0С

легирования сплава 70 90 120

- Медь 1 70 - -

АДО 90 81 68 AI АД1 Н 91 82 69

АДОМ, АД1 М 92 83 70

АД31Т1 85 77 64 АД31 Т 82 74 62

Al-Mg-Si АД33Т1 77 71 59 АД33Т 74 67 57 АВТ1 73 66 55 АВТ 71 63 53

Al-Zn-Mg 19 1 1 71 63 53 19 15, 1 9 15Т 66 60 51

Al-Mg-Mn АМг5 63 57 48

Сталь при &доп = 400 °С 70 - -- Сталь при &доп = 300 °С 60 - -

Т а б л и ц а 8 - Значения параметра Стер для кабелей

Характеристика кабелей Значение С А · с 112/мм2 тер•

Кабели до 1 О кВ: с медными жилами 140 с алюминиевыми жилами 90

Кабели 20-30 кВ: с медными жилами 1 05 с алюминиевыми жилами 70

Кабели и изолированные провода с поливинилхлоридной или резиновой изоля-цией:

с медными жилами 1 20 с алюминиевыми жилами 75

Кабели и изолированные провода с поливинилхлоридной изоляцией: с медными жилами 1 03 с алюминиевыми жилами 65

Т а б л и ц а 9 - Значение параметра Стер для проводов

Значение Стер• А . с 112/мм2, при допустимых температурах

Материал провода Марка провода нагрева проводов при КЗ, 0С

1 60 200 250

Медь м - 142 1 62

Алюминий А, АКП, Ап, АпКП 76 90 -

Алюминиевый сплав АН, АНКП 69 81 -АЖ, АЖКП 66 77 -

Алюминий-сталь АСК, АпС, АСКС, Апекс, 76 90 -АпСК, АС, АСКП

24

Page 28: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

6.3.6 В тех случаях, когда для кабелей и проводов известны значения односекундного тока терми­ческой стойкости (допустимого односекундного тока КЗ) /теы.доп1 , их проверку на термическую стойкость при КЗ допустимо проводить путем сравнения интеграла ,1....1жоуля Вк с квадратом односекундного тока термической стойкости. Термическая стойкость кабеля или провода обеспечивается при выполнении условия

в< !

2 к - тер.доп1 · (65)

Значения односекундного тока термической стойкости для кабелей с бумажной пропитанной изо­ляцией по ГОСТ 1 841 О приведены в таблице 1 О. Если нагрузка кабелей до КЗ меньше продолжительно допустимой, то указанные в таблице 1 О значения односекундного тока термической стойкости следует умножить на соответствующий поправочный коэффициент. Его значения приведены в таблице 11 .

Значения односекундного тока термической стойкости для кабелей с пластмассовой изоляцией напряжением до 6 кВ по ГОСТ 16442, приведены в таблице 1 2, для кабелей с изоляцией из сшитого поли­этилена напряжением 1 0 кВ - в таблице 1 3, для медных экранов этих кабелей - в таблице 1 4, для самонесущих изолированных проводов напряжением до 1 кВ - в таблице 1 5 и для проводов с защитной оболочкой напряжением 6-20 кВ - в таблице 1 6.

Т а б л и ц а 1 О - Односекундные токи термической стойкости для кабелей с бумажной пропитанной изоляцией

Односекундный ток термической стойкости, кА, при напряжении кабеля, кВ

Сечение 6 10 20-35 токопроводящей

жилы, мм2

Медные жилы Алюминиевые Медные жилы Алюминиевые Медные жилы Алюминиевые жилы жилы жилы

6 0,72 0,47 0,76 0,49 - -10 1 ,82 0,79 1 ,28 0,82 - -16 1 ,94 1 ,28 2,04 1 ,33 - -25 3, 1 1 2,02 3,26 2 , 12 2,42 1 ,58 35 4,32 2,79 4,53 2,93 3,37 2 , 18 50 5,85 3,78 6 , 13 3,96 4,55 2,94 70 8,43 5,52 8,84 5,79 6,57 4,32 95 1 1 , 71 7,66 1 2,28 8,04 9, 1 3 5,98

1 20 14,77 9,68 1 5,49 10 , 1 6 1 1 ,52 7,55 1 50 1 8,22 1 1 ,88 1 9 , 1 0 1 2,46 14,76 7,58 1 85 22,78 14,94 23,88 15,66 1 7,75 1 1 ,70 240 29,95 1 9,62 31 ,40 20,56 23,34 1 5,30 300 - - - - 28,91 1 9 , 1 2

Т а б л и ц а 1 1 - Поправочные коэффициенты на односекундные токи термической стойкости для кабелей с бу­мажной пропитанной изоляцией, учитывающие предварительную нагрузку кабелей до КЗ

Значение поправочного коэффициента на односекундный ток термической стойкости при Номинальное Место прокладки коэффициенте предварительной нагрузки напряжение кабеля кабеля, кВ

0,4 0,5 0 ,6 0,7 0,8 0,9 1 ,0

На воздухе 1 ,22 1 ,20 1 , 1 7 1 , 1 4 1 , 1 0 1 ,05 1 ,0 1-6

В земле 1 ,26 1 ,24 1 ,20 1 , 1 6 1 , 1 1 1 ,06 1 ,0

На воздухе 1 , 1 7 1 , 1 5 1 , 1 3 1 , 1 1 1 ,07 1 ,04 1 ,0 1 0

В земле 1 ,21 1 , 19 1 , 1 6 1 , 1 3 1 ,09 1 ,05 1 ,0

На воздухе 1 ,27 1 ,24 1 ,21 1 , 1 6 1 , 1 2 1 ,06 1 ,0 20-35

В земле 1 ,35 1 ,29 1 ,25 1 ,21 1 , 15 1 ,08 1 ,0

25

Page 29: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Т а б л и ц а 1 2 - Односекундные токи термической стойкости для кабелей с пластмассовой изоляцией напряже­нием до 6 кВ

Односекундный ток термической стойкости, кА, для кабелей с изоляцией

Сечение Поливинилхлоридный пластикат Полиэтилен Сшитый полиэтилен токопроводящей жилы, мм2

Медные жилы Алюминиевые Медные жилы Алюминиевые Медные жилы Алюминиевые жилы жилы жилы

1 ,5 0, 1 7 - 0 , 14 - 0,21 -2,5 0,27 0 , 18 0,23 0, 1 5 0,34 0,22 4 0,43 0,29 0,36 0,24 0,54 0,36 6 0,65 0,42 0,54 0,35 0,81 0,52

1 0 1 ,09 0,70 0,91 0,58 1 ,36 0,87 1 6 1 ,74 1 , 1 3 1 ,45 0,94 2, 1 6 1 ,40 25 2,78 1 ,81 2,32 1 ,50 3,46 2,24 35 3,86 2,30 3,22 2,07 4,80 3,09 50 5,23 3,38 4,37 2,80 6,50 4 , 18 70 7,54 4,95 6,30 4, 1 0 9,38 6 , 12 95 1 0,48 6,86 8,75 5,68 1 3,03 8,48

1 20 1 3,21 8,66 1 1 ,03 7, 1 8 1 6,43 1 0,71 1 30 1 6,30 1 0,64 1 3,60 8,82 20,26 31 , 1 6 1 85 20,39 1 3,37 1 7,02 1 1 ,08 25,35 1 6,53 240 26,30 1 7,54 22,37 14,54 33,32 21 ,70

Т а б л и ц а 13 - Односекундные токи термической стойкости для кабелей с изоляцией из сшитого полиэтилена напряжением 1 О кВ

Односекундный ток термической стойкости, кА, для кабелей

Сечение токопроводящей жилы, мм2

с медной жилой с алюминиевой жилой

50 7 , 15 4,7 70 1 0,0 6,6 95 1 3,6 8,9

1 20 1 7,2 1 1 ,3 1 50 2 1 ,5 14,2 1 85 26,5 1 7,5 240 34,3 22,7 300 42,9 28,2 400 57,2 37,6 500 7 1 ,5 47,0 630 90, 1 59,2 800 1 14,4 75,2

Т а б л и ц а 14 - Односекундные токи термической стойкости медных экранов кабелей с изоляцией из сшитого полиэтилена напряжением 1 О кВ

Сечение медного экрана, мм2 Односекундный ток термической стойкости, кА

1 6 3,3 25 5,1 35 7, 1

26

Page 30: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Т а б л и ц а 1 5 - Односекундные токи термической стойкости для самонесущих изолированных проводов напря­жением до 1 кВ

Односекундный ток термической стойкости, кА, для проводов с изоляцией из Число и сечение токопроводящих и

нулевой несущей жил , шт. х мм2 термопластичного полиэтилена сшитого полиэтилена

1 х 1 6 + 1 х 25 1 ,0 1 ,5 3 х 1 6 + 1 х 25 1 ,0 1 ,5 3 х 25 + 1 х 35 1 ,6 2,3 3 х 35 + 1 х 50 2,3 3,2 3 х 50 + 1 х 95 4,5 6,5

3 х 1 20 + 1 х 95 5,9 7,2

Т а б л и ц а 16 - Односекундные токи термической стойкости для проводов с защитной оболочкой напряжением 6-20 кВ

Сечение фазных и нулевого Односекундный ток Сечение фазных и нулевого Односекундный ток проводов, мм2 термической стойкости, кА проводов, мм2 термической стойкости, кА

35 3,2 1 20 1 1 ,0 50 4,3 1 50 1 3,5 70 6,4 1 85 1 7,0 95 8,6 240 22,3

6 .3. 7 В тех случаях, когда проверку проводников на термическую стойкость при КЗ проводят путем сравнения термически эквивалентной плотности тока КЗ Jтер.эк• А/мм2, с допустимой в течение расчет­ной продолжительности КЗ плотностью тока Jтер.доп • А/мм2, (6.3.2) следует предварительно определить значения этих величин, используя формулы:

J = /тер. эк = _]__ � 8к . тер.эк S S tоткл ,

J = тер.доn1 _1_ _ "к. доп " н I [t:E А, - А, тер.доп S tоткл - tоткл

где /тер.доп1 - допустимый ток односекундного КЗ, А; S - площадь поперечного сечения проводника, мм2.

Термическая стойкость проводника обеспечивается, если выполняется условие (60).

6.4 Проверка силовых кабелей на невозгораемость при коротком замыкании

(66)

(67)

6.4.1 При проверке силовых кабелей на невозгораемость при коротких замыканиях расчетную точ­ку КЗ следует выбирать в начале кабеля независимо от того, является ли он одиночным или частью кабельной линии, содержащей несколько параллельно включенных кабелей. Если одиночный кабель имеет ступенчатое сечение по длине, то для каждого участка с новым сечением кабеля необходимо при­нимать свою расчетную точку КЗ в начале этого участка.

6.4.2 Расчетную продолжительность КЗ следует принимать в соответствии с 4.1.5. 6.4.3 Для проверки силовых кабелей на невозгораемость при КЗ необходимо в соответствии

с 4.1 .5 и 6.3.3 определить конечную температуру нагрева их жил Эк при расчетной продолжительности КЗ и сравнить ее с предельно допустимой температурой нагрева жил по условию невозгораемости кабе­лей Энв· Невозгораемость кабелей обеспечивается, если выполняется условие

эк :<::: энв· (68)

Предельно допустимые температуры нагрева жил кабелей напряжением 6-10 кВ по условию невозгораемости при КЗ приведены в таблице 1 7.

27

Page 31: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Т а б л и ц а 1 7 - Предельно допустимые температуры нагрева жил кабелей напряжением 6-1 0 кВ по условию невозгораемости при КЗ

Характеристика кабеля Предельно допустимая температура нагрева

жил кабеля, 0С

Бронированные кабели с пропитанной бумажной изоляцией на на-пряжение до 6 кВ 400

Бронированные кабели с пропитанной бумажной изоляцией на на-пряжение 1 О кВ 360

Небронированные кабели с пропитанной бумажной изоляцией на на-пряжение до 6 кВ 350

Небронированные кабели с пропитанной бумажной изоляцией на на-пряжение 1 О кВ 3 10

Кабели с пластмассовой (поливинилхлоридный пластикат) и резино-вой изоляцией 350

Кабели с изоляцией из вулканизированного полиэтилена 400

28

Page 32: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

Приложение А (рекомендуемое)

гост р 52736-2007

Расчетные выражения для определения коэффициента Л(Z)

Т а б л и ц а А. 1

Номер расчетной схемы в таблице 2

1

2

3

4

5

Расчетная формула для определения коэффициента lc(Z)

2

/ 7 -�: 1 1

l � - � z;z l 2

1 7 -�: - i l 1 1 3 1 Z 1 _ при отсчете от опоры А

- - - -8 2 l

1 1 3 1 Z _ / 1 - при отсчете от опоры В - - - --8 2 l

1

1 z z2 0,394 - - 0,5 2 l l 1

1 _ для 'Р•й,еrо оролета

1 z z' г для второrо оролета 0,529 - - 0,52 - 0,1 06 l l

2

1 1 _ для сред,еrо оролета z z2 1 т - 7 - 5

29

Page 33: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Приложение Б (рекомендуемое)

Методика проверки токопроводов на электродинамическую стойкость при повторном включении на короткое замыкание

Наибольшее напряжение в материале шин и максимальную нагрузку на изоляторы при повторном включении на КЗ следует определять по формулам:

F. с а r:t ..J3 . 1 0-7z ·2 а max = г1 max� = 1-' lуд У\�, а где cr1 и F1 max - наибольшее напряжение и максимальная нагрузка при первом КЗ;

е - коэффициент превышения напряжения и нагрузки при повторном КЗ.

(Б. 1 )

(Б.2)

Коэффициент превышения е определяют по кривым рисунка Б. 1 а в зависимости от логарифмического декре­мента затухания 8. Номер расчетной кривой на рисунке Б . 1 а определяют, исходя из продолжительности бестоковой паузы t6.n и частоты собственных колебаний шины f1 , используя рисунок Б. 1 б. Если точка с координатами t6.n и f1 лежит в зоне, ограниченной осями координат и кривой 1, то коэффициент е определяют по кривой 1 рисунка Б . 1 а. Если эта точка лежит в зоне, ограниченной кривыми 1 и 11, то е определяют по кривой 2 и т. д. Следует отметить, что расчетные коэффициенты е получены при наиболее неблагоприятных условиях коммутаций, которые при первом КЗ, в бестоковую паузу и повторном включении на КЗ приводят к наибольшим напряжениям в материале шин и нагрузкам на изоляторы и таким образом обеспечивают оценку электродинамической стойкости ошиновки.

е

1,9 tб.п• с

0,8 I II III IV

1,7

1,5 0,6

1,3 0,4

1,1 0,2

1 0,90 0,4 0,8 1,2 1,6 2,0 8 о 2 4 6 8 10 f1 , Гц

а б

Рисунок Б. 1 - Определение коэффициента превышения напряжения и нагрузки е в зависимости от 8, t6.n и f1

30

Page 34: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Приложение В (рекомендуемое)

Методика расчета гибких проводников на электродинамическую стойкость

Ниже приводится методика расчета на электродинамическую стойкость гибких проводников, которые закреп­лены на одном уровне (по высоте), при отсутствии гололеда и ветровой нагрузки. При определении смещений рас­четной моделью проводника в пролете служит абсолютно жесткий стержень, который шарнирно закреплен на опорах, а его ось очерчена по цепной линии.

За расчетное принимают двухфазное КЗ. Влияние гирлянд учитывают увеличением погонной силы тяжести проводника.

При проверке гибких проводников на электродинамическую стойкость при КЗ необходимость расчета смеще­ния проводников, у которых провес превышает половину расстояния между фазами, устанавливают значением параметра р, кА2 · с/Н, определяемого по формуле

А( 1�6) )2 tоткл Р = , aq

(В. 1 )

где л. - безразмерный коэффициент, учитывающий влияние апериодической составляющей электродинамичес­кой силы. Последний определяют по кривой, приведенной на рисунке В . 1 ;

1(2 ) _ начальное действующее значение периодической составляющей тока двухфазного КЗ, кА; nO tоткл - расчетная продолжительность КЗ, с;

а - расстояние между фазами, м; q - погонная сила тяжести провода, Н/м .

л 2,8

2,6

2,4

2,2

2,0

1 ,8

1 ,6

1 ,4

1 ,2

\ \ \ '

' ''"

" ........... .............._ -

1 ·00 0,5 1 ,0 1 ,5 2,0 2,5 3,0 3,5 4,0 4,5

tоткл/Та

Рисунок В . 1 - Зависимость коэффициента 'А от t0ткл1Т8

В случае, когда выполняется соотношение р :о; 0,4 кА2 · с/Н, расчет смещения проводников можно не прово­дить, так как опасности их чрезмерного сближения нет. В противном случае расчет смещения проводят в следую­щей последовательности:

1 ) Определяют предельно допустимую продолжительность КЗ, с

где М = mnor/ - масса проводника пролета, кг; 1 - длина пролета, м ; g - ускорение силы тяжести, м/с2;

roo = ,Jg IL - частота малых собственных колебаний расчетного маятника, 1 /с, причем L = 2f/3, м ; f- провес провода в середине пролета, м ;

FJa2dч - расчетная электродинамическая сила при двухфазном КЗ, Н .

(В.2)

31

Page 35: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Последнюю вычисляют по формуле

1 06 где k1 = _µ_µ�0--

4п 1 -4п · 1 0-7 · 1 06 Гн ------ = 0,1-;

4п м

(8.3)

FJ2) - постоянная составляющая электродинамической нагрузки на проводник в пролете при двухфазном КЗ, Н ;

µ - относительная магнитная проницаемость воздушной среды (для воздуха µ = 1 ) ; µ0 - магнитная проницаемость вакуума, Гн/м .

2) При tоткл < tпред горизонтальное смещение проводника при КЗ, м, вычисляют по формуле

где k2 = 1 ,23 µµ 0 1 06= 1 ,23 1 ·4n · 1 0-7 · 1 06

= 0,1 23 Гн . 4п 4п м

(8.4)

8 случае, когда вычисленное по формуле (8.4) значение s оказывается больше стрелы провеса проводника в середине пролета, следует принимать s = f.

3) При tпред < tоткл < 0,6(2n/ro0) горизонтальное смещение проводника при КЗ, м , вычисляют по одной из фор-мул:

s = fsin amax

s = f

л w: 1 при __ к :::; 1· MgL ' л w: при __ к > 1, MgL

(8.5)

где amax - угол максимального отклонения проводника от вертикали, рад, определяемый по формуле

[F.(2) ЛW: = f расч к Mg

, L 'Соткл] -а

amax = arcos[1 - ЛWк/(MgL)]; (8.6)

энергия, накопленная проводником пролета за время КЗ, Дж, и определяемая с использованием рисунка 8.2 (здесь 'Соткл = tоткл!Т0 = tотклrо0!2п - относительная продолжительность КЗ в долях от периода собственных колебаний проводника в пролете).

4) При tоткл > 0,6(2n/ro0) горизонтальное смещение проводника также вычисляют по формулам (8.5), однако входящую в формулы (8.5) и (8.6) энергию лwк, Дж, приближенно оценивают по одной из формул:

_ (2) а + 2L (2) а + 2L ·1 Л\!\{ - 0,5Fpacч a ln -- , если 0,5Fpacчa ln --- > MgL, а а _ (2) а + 2L Л\!\{ - Mgh, если 0,5Fpacчa ln -- :о; MgL, а (8.7)

где h - высота подъема проводника над его положением до КЗ, м , которую определяют с использованием рисун­ка 8.3.

5) Определяют максимальное сближение проводников (минимальное расстояние между проводниками) по формуле

(8.8) где s - найденное максимальное горизонтальное смещение проводника в середине пролета от равновесного

положения, а для расщепленных фаз - это горизонтальное смещение оси расчетного одиночного про­водника с поперечным сечением, равным сумме сечений всех проводников фазы, в середине пролета;

гр - радиус расщепления фазы, м .

32

Page 36: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

1 ,5

1 ,0

0,5

о 0,1

0,1 F(2) о Mg = 2,5

0,2 0,3 0,4 0,5 'tоткл

о 0,01 0,02 0,03 0,04 0,05 'tоткл а - при 2Ua = 0,5

ЛW/MgL 1 1 1

F(2) -_о._

= 2 5 "� ... � Mg ,

f 2,0 ' J � -......

1 1 ' 1 ,5

1 v ,,, �

1 ,0

v 1.--"' - -....... r-... v ,,,,

�v 0,5

� ,__. - -_1.--"' �

1 ,0

0,75

0,5

0,25

О О, 1 0,2 0,3 0,4 0,5 'tоткл

0,1

о 0,01 0,02 0,03 0,04 0,05 'tоткл в - при 2Иа = 2, 1

гост р 52736-2007

1 ,25

1 ,0

0,75

0,5

0,25

о 0,1 0,2 0,3 0,4 0,5 'tоткл

о' 1 1---1----1-

о

ЛW/MgL

0,75

0,5

0,25

о

0,01 0,02 0,03 0,04 0,05 't0ткл 6 - при 2Ua = 1 , 1

2,0

1 ,5

1 ,0

0,5

0,1 0,2 0,3 0,4 0,5 'tоткл

0,01 0,02 0,03 0,04 0,05 'tоткл г - при 2Иа = 3, 1

Рисунок В.2 - Зависимость ЛW/(MgL) от относительной продолжительности двухфазного КЗ

33

Page 37: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

ЛW.jMgL

о

34

ЛW.jMgL ..-��...-��-.---��-.--���

О, 1 0,2 0,3 0,4 0,5 'tоткл

0,01 0,02 0,03 0,04 0,05 'tоткл д - при 2Lla = 4, 1

ЛW.jMgL

о

0,01 0,02 0,03 0,04 0,05 'tоткл е - при 2Lla = 5, 1

О О, 1 0,2 0,3 0,4 0,5 'tоткл

0,1

О 0,01 0,02 0,03 0,04 0,05 'tоткл ж - при 2Lla = 5,7

Рисунок 8.2, лист 2

Page 38: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

h/a

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1 0,25

0,1 o C::::::::����:l:::��:::::::t::� 0,4 0,6 0,8 1 ,0 1 ,2 1 ,4 1 ,6 1 ,8 Ua

Рисунок В.3 - Характеристики h !а = f(L/a) при двухфазном КЗ

гост р 52736-2007

Максимальноетяжение в проводнике F max r следует определять, полагая, что энергия, накопленная провод­ником во время КЗ, трансформируется в потенциальную энергию деформации растяжения при падении проводника после отключения КЗ, поднятого электродинамическими силами над исходным равновесным положением. При этом значение F max r• Дж, составляет

(В.9)

1 F.2 4i где Wo = _ _J_Ol__j>_ _ потенциальная энергия деформации проводника в пролете при тяжении, равном тяжению в 2 ES нем до КЗ, Дж;

mg/�P F(o ) = -- - тяжение (продольная сила) в проводнике до КЗ, Н ; 8f

т - погонная масса проводника, кг; Е - модуль упругости материала проводника, Н/м2; S - площадь поперечного сечения проводника , м2;

Л/пр - удлинение проводника в пролете при усилии в нем, равном Fmax f• м; /пр - длина проводника в пролете, м , которую допускается принимать равной длине пролета /.

При выполнении условия tоткл < tпред значение ЛWк допускается определять по приближенной формуле

(F.(2) t )2 (В. 1 О) Л W. = расч откл А. к 2М

При отсутствии характеристики жесткости провода Л/ = f(F) приближенное значение максимально возможно­го тяжения в проводнике допускается определять по формуле

Fmax r = 2ES Л( + F(�) ,

где ES - жесткость поперечного сечения провода при растяжении, Н ; Е - модуль упругости материала проводника, Н/м2; S - площадь поперечного сечения проводника, м2.

(В. 1 1 )

Модуль упругости материалов проводника, полученного скручиванием проволок, следует снижать (вдвое-втрое) по сравнению с модулем упругости материала отдельных проволок.

Значение нижнего предела максимального тяжения в проводнике F max2 в случае, когда проводник после отключения КЗ (при относительно малом токе) плавно возвращается в исходное положение, совершая затем зату-

35

Page 39: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

хающие (из-за аэродинамического сопротивления атмосферы) колебания, выбирается наибольшим из двух значе­ний силы тяжения F2, вычисляемых по формулам:

(В. 1 2)

при этом траектория движения центра масс проводника близка к окружности. Влияние гирлянд изоляторов и ответвлений с гибкой ошиновкой приближенно учитывается увеличением

погонной силы тяжести и стрелы провеса проводников путем замены в приведенных выше формулах массы провод­ника М" приведенной массой Мпр = Му + Мотв и стрелы провеса f «приведенной» стрелой провеса fпр = f + /гсоs 13, где у - коэффициент приведения массы (таблица В . 1 ); Мотв - масса отводов в пролете; /г - длина гирлянды изо­ляторов; 13 - угол отклонения натяжных гирлянд от вертикали до КЗ, рад.

Т а б л и ц а В . 1 - Коэффициент приведения массы у при различных отношениях провеса гирлянды к стреле про­веса проводника f/f и массы гирлянды к массе проводника в пролете М/М

Значение коэффициента приведения массы у при различных М/М t/f

0,01 0,02 0,05 0,1 0 0,20 0,50 1 ,00 2,00 3,00

0,01 1 ,000 1 ,000 1 ,000 1 ,000 1 ,001 1 ,002 1 ,003 1 ,005 1 ,006

0,02 1 ,000 1 ,000 1 ,000 1 ,001 1 ,002 1 ,004 1 ,007 1 ,0 10 1 ,0 12

0,05 1 ,000 1 ,000 1 ,001 1 ,002 1 ,004 1 ,0 10 1 ,0 16 1 ,024 1 ,029

0 , 10 1 ,000 1 ,001 1 ,002 1 ,004 1 ,008 1 ,0 19 1 ,031 1 ,048 1 ,058

0,20 1 ,001 1 ,002 1 ,004 1 ,008 1 ,0 15 1 ,034 1 ,059 1 ,090 1 , 1 1 0

0,50 1 ,002 1 ,003 1 ,008 0,0 16 1 ,031 1 ,071 1 , 1 30 1 ,200 1 ,250

1 ,00 1 ,002 1 ,005 1 ,0 12 1 ,024 1 ,048 1 , 1 1 0 1 ,200 1 ,330 1 ,430

2,00 1 ,003 1 ,007 1 ,0 1 7 1 ,033 1 ,065 1 , 1 50 1 ,290 1 ,500 1 ,670

3,00 1 ,004 1 ,007 1 ,0 19 1 ,037 1 ,073 1 , 1 80 1 ,330 1 ,600 1 ,820

П р и м е ч а н и е - Мг - масса гирлянд (суммарная масса двух натяжных гирлянд у двух опор провод-ников в пролете или масса одной гирлянды, если на опорах гирлянды подвесные); М - масса проводника в про-лете; fг - провес гирлянд; f- стрела провеса проводника.

36

Page 40: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Приложение Г (рекомендуемое)

Примеры расчета электродинамической стойкости шинных конструкций

Пример 1 Проверить электродинамическую стойкость трехфазной шинной конструкции, изоляторы которой обладают

высокой жесткостью, при действии ударного тока КЗ i]д = 1 55 кА. Шины прямоугольного сечения (60 х 6) мм2 выполнены из алюминиевого сплава марки АД31 Т1 , расположены

горизонтально в одной плоскости, имеют четыре пролета и параметры: l = 1 ,2 м; а = 0,6 м; т = 0,972 кг/м ; Е = 7 · 1 О10 па· сr = 1 37 МПа , доп .

Согласно таблице 4

J = Ьh3 0,006 ·0,063 = 1 0 8 · 1 О-8 м4· у 1 2 1 2

, ,

2 2 W = Ьh = 0,006 · 0,06 = 3 6 . 1 0_5 м3.

у 6 6 ,

Частота собственных колебаний

f = _!l_ EJ _ 4,73 2 Р1 2 1 2пz2 т - 2 ·3,1 4 · 1,22

7 . 1 01 0 . 1 0,8 · 1 0-8 = 21 8 2 Г

0,972 , Ц,

где r1 = 4, 73 соответствует расчетной схеме 5 (таблица 2).

(Г. 1 )

(Г.2)

(Г.3)

Для данной шинной конструкции r� = 1 , 1 (рисунок5); КФ = 1 ,0 (рисунок 1 ) ; Красп = 1 ,0 (таблица 1 ) ; 'А = 1 2 (табли­ца 2).

Максимальная сила, действующая на шинную конструкцию, составляет

(3 ) _ .fЗ . 1 0-7 · (3 ) 2 _ .f3 · 1 0-7 · 1,2 · 1 552 · 1 06 · 1,0 · 1,0 _ Fmax - Z(lyд ) ��асп - - 8322 Н ,

а 0,6

при этом максимальное напряжение в материале шин, определяемое по формуле ( 1 8) , равно

= F��kl У\ = 8322 · 1,2 · 1 1 = 254 3 МПА Ginax 'AW 1 2 · 3,6 · 1 0-6 ' ' .

(Г.4)

(Г.5)

Поскольку crmax = 254 ,3 МПа > сrдоп = 1 37 МПа, то шины не удовлетворяют условию электродинамической стойкости. Для снижения максимального напряжения в материале шин необходимо уменьшить длину пролета. Наи­большая допустимая длина пролета при сrдоп = 1 37,2 МПа равна

/доп = Z � сrдоп = 1,2. � 1 37 = 0,88 М . crmax 254,3

(Г.6)

Примем длину пролета равной 0,8 м; в этом случае f1 = 491 Гц; У\ = 1 ,0; F��k = 5548 Н и crmax = 1 02, 7 МПа, что меньше сrдоп = 1 37 МПа.

Исходя из максимальной нагрузки, действующей на изолятор, F��k = 5548 Н принимаем к установке изолято­ры типа ИОР-1 0-1 6,00 УХЛ3. Для них согласно формуле (5) допустимая нагрузка составляет Fдоп = О,6Fразр = = 0,6 · 1 6000 = 9600 Н. Выбранные изоляторы удовлетворяют условию электродинамической стойкости

Fдоп = 9600 Н > F��k = 5548 Н . (Г.7)

Таким образом, при уменьшении длины пролета до 0,8 м шинная конструкция отвечает требованиям электро­динамической стойкости.

Пример 2 Проверить электродинамическую стойкость трехфазной шинной конструкции в цепи генератора, шины кото­

рой состоят из двух элементов корытообразного профиля, при i�g) = 1 20 кА. Алюминиевые шины марки АДО сечением 2 х 3435 мм2 расположены в горизонтальной плоскости и имеют

следующие параметры: l = 2 м; а = 0,75 м; mэл = 9,27 кг/м ; Е = 7 · 1 01 0 Па; сrдоп = 41 МПа; аэл = 0,2 м; /эл = 1 м ; Jэп = 254 . 1 0-8 м4; J = 4220 . 1 0-8 м4; Wэл = 40 . 1 0-6 м3; W= 422 . 1 0-6 м3.

37

Page 41: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Частоты собственных колебаний шины и элемента шины в соответствии с формулами (22) и (25) равны:

f = _!l_� EJ _ 4,732 1 2пz2 т - 2 ·3,1 4 · 22

f = _!l_ EJ _ 4,73 2 � 2

1 эл 2пl�л mэл - 2 ·3,1 4 · 12

7 . 1 01 0 -4220 . 1 0-8 = 355 5 г 2 ·9,27

, Ц,

7 · 1 01 0 .254 . 1 0-8 = 493 4 г . 9;2.7

, ц

(Г.8)

(Г.9)

Для данной ШИННОЙ КОНСТРУКЦИИ У\ = 1 ,0 И У\эл = 1 ,0 (рисунок 5); Кф = 1 ,0 (5. 1 . 1 ); Красп = 1 ,0 (таблица 1 ) ; А = 1 2 (таблица 2).

Максимальная сила, обусловленная взаимодействием токов разных фаз, равна

F.(З) _ ..JЗ · 1 0-7 /( · (3) )2К. К _ ..JЗ . 1 0-7 ·2 · 1 202 · 1 06 · 1,0 · 1,0 = 6651 Н max - lуд · ЧJ' 'РЭСП - • а 0,75

(Г. 1 О)

При этом максимальные напряжения в материале шин, обусловленные соответственно взаимодействием токов разных фаз, определяемое по формуле ( 1 8) , и токов отдельных элементов проводника одной фазы, опреде­ляемое по формуле (24), равны:

о: = F���l У\ = 6651 .2 · 1 О = 2 63 МПА ф mах 'AW 1 2 -422 · 1 0-6 ' ' '

2 1 0-7z2 к. r · J2 -7 2 ( зJ

2 . эл . . 'q) 1 уд 2 · 1 о · 1 · 1,0 1 20 · 1 о о: = - У\ = · 1 О = 7 5 МПа эл. max АЭэлWэл п эп 1 2 ·0,2 · 40 · 1 0-6 2 , , .

Суммарное напряжение в материале шины

O:max = о:фmах + о:эл. max = 2,63 + 7,5 = 1 О, 1 3 МПа.

(Г. 1 1 )

(Г. 1 2)

(Г. 1 3)

Шины удовлетворяют условию электродинамической стойкости, так как о:доп = 41 МПа, что больше o:max = = 1 0 , 1 3 МПа.

Исходя из максимальной нагрузки, действующей на изолятор, F��� = 6651 Н , принимаем к установке изолято­ры типа ИО-1 0-20,00 УЗ.

Для этих изоляторов Fразр = 20000 Н, высота h = О, 1 34 м. Изолятор имеет внутреннее крепление арматуры, поэтому для него Н = h + а3л/2 = О, 1 34 + 0,212 = 0,234 м .

Согласно формуле (8) допустимая нагрузка на изолятор при изгибе равна Fдоп.изг = NFpaзp h/H = 0,6 · 20000 · О, 1 34/0,234 = 687 1 ,8 Н . (Г. 1 4)

Выбранные изоляторы удовлетворяют условию электродинамической стойкости

Fдоп = 6871 ,8 Н > F��� = 6651 Н . (Г. 1 5)

Таким образом, шинная конструкция в целом отвечает требованиям электродинамической стойкости.

Пример 3 Проверить электродинамическую стойкость шинной конструкции наружной электроустановки напряжением

1 1 0 кВ при i�J) = 50 кА. Трубчатые шины квадратного сечения выполнены из алюминиевого сплава АДЗ1 Т и расположены в одной

плоскости . Ширина шины Н = 1 25 мм, ширина окна шины h = 1 09 мм, погонная масса т = 8,96 кг/м . Длина пролета l = 5 м , расстояние между фазами а = 1 м . Допустимое напряжение в материале шины о: доп = 89 МПа, модуль упру­гости Е = 7 · 1 01 0 Па. Изоляторы типа ИОС-1 1 0-600 (рисунок Зв) имеют Fразр = 6 кН , высоту Низ = 1 1 00 мм, расстоя­ние от центра головки до центра масс шины 80 мм, высоту арматуры нижнего фланца 1 00 мм, следовательно для них значения Н и h согласно рисунку Зв равны: h = 1 1 00 - 1 00 = 1 000 мм; Н = 1 1 00 - 1 00 + 80 = 1 080 мм. Жест­кость изолятора С0п = 1 1 00 кН/м, а частота собственных колебаний f0n = 28 Гц.

38

Согласно таблице 4 момент инерции и момент сопротивления шины равны:

J = н4 - h4 О,1 254 - 0,1 094 = 858 'J . 1 0_8 м4 (Г. 1 6)

1 2 1 2 ,L- ,

н4 - h4 W =---6H

4 4 0,1 25 - 0,1 09 = 1 373 . 1 0-6 мЗ. 6 · 0,1 25

, (Г. 1 7)

Page 42: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

Допустимая нагрузка на изолятор согласно формуле (8) равна Fдоп = 0,6 · 6000 · 1 000/1080 = 3333 Н . (Г. 1 8)

Значения жесткости и частоты колебаний опоры допустимо принять равными жесткости и частоте колебаний изоляторов, так как изоляторы шинной конструкции установлены на весьма жестком основании.

Приведенная масса в соответствии с формулой (31 ) равна 3 1 1 00 · 1 0 = 35,57 кг.

(2 · 3,1 4 ·28)2 (Г. 1 9)

Необходимые для определения параметра основной частоты собственных колебаний шины значения вели­чин равны:

Сопlз EJ

3 3 1 1 00 · 1 0 .5 = 229• 1 . 1 о 1 0 . 858,2 . 1 о-8 '

.!!!.._ = 35·57 = О, 795.

ml 8,96 ·5

По кривым рисунка 6 параметр r1 = 3,3, поэтому

f = 3,32 1 2 . 3,1 4 . 52

7 . 1 о 1 о . 858,2 . 1 о-8 = 1 7 96 г .

8,96 , ц

По кривой рисунка 5 коэффициент динамической нагрузки У\ = 0,9.

(Г.20)

(Г.21 )

(Г.22)

Максимальные нагрузка на изоляторы и напряжение в материале шины в соответствии с формулам и (2) и ( 18) равны:

F,(3) _ ..J3 · 1 0-7 /( · (3) )2К. К _ ..J3 · 1 0-7 ·5 ·502 · 1 06 · 1,0 · 1,0 = 2 165 Н max - 8 lуд · ЧJ' 'Расп - 1,0 '

(З) z = Fmax = 2 165 ·5 · О,9 = 5,88 МПа. <Jinax Л.W У\

1 2 · 1 37,3 · 1 0-6

Для данной шинной конструкции сrдоп = 89 МПа > crmax = 5,88 МПа;

Fдоп = 3333 Н > F��� = 2 165 Н.

Таким образом, шинная конструкция удовлетворяет условиям динамической стойкости .

(Г.23)

(Г.24)

(Г.25)

(Г.26)

39

Page 43: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией

гост р 52736-2007

УДК 621 .3.064.1 :006.354 оке 29.020 ЕО9

Ключевые слова: ток короткого замыкания, электроустановки, электродинамическая стойкость, терми­ческая стойкость, интеграл Джоуля, невозгораемость

40

Page 44: ГОСТ Р 52736 Короткие замыкания в электроустановках ... · ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией