65
The department of Medical Engineering טט טטטטטטט: טטטטטטטט טטטטטט טטטטט טטטטטט טטטטט טטטט טטטטט טטטטטטט טטטטטט טטטטט טטטטטProject Name: Dynamic Simulator for Umbilical Flow Assessment Using Doppler Ultrasound Project book Ofir Agranati Student Name: ************** ID: Dr. Sara Naftali Supervisor Name: 1

ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Embed Size (px)

Citation preview

Page 1: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

The department of Medical Engineering

סימולטור לימודי דינמי: שם הפרויקט להערכת זרימה בחבל הטבור באמצעות

אולטרה סאונד דופלר

Project Name: Dynamic Simulator for Umbilical Flow Assessment

Using Doppler Ultrasound

Project book

Ofir AgranatiStudent Name:

**************ID:

Dr. Sara NaftaliSupervisor Name:

20//05/2015Submission Date:

1

Page 2: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

1 1. Table of Contents2 Lists.....................................................................................................4

2.1 Figures.............................................................................................42.2 Tables...............................................................................................4

3 6......................................................................................תקציר מנהלים4 Executive Summary............................................................................85 Introduction.........................................................................................96 Literature review...............................................................................10

6.1 Anatomy of the umbilical cord........................................................106.2 Umbilical cord flow physiology........................................................116.3 Doppler Ultrasonography................................................................126.4 Medical simulation..........................................................................136.5 Base flow system............................................................................14

7 Objectives..........................................................................................157.1 Main Objective................................................................................157.2 Client and users..............................................................................157.3 Requirements.................................................................................16

7.3.1 Client requirements....................................................................167.3.2 Engineering Requirements.........................................................16

8 Method...............................................................................................178.1 The Flow System............................................................................18

8.1.1 Pump controller and power supply.............................................188.1.2 A\D card.....................................................................................198.1.3 Venturi sensor............................................................................208.1.4 Pump..........................................................................................218.1.5 Fluid reservoir............................................................................21

8.2 The GUI..........................................................................................228.2.1 GUI interface..............................................................................228.2.2 GUI Functions............................................................................238.2.3 GUI Functions Results explanation............................................26

8.3 The Application Model....................................................................278.3.1 Model Calculations.....................................................................278.3.2 Model Design.............................................................................298.3.3 The Lid.......................................................................................318.3.4 Assembly....................................................................................318.3.5 Water drainage...........................................................................328.3.6 Model Modifications....................................................................338.3.7 US Compatibility.........................................................................34

8.4 The US device................................................................................349 Results...............................................................................................35

9.1 Physician Examination...................................................................3510 Discussion.........................................................................................37

10.1 Comparison to Physiological Data..................................................3710.2 Physician Review...........................................................................40

2

Page 3: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

11 Conclusion........................................................................................4012 Suggestion for Future Research.....................................................41

12.1 Finalizing the System.....................................................................4112.2 The Experimental System for the Medical Lab...............................4212.3 Application model modification.......................................................4212.4 Ultrasound and flow field correlation..............................................42

13 References........................................................................................4314 Appendix...........................................................................................44

14.1 National Instrument USB-6009 Electrical drawing..........................4414.2 Venturi tube drawing.......................................................................4514.3 Gear pump specifications...............................................................4614.4 Project Process..............................................................................4714.5 Direction for Use (DFU)..................................................................48

3

Page 4: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

2 Lists2.1 Figures

Figure 3.1 Illustration of the system and its components..................................7Figure 6.1 The UC Anatomy [14]....................................................................11Figure 6.2 Spectral Doppler scan of the carotid artery [5].............................12Figure 6.3 Laerdal's SimMan emergenrcy response training [8]....................13Figure 6.4 Simbionix's Lap Mentor laparoscopy clinical training [9]...............14Figure 6.5 Biometric Fetal Ultrasound Training Phantom by CIRS [15].........14Figure 6.6 The experimental system used at the ME laboratory [6]...............15Figure 8.1 Illustration of the system and its components................................17Figure 8.2 The system and its components....................................................18Figure 8.3 Pump controller and power supply................................................19Figure 8.4 National instrument USB-6009......................................................20Figure 8.5 Electronic differential sensor.........................................................20Figure 8.6 Venturi tube...................................................................................21Figure 8.7 Gear pump....................................................................................21Figure 8.8 Water reservoir..............................................................................22Figure 8.9 The GUI interface..........................................................................22Figure 8.10 The final prototype of the application model with the UC model. 27Figure 8.11 Perspex lid, standard 3 views with isometric view, all units are in meters............................................................................................................30Figure 8.12 The final container with the vessel, connenctors and and sponge like material....................................................................................................30Figure 8.13 Perspex lid, standard 3 views with isometric view, units are in meters............................................................................................................31Figure 8.14 The final lid with latex sheet........................................................31Figure 8.15 Box and lid assembly, units are in [cm].......................................32Figure 8.16 Water overflow control.................................................................33Figure 8.17 Leak-proof coupler......................................................................33Figure 8.18 GE Logiq C5 Premium................................................................35Figure 9.1 The system values for the physician review..................................35Figure 9.2 US image of the vessel.................................................................36Figure 9.3 US Doppler spectrography of the vessel.......................................37Figure 10.1 The model velocity waveform......................................................38Figure 10.2 A real UC velocity waveform [12]................................................38Figure 10.3 Model diameter measurement taken with the US tools...............39Figure 10.4 Screenshot taken from the US Doppler spectrography of the simulator video (https://youtu.be/brBYPSaJ9Cw)...........................................39Figure 10.5 Screenshot taken from Introduction to Doppler Ultrasound [13]..40

2.2 Tables

Table 6.1 Combined cardiac output and distribution in human fetus. (units are mL/min ) [4]....................................................................................................12

4

Page 5: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Table 8.1 Pump controller functionality..........................................................19Table 8.2 GUI function comparison................................................................24Table 8.3 GUI function comparison numeric results.......................................26Table 9.1 The system values for the physician review...................................35

5

Page 6: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

תקציר מנהלים3 כחלק מבדיקה שגרתית של עובר, נעשית הערכה מקיפה של ממדי חבל הטבור

זרימת הדם אל זרימת הדם שבתוכו. הבדיקה מאפשרת לרופא לאמוד את ואפיון

העובר ולהעריך האם קיימת מצוקה עוברית או בעיות שונות המיוחסות לאופי זרימת

הדם בטבור. בדיקת אולטרה-סאונד דופלר מאפשרת בדיקה של אופי הזרימה ע"י

שימוש באפקט דופלר. במהלך הכשרתו של מתמחה אולטרה-סאונד, על המתמחה

להתנסות בבדיקת תרחישים שונים אשר לעיתים אינם זמינים. נכון להיום, אין פתרון

הדופלר בדיקת את לחוות למתמחה המאפשרים זה מסוג תנאים מדמה אשר

ולהתאמן באופן אפקטיבי.

פתרונות שונים לאימון רופאים מתמחים בתחומים מגוונים קיימים כיום במרכזי

סימולציה אשר ממוקמים במרכזים רפואיים. במרכזים אלו קיימים מכשירי סימולציה

שונים המדמים תרחישים אשר בזמן אמת עלולים לסכן חיים.

ידמה סימולציה אשר ולבנות אבטיפוס למכשיר הינה לתכנן מטרת הפרויקט

זרימה בחבל הטבור בתוך הסביבה המקיפה אותו כאשר בדיקת אפיון הזרימה, תיערך

באמצעות מכשיר אולטרה סאונד קיים. המערכת תזרים נוזל בזמן אמת, התרחיש יוזן

את ולאבחן הזרימה את לזהות יידרש והמתמחה מחשב באמצעות המאמן ע"י

מאחוריה העומד –התרחיש רפואית לסימולציה המרכז עבור בוצע הפרויקט .

. כ"כ, המערכת תשמשסימולטק בהנהלתו של פרופ' רוני טפר, המרכז רפואי מאיר

כעמדת מעבדה באפקה לבצוע ניסויים ולמחקר.

] מחלוקת לשלושה מרכיבים עיקריים: מחשב, מערכת זרימה 3.1 איור המערכת [

ומודל אשר מדמה חבל טבור בסביבתו. הזרימה במערכת נוצרת ע"י משאבה אשר

) לאנלוגי מדיגיטלי אות המרת וכרטיס בקר דרך אישי מחשב ע"י ).D\Aנשלטת

הזרימה מתרחשת במודל של חבל הטבור, חיישני לחץ, מאגר המים והצנרת אשר

מחברת אותם למשאבה. את מאפייני הזרימה ניתן לשנות ע"י הזנת נתונים למחשב

) גרפי ). הזרימה נמדדת פעמיים, פעםGUIבאמצעות תוכנה עם ממשק משתמש

מכשיר ע"י שניה ופעם ולמאמן, לתוכנה משוב לצורך הבקרים ע"י אחת

האולטרה-סאונד של המתמחה.

6

Page 7: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 3.1 Illustration of the system and its components

של ופיזיולוגיה אנטומיה בנושאי מקיף ספרות סקר בוצע מהפרויקט, כחלק

הפרויקט יתבסס עליה אשר הזרימה מערכת דופלר, אולטרה-סאונד הטבור,

פיזיקלית מבחינה יתאים אשר דגם לבנות מנת על רפואיות. וסימולציות

מהפן מלאכותיות רקמות המדמים חומרים אחר חיפוש נערך לאולטרה-סאונד,

הפיזיקלי והשוואת תכונות אלו לרקמות פיזיולוגיות.

המערכת. של הפרויקט בתוצאות ודיון תוצאות תכנון, מכיל הפרויקט ספר

התוצאות הושגו ע"י בדיקת רופא מומחה בתחום האולטרה-סאונד ומראות כי אכן ניתן

יהיה להשתמש במערכת זו ככלי לימודי. הבדיקות בוצעו ע"י מכשיר אולטרה-סאונד

שנרכש ע"י מכללת אפקה לצורך כך ולפרויקטים עתידיים.

תכנות ממשק משתמש פיזיולוגית, זרימה כגון: רבים נושאים כולל הפרויקט

ואלקטרוניקה. המערכת תשמש תחילה לסימולציות בסיסיות עם מודל טבור בסיסי,

ודגמים מתקדמים אפשרויות בעתיד לכלול יוכלו המכשיר של מודלים מתקדמים

הטבור באמצעותלחבל מעקב הכוללים נוספים דם בכלי לזרימות ולפלטפורמה

האולטרה-סאונד דופלר.

7

Page 8: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

4 Executive SummaryAs part of fetus examination routine, an extensive evaluation of umbilical

cord (UC) and its blood flow is required. The examination enables the

physician to evaluate the hemodynamic state of the fetus and diagnose

whether there is fetal distress or other hemodynamic related problems. The

Doppler ultrasound (DUS) examination enables a detailed view of the flow

properties using the Doppler effect. During the ultrasound (US) physician

training, the trainee must practice different scenarios which may not frequently

occur. As of today, no solution that mimics these conditions for an effective

physician practice is available.

There are different solution systems that can help physician to practice

in various situations without patients. These simulators mimic life risking

situations of varied practice fields and located in simulation facilities centers. .

The project goal was to design and build a prototype for a simulation

device which mimics a pulsatile blood flow in an UC in its natural fluid

environment, and is compatible with US and DUS monitoring. The system

contains a real time flow that can be controlled by a trainer using a personal

computer (PC). The trainee will be required to estimate the flow and diagnose

the scenario. The project was conducted as a request of Simultech, Meir

Hospital medical simulation facility, under the supervision of Professor Roni

Tepper. In addition the system will be used at Afeka laboratory for further

research and student lab.

The system [Figure 3.1] is divided into three main components; PC, flow

system and an application model that mimics the UC in its natural

environment. The flow is generated by a PC controlled pump that receives a

signal via analog to digital (A/D) card, and a pump controller. The flow system

includes pressure sensor, fluid reservoir and tubing. The pulse wave

properties can be controlled using the PC by a graphical user interface (GUI).

The flow is measured twice; by the flow sensor and by the physician US

device.

8

Page 9: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

As part of the project, a literature review was conducted on the anatomy

and physiology of the UC, DUS, the base flow system and medical

simulations. In order to build a physically compatible prototype with US,

materials properties were researched and compared to a real tissue.

The project book contains design, results and discussion on the results.

The results were achieved by an US physician expert examination and

present a positive conclusion that the system can be used as part of the

training process of the physician. The examinations of the system were

conducted using a US device purchased by Afeka for this and future projects.

The project includes many subjects such as; physiological flow, GUI

programming and electronics. The system will initially be used to simulate flow

with a basic UC model, while more advanced model could be included in

future projects. Due to simplicity of the application model, it can be used not

only for UC vessel but for numerous kinds of vessels with suitable design.

5 IntroductionDuring the training of an ultrasound physician, the intern, or trainee, is

required to conduct an extensive practice with DUS transducer. By a relatively

short period, the interns should encounter a wide variety of cases, which

include an umbilical cord exam. The umbilical cord flow and shape properties

may indicate a fetal distress state, which requires immediate intervention.

Several pathologies are common and can be diagnosed on a daily or even a

weekly basis, but some cases are rarer. Early identification of pathologies that

might risk the fetal or the patient is a matter of practice and familiarization with

the transducer.

As current state training, the interns conduct exam on patients that are

available. Life risking pathologies might not be so common, an immediate

intervention is required, and in many cases will not be delayed for training

purposes. The information about those once-in-awhile cases are usually

passed down by written data or orally, but without any in-hand practice. Due

to lack of practice with the fetal distress cases, many physician refrain from

signing any statements which are related to the fetus health condition. A new

9

Page 10: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

method of training might increase the physician knowledge, allowing better

diagnostics.

In this project, a prototype system of a simulator for blood flow

estimation in the umbilical cord for practicing DUS was designed and built.

The project is in the field of mechanism of the physiological flow and includes

a prototype of a system which intent to be used by interns or any trainee and

their instructors in the ultrasound training facility.

The project is a thought product of Prof. Roni Tepper, the head of the

ultrasound unit in Meir hospital. The requirement system was a working unit in

which the instructor could set a certain fetal state which will be represented by

the flow and vessel properties. Some of the settings that will be able to be

controlled are pressure and flow rate.

With the supervision of Dr. Sara Naftali, and the proficient advice of Prof.

Roni Tepper and Dr. Yoav Alpert, this project intent to serve as a training

device and can also be an experimental device for medical engineering (ME)

students and may be used as a platform for further research.

6 Literature review6.1 Anatomy of the umbilical cord

The umbilical cord (UC) [Figure 6.2], also known as Funiculus

Umbilicalis, is the vessel which connects the fetus through the placenta to the

mother blood system. The UC contains 3 vessels; one vein and two arteries.

In the vein flow oxygenated blood towards the fetus, the fetus pumps

deoxygenated blood to the placenta through the arteries. The three sub

vessels are protected by a fluid called Wharton's jelly, the fluid is a gelatinous

substance made largely from mucopolysaccharides [1].

10

Page 11: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 6.2 The UC Anatomy [14]

After week 37 of gestation, the UC length at normal state can range from

50 to 60 cm. a study shown that the whole UC diameter in healthy pregnancy

range from 3.19 ± 0.40 mm at 10 weeks to 16.72 ± 2.57mm at 33-35 weeks,

and decline to 14.42 ± 1.50 at 42 weeks [2]. The decline of diameter is related

to the reduction of water in the Wharton's jelly. The UC vein cross section

area range from 28 mm2 at 24 weeks to 58 mm

2 at 34-38 weeks [3]. The vein

cross section area is approximately 30% larger than both of the combined

arteries.

6.2 Umbilical cord flow physiology

According to their cross section area, the fluid velocity in the vein is

approximately half than in one of the arteries. The velocity in the vein ranges

from 10-22cm2 /s . The umbilical venous pressure increased from 600 Pa at

18 weeks to 800 Pa at term, while the cardiac output (CO) can vary from 200

to 1900 ml /min according to gestation stage [4]. Table 6.1 presents the

Cardiac Output as a function of gestation stage.

11

Page 12: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Table 6.1 Combined cardiac output and distribution in human fetus. (units are mL/min ) [4]

Gestation stage 20 weeks 30 weeks 38 weeksCombined Cardiac Output

210 960 1900

Left Ventricle 47 43 40Right Ventricle 53 57 60Foramen ovale 34 18 19Lungs 13 25 21Ductus arteriosus

40 32 39

6.3 Doppler Ultrasonography

Using the Doppler Effect, a virtual window can created in order to

evaluate the velocity of the particles which transverse it. The Doppler effect is

created by sending a sound wave with a certain frequency, and receiving the

reflected wave. If the frequency of the returning wave is decreased compare

to the sent wave, then the object is receding, and if the frequency is higher the

object is approaching to the source. This affect is applied in DUS device using

transducer as the wave source, and receptor.

The physician, using the US device, can evaluate the flow velocity in a

certain direction within the blood vessel, in this case the UC, and generate a

graph which shows the spontaneous velocity as a function of time. The result

of a Doppler M mode scan of the carotid artery is demonstrated in Figure 6.3,

the image resembles the UC scan. This function helps the physician to

diagnose pathologies that might cause a change in the velocity pulse.

Figure 6.3 Spectral Doppler scan of the carotid artery [5]

12

Page 13: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

6.4 Medical simulation

The medical simulation subject is divided into 2 sub-branches;

emergency response and clinical training. For the emergency response the

simulation purpose is help reduce accidents during surgery and field patient

treatment. There are many simulators that can emulate a real patient, for

example, Laerdal's SimMan [Figure 6.4] is a full body simulator that can

breathe, have a pulse, blink, talk, bleed and many more functions.

Figure 6.4 Laerdal's SimMan emergenrcy response training [8]

In case of clinical training, the focus is narrowed down to a specific part

of the body. The environment in this case is more calm and educational but

shares the same purpose as emergency response; reduce accidents. There

are many simulation devices for clinical training and each has its own specific

purpose. For example, Simbionx's Lap Mentor [Figure 6.5], which enables the

physician experience a laparoscopy surgery using a control module to

emulate the surgery tools and a monitor to emulate the scope. Another

example is the Biometric Fetal US Training Phantom by CIRS [Figure 6.6].

The fetal phantom resembles by its anatomy to a real fetus and is fully

compatible with an US device. Though this phantom provides high accuracy,

it is a static only phantom without any flow within it. The Doppler function

cannot be tested on this model.

13

Page 14: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 6.5 Simbionix's Lap Mentor laparoscopy clinical training [9]

Figure 6.6 Biometric Fetal Ultrasound Training Phantom by CIRS [15]

6.5 Base flow system

The flow system is based on an existing experimental system that is

located at the student mechanical physiology laboratory of the ME department

at Afeka College. The system was built as a part of a final project

"Development & Design of Experimental System for Flow Measurements in

Coronary Arteries Models" by Ido Muller [6]. The experimental system

consists of a working flow system with pulsatile pump and graphic user

interface (GUI). It was designed to measure blood flow and pressure in

coronary arteries models. Due to similarity to the requirements of this project,

the current project flow system is based on this system. The system consists

14

Page 15: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

of a pump and controller, sensors, A/D card, GUI, fluid reserve, and a

replaceable vessel. The pump is a pulsatile pump, which enables a wide

control on the pulse wave. [Figure 6.7]. The schematic drawing of the system

functionality is presented in Figure 8.8.

Figure 6.7 The experimental system used at the ME laboratory [6]

7 Objectives

7.1 Main Objective

The purpose of the project is to design and develop a prototype system

that will be used as a simulator for blood flow estimation within the UC for

intern practicing DUS. The device will be located at a training medical facility

in Meir hospital. Similar device will be used at Afeka's ME laboratory as an

experimental system.

7.2 Client and users

The device will be used in Meir hospital medical training facility,

Simultech, under the supervision of the client, Professor Roni Tepper. The

instructors of the facility will be the high level users of the system, they will

control the system and maintain it. The low level user of the system will be the

US interns, under the supervision of the instructor. The interns will have

minimal interaction with the device, mainly with the UC model and the US

device provided by the training facility.

15

Page 16: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

7.3 Requirements

7.3.1 Client requirements

The following specific requirements were provided by the client:

To mimic an UC in its natural fluid environment

Characteristic physiological flow values such as fluid velocity and

pressure

Pulsatile flow

GUI controlled

A 'readable' flow by an US device with the least ultrasonic artifacts

Generate a pulse wave within the vessel model which resembles an

umbilical pulse wave

7.3.2 Engineering Requirements

Some requirements are required due engineering considerations. The

following requirements were derived for those reasons:

The electrical equipment must fit 220V and 50Hz (Israel electrical

network)

The project budget limitation; if a component is beyond the budget

provided by Afeka, the client must confirm the purchase

Look and feel design is not mandatory since the project is a prototype.

All design requirements are defined as 'nice to have'; hiding the

permanent parts such as tubes wires and so on, and paint on the basin

which will conceal to content

User friendly GUI for an US medical physician/intern

A direction for use (DFU) must be written to elaborate on steps the

instructor needs to do before, during and after the exam. A

maintenance section will be added as well

A flow sensor that indicates the instructor the current pulse wave shape

and properties for comparison

An easy vessel replacement procedure due to deterioration and simple

switch between vessel geometries

An US compatible materials that can transfer sound wave with the least

wave unneeded reflection possible

16

Page 17: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

8 MethodThe system is compiled of 3 sections; application model, GUI and flow

system as illustrate in Figure 8.8, and fully built in Figure 8.9. The PC, using

the data provided in the GUI, sends a digital signal to the D/A card which

translated as an analog signal to the pump via pump controller. The fluid from

the reservoir flows through the pump into the application model whereafter it

is being measure in the Venturi flow meter, and finally injected back to the

fluid reservoir. The flow through the application model is detected by the US

device and presented on its monitor. The Venturi flow sensor sends an analog

signal to the A/D card, to be translated to a digital signal, processed and

presented on the GUI by the PC.

Figure 8.8 Illustration of the system and its components

17

Page 18: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 8.9 The system and its components

8.1 The Flow System

The system is based on an existing system that fits this project purpose.

A full review of the system will not be included in this project but rather a

description of it. The description was derived from Ido Muller project book [6].

8.1.1 Pump controller and power supply

The pump controller and power supply were planned by Dr. Uri Zaretsky,

and can be seen in Figure 8.10. The power supply provides the pump with up

to 5V and the controller enables the pump to be either controlled by an

external signal (the A\D card) or internally with a current knob on the

controller. Table 8.2 Pump controller functionality presents all the function on

the controller and their description.

18

Page 19: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 8.10 Pump controller and power supply

Table 8.2 Pump controller functionality

Function DescriptionOn/Off Toggle button for the power supply to the controllerExt/Int Toggle button for internal or external controlCurrent Controls internal current provided18V Input voltage for the power supplyMotor Output voltage for the pumpD.A in Input for external control

8.1.2 A\D card

The A\D card used for this system was the National Instrument USB-

6009, Figure 8.11. The card is used to connect the PC to the pump controller

and the Venturi sensor. A full electrical drawing of the card circuit is described

in Appendix 14.1.

19

Page 20: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 8.11 National instrument USB-6009

8.1.3 Venturi sensor

The sensor is an assembly of 2 elements, the deferential sensor (Figure

8.12) and the Venturi tube (Figure 8.13). The fluid transvers the tube while the

upstream and downstream pressure taps are measured with the deferential

sensor. A full drawing description of the Venturi tube can be seen in Appendix

14.2.

Figure 8.12 Electronic differential sensor

20

Page 21: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 8.13 Venturi tube

8.1.4 Pump

The pump (Figure 8.14) in the flow system is a miniature gear pump

2.52L/min. The specification can be seen in Appendix 14.3.

Figure 8.14 Gear pump

8.1.5 Fluid reservoir

The Fluid reservoir (Figure 8.15) used is a simple water container and lid

with holes to insert the tubes.

21

Page 22: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 8.15 Water reservoir

8.2 The GUI

The GUI was programmed in LabView 2010 and redesigned in this

project to allow the user (i.e. instructor) to set the flow with the settings he or

she requires and convert them to a signal sent to the pump, the GUI output.

The GUI also acquires from the system via A/D card, the flow rate as detected

by the Venturi differential sensor. The GUI interface and functionality are

reviewed in this section. The LabView files were added in the project disk.

8.2.1 GUI interface

The GUI interface comprises with controls and display as follows (Figure

8.16):

Figure 8.16 The GUI interface

22

Page 23: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Umax – The max volt sent to the A/D card and eventually to the

pump, function as systolic value.

Umin – The min volt sent to the A/D card and eventually to the

pump, function as diastolic value

BPM – pump's beat per minute

Duty cycle – the signal Umax percentage of the pump

Enable – turns the pump on and off

Clear graphs – reset the graphs on the right display

Flow signal –the Venturi sensor detected flow display

Volt output – the output signal sent to the A/D card and eventually

to the pump display

Flow zero –zero level calibration for the Venturi flow sensor.

Lower cut-off – High pass filter of the output volt signal

Stop D/A – disconnects the signal sent to the pump and shuts

down the program

8.2.2 GUI Functions

In order to examine each of the GUI function, a comparison of the

function was made to show effective difference. Each of the user-defined

values for the sent wave was tested separately and the end results were

compared to the same basic values. The end results were examined by the

flow sensor, though a thorough examination to indicate functionality of each

value should be conducted with an US Doppler.

Table 8.3 contains the parameters and their end results, while the first

row represents the basic values to compare the rest to. For example, the

second row describes a decrease of Umax to 2.5V from the basic value of 5V

(as presented in the first row, marked in red). The two graphs in the 2nd row

present the end result of the decreased Umax parameter. These graphs were

compared with the basic parameters in the 1st row. In this example, the

maximal flow of 400 ml/min as shown in the 1st row, decreased to maximal

flow of 200 ml/min as shown in the 2nd row.

23

Page 24: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Table 8.3 GUI function comparison

Parameter Value Flow graph [mL/min] Volt Graph [V]Basic values

Umin=0 VUmax=5 VDuty cycle=20%BPM=70Lower cut-off=10

Umax [V] decreased to 2.5 V

Umin [V] increased to 1.5 V

24

Time [sec]

Time [sec]

Time [sec]

Time [sec]

Time [sec]

Time [sec]

Page 25: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Parameter Value Flow graph [mL/min] Volt Graph [V]Duty cycle increased to

40%

BPM increased to 150 BPM

Lower cut-off

decreased to 3

25

Time [sec]

Time [sec]

Time [sec]

Time [sec]

Time [sec]

Time [sec]

Page 26: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

8.2.3 GUI Functions Results explanation

All parameters changes show a significant effect on the appropriate graph. The

test leads to the conclusion that all function are working correctly. Table 8.4

summaries the results comparison.

Table 8.4 GUI function comparison numeric results

ParameterBasic

value

New

valueFlow change Volt change

Umax [V] 5 2.5 Max flow decreased

from 400 to 200

mL/min, A 50%

decrease

Max volt was

decreased from 5 to 2.5

V as expected

Umin [V] 0 1.5 Min flow increased

from 50 to 250 mL/h, a

500% increase

min volt was increased

from 0 to 1.5 V as

expected

Duty cycle 20% 40% Systolic section was

increased from about

0.15 seconds to 0.33

seconds. Almost twice,

like the duty cycle

increase

Systolic section was

increased from about

0.15 seconds to 0.33

seconds. Almost twice,

like the duty cycle

increase

BPM 70 150 5.5 pulses were able to

fit in a 5 seconds

interval in the basic

parameter, while in the

tested, almost 13 were

fitted.

5.5 pulses were able to

fit in a 5 seconds

interval in the basic

parameter, while in the

tested, almost 13 were

fitted.

Lower cut-

off

10 3 No significant changes

occurred

The pulse shape is

significantly round

compared to the basic

value

26

Page 27: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

8.3 The Application Model

The model container is made from Perspex material and is divided into two

parts; a fluid container and a lid. The lid is a frame to hold a latex sheet that will

mimic the human skin and the US transducer will be applied on top of it.

The container and lid were designed using Solidworks software. The model

was eventually sent to a manufacturer using a standard three sided and isometric

view of the both of the designs.

The final prototype of the application model with the UC model is presented in

Figure 8.17. In this figure the assembly of container and lid, red latex sheet, leak-

proof connectors, the vessel and the green sponge material to absorb the sonic

waves are presented

Figure 8.17 The final prototype of the application model with the UC model

The model features were calculated to ensure a fully developed laminar flow in

8.3.1, and design to ensure maximal US compatibility in 8.3.2.

8.3.1 Model Calculations

The Reynolds number was calculated in order to estimate if the flow was

laminar or turbulent. The general Reynolds number equation is described in

Equation 8.1.

(8.1) Re=

Q eff⋅Dυ⋅A

27

Page 28: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Where Re is the Reynolds number, Qeff is the effective flow rate, D is the

characteristic linear dimension, υ is the kinematic viscosity of the fluid and A is the

vessel cross section area. Each of the parameters was calculated separately.

The effective flow rate was calculated with the estimation of 33% duty cycle;

33% of the time the pump will be activated on maximal power while the other 67%

was estimated to be with no power at all. The maximal value of the taken flow was

the maximal value as described in the pump specification (Appendix 14.3).

(8.2) Qeff =

Qmax3

+2Qmin3

Qmax=2520mLmin

=2520⋅(10−2 )3

60m3

sec=4 .2⋅10−5m

3

secQmax=0

Qeff=4 .2⋅10−5 /3=1. 4⋅10−5 m

3

secFor the characteristic linear dimension D, the tube diameter was chosen. The

estimated tube diameter that was used is the diameter of the holes that were drilled

in the side of the container where the vessel transverse as described in Equation

8.3.

(8.3) D= 0.01m

The kinematic viscosity of the fluid υ , was estimated to be resembling to blood,

since there is a chance in future project that a fluid with similar properties will be

used. Equation 8.4 describes this value with its units.

(8.4) υ= 3⋅10−6 m

2

sec

The cross section of the tubeA , is based on the tube diameter D as described

before in Equation 8.3, while Equation 8.5 describes the cross section area.

(8.5) A=πD

2

4= π⋅0 .01

2

4=7 .854⋅10−5 m2

All the calculated parameters in Equations 8.2-8.5 were integrated within

Equation 8.1 as follows in Equation 8.6.

28

Page 29: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

(8.6) Re=

Q eff⋅Dυ⋅A

= 1.4⋅10−5⋅0 .013⋅10−6⋅7 .854⋅10−5

=594 .1<2000

The Reynolds number is smaller than 2000, thus, the flow is laminar. In this

case 10 diameters will suffice. Equation 8.7 presents the final length that ensures a

fully developed laminar pulse wave.

(8.7) Le≈10⋅D=10⋅0 .01=0.1 m<0 .3 m

8.3.2 Model Design

A detailed drawing of the container can be seen in Figure 8.18, and fully built in

Figure 8.19.

The container internal dimensions are:

Width – 20cm

Height – 24cm

Depth – 30cm

The width and height allows enough area for the US device while the length

ensures a fully developed laminar pulse wave. The velocity profile develops fully and

remains unchanged after some distance from the inlet (about 10 pipe diameters in

turbulent flow, and less in laminar pipe flow) [11]. The walls of the container are 1cm

thick.

The container was designed using SolidWorks software. The model was

eventually sent to a manufacturer using a standard three sided and isometric view of

the design. The final design as sent to the manufacturer is presented in Figure 8.19.

Figure 8.18 describes a standard three sided and isometric views of the

SolidWorks design. On the front side of the container, two holes are visible; 'A' and

'B'. Both holes are 1cm in diameter, a silicone tube is fitted and cemented to the

holes and to these tube the vessel is connected. Hole 'A' transverse the container

and through it the vessel enters and exits the container. The hole is located 15cm

high from the floor to make sure there is enough medium for an US image

requirements. The customer requirement was 5 cm distance from the top and

29

Page 30: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

another 5 at lease from the bottom, another 5 cm were added to be on the safe side.

Hole 'B' function as drainage in case the water will reach overflow.

Figure 8.18 Perspex lid, standard 3 views with isometric view, all units are in meters

Figure 8.19 The final container with the vessel, connenctors and and sponge like material

30

Page 31: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

8.3.3 The Lid

The lid is placed on top of the container and function as a frame for a latex

sheet. The area in which the transducer can be applied is 15X25 cm2. Figure 8.20

presents a three sided and isometric views of the lid as designed in Solidworks and

sent to the manufacturer. The fully built lid is presented in Figure 8.21.

Figure 8.20 Perspex lid, standard 3 views with isometric view, units are in meters

Figure 8.21 The final lid with latex sheet

8.3.4 Assembly

Figure 8.22 represents the box and lid assembly by a standard three sided and

isometric view, as designed in SolidWorks and sent to the manufacturer. Figure 8.17

presents the final assembly of the whole application model.

31

Page 32: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 8.22 Box and lid assembly, units are in [cm]

8.3.5 Water drainage

During the US examination some force applies on the surface area. In this

model, the surface area is made of latex and it in contact with the top of the water. It

is expected that the water level will rise from the sides of the lid when pressed (as

seen in Figure 8.23), then, when the released the water level should return back. A

range of water volume is required to ensure enough water can remain in the lid sides

for a normal water return. The extra water can drain from hole 'B' as seen in Figure

8.18. The bottom of the hole is located 1.5 cm from the top of the tank, while the

bottom of the lid is 4 cm from the top. The lid is designed to be 0.5 cm from each

side of the tank. The box top inner area is 30X20 cm2.

The following (Equation 8.8) calculates the total volume of water which can

remain after drainage between the lid sides and the box.

(8.8) V=H⋅{2⋅D⋅L1+2⋅D⋅(L2−1)}=H⋅{2DL1+2DL2−2D}

⇒ V=2DH {L1+L2−1}

32

Page 33: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Where, V is the remaining volume, H is the height between the bottom of the

lid and the bottom of hole 'B', D is the distance between the lid and box walls, andL1

,L2 are the box walls length. Thus,

V=2⋅0 .5cm⋅(4−1 .5 )cm⋅{30+20−1}cm=127 .5cm3

Figure 8.23 Water overflow control

8.3.6 Model Modifications

Some minor modifications were added to the application model after the

SolidWorks design that were necessary while building the model:

Holes A and B in Figure 8.18 were dilated to 1/2 inch (or 1.27 cm) diameter.

The new diameter allows inserting a leak-proof coupler [Figure 8.24] in the

middle and connecting tubes directly to it instead of using a 1 cm outer

diameter silicone tube with 2 coupler connected in each end.

Figure 8.24 Leak-proof coupler

33

Page 34: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

All adhesive application were conducted in 2 stage; first adhesion with quick

dry glue for fixation and a second adhesion with epoxy cement to prevent

leakage

A sponge like, plastic material layers were added into the bottom of the

container. The material, along with air bubble that were trapped within it,

provided a sonic filter for sonic waves that were emitted from the transducer

and reflected by the Perspex bottom, i.e. US artifacts.

8.3.7 US Compatibility

As required, the application model needs to be compatible with the least sonic

artifacts. In order to answer this requirement, several layers of sonic wave mediator

were placed. These layers are described in the order as the sonic wave encounter:

1. A thin layer of 1mm Latex sheet: The latex was selected due to its high

flexibility and durability while being stretched. Since the sheet is only 1mm the

sonic wave can transverse it with very minimal interference

2. Water: Water is the main mediator in model due to low maintenance and

resemblance to amniotic fluid, both of which are mainly composed of water.

3. Latex tube with a 0.5mm thin wall, and 7mm inner diameter: As the latex

sheet, this tube allows minimal power reduction of the sonic wave due to its

very thin wall.

4. A sponge like, plastic material layers at the bottom of the container: The

material, along with air bubble that were trapped within it, provided a sonic

filter for sonic waves that were emitted from the transducer and reflected by

the Perspex bottom, i.e. US artifacts.

8.4 The US device

The testing of the system was conducted with a GE Healthcare Logiq C5

Premium [Figure 8.25]. The device is a portable ultrasound system with 3D and 4D

functionality suited for hospitals covering various requirements such as general

imaging, obstetrics and gynecology, and cardiovascular applications.

34

Page 35: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 8.25 GE Logiq C5 Premium

9 Results9.1 Physician Examination

In order to examine whether the system is capable to simulate efficiently an UC

blood flow, a physician specializing in US examination conducted a review. The

physician tested the device was Dr. Abraham Agranat, from Laniado hospital, using

Afeka's Logiq C5. The system compatibility with the US and USD tests were

examined. The system parameters were set during the whole exam to the same

values, as described in Figure 9.26 and in Table 9.5.

Figure 9.26 The system values for the physician review

Table 9.5 The system values for the physician review

Parameter

Umax Umin BPM Duty cycle Lower cut-off

35

Page 36: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Value 5 [V] 2 [V] 100 30% 10

The first examination is to check the vessel compatibility with the US and any

sonic artifact that might occur. The exam resulted with a clean image of the vessel

[Figure 9.27] without any artifacts. A video of the exam was recorded (link to video:

https://youtu.be/zEZB9aAf498) as well to show the pulsatility as it displayed at the

US device monitor, the fluid movement can be seen as well. On a later examination

a Doppler spectrography was added to the image [Figure 9.28] to present the fluid

velocity. The Velocity is also presented in graph below the image where the pulse

wave is clearly identifiable. A video of the Doppler addition was recorded as well (link

to video: https://youtu.be/brBYPSaJ9Cw), though the velocity graph was not

recorded due to device limitations. In the video, the pulse direction is distinguishable

though a higher frame rate would emphasize it even more.

Figure 9.27 US image of the vessel

36

Page 37: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 9.28 US Doppler spectrography of the vessel

10 Discussion10.1 Comparison to Physiological Data

The pulse wave from the model was compared to a physiological pulse wave of

a real umbilical cord [Figure 10.29]. The comparison reveals high resemblance

though many differences as well. The data was analyzed visually due to two main

reasons; during practice the data will only be analyzed visually as well, and the

manner of data transfer between the US and a PC (i.e. using simple monitor

screenshot versus Digital Imaging and Communication in Medicine – DICOM); The

data derived from the US device currently is a low resolution image as seen on the

US monitor while the data transferred using DICOM is raw numeric data that can

analyzed using Matlab or other data processing software. During visual inspection of

the model waveform one can discover two main differences from the UC waveform;

the model waveform is not smooth and the values are almost twice as much as the

physiological value, the model velocity reaches 100 cm/s while a real UC rarely pass

the 50 cm/s mark. Equation 10.1 present Reynolds number calculation, assuming

both the literature example and the model are at the same of 0.61 cm, which is within

the normal UC diameter values [2]. Figure 10.31 presents a measurement of the

tube diameter with the US device measurement tool. In the tube, water is used while

37

Page 38: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

in the literature example blood is being used. The velocity calculated was used as an

average between minimum velocity and the maximum.

(10.1) Re=VD

ν

Where Re - Reynolds number, V-mean flow velocity and ν is the kinematic

viscosity of the fluid.

Model UC Reynolds:ReModel=

VDν

=0 .75⋅0 .00618 .9⋅10−4

=5.14

Real UC Reynolds:ReReal=

VDν

=0 .25⋅0 .00613⋅10−3

=0 .508

Though the difference between the two Reynolds numbers is tenfold, mainly

due to the fluid viscosity, both numbers are significantly low and provide proof that

the flow is laminar.

The lack of smoothness of the waveform is caused by many factors; rigid

artifacts (such as connectors, walls etc.), movement of the vessel in the water,

reflected waves etc.

Figure 10.29 The model velocity waveform

38

Page 39: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 10.30 A real UC velocity waveform [12]

Figure 10.31 Model diameter measurement taken with the US tools

Figure 10.32 is a screen shot taken from the video that was mentioned in 9.1, in

this image we can see a clear pulse wave fully formed in the tube. The wave acts as

expected with a parabolic shape with no slip conditions at the vessel walls. When

compare to an US examination [Figure 10.33], beyond the model vessel there is

some movement while in a real no movement be seen outside of the vessel. The

model vessel is 'hanging' in water with minor support, unlike a real vessel which has

support from the environment that surround it, along with high pressure. The

movement of the model vessel creates a secondary reading outside of it.

39

Page 40: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

Figure 10.32 Screenshot taken from the US Doppler spectrography of the simulator video (https://youtu.be/brBYPSaJ9Cw)

Figure 10.33 Screenshot taken from Introduction to Doppler Ultrasound [13]

10.2 Physician Review

In order to estimate whether this project has achieved the goal that were initially

set, the end result must be efficient for the physician to conduct training. The

physician review this project agreed that the project is indeed efficient and can be

used for medical training. The physician added that in his current facility, Laniado

Hospital, there are not many physicians that conduct Doppler examination due to the

complexity of the process. Integrating this system with the regular physician US

training might increase the number of physician that can conduct the examination

and increase the efficiency of the exam itself.

The expert also added that the image extracted from the model, in terms of

Doppler color, is not as smooth as he would expect (see Figure 10.32 in comparison

to Figure 10.33). He suggested that this effect might be caused due to the fluid type

40

Page 41: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

in the vessel; water. If the fluid that traverses the vessel might be similar to blood,

then the image could be much smoother.

11 ConclusionIn order to effectively improve the of DUS training for physicians, a destined

simulator with pulsatile UC model was required. In this project the system was built

and answered all the customer requirements; pulsatile, GUI controlled and US

compatible system. Before the system will ready to be duplicated and implemented

at Meir Hospital for medical training, a full set of calibration is required to be applied

to make sure the values presented by the GUI are accurate. The images extracted

from the model, to the client opinion, are not complete, replacing the fluid type to

simulate blood properties might improve the results quality.

The simple design, as described in the project process [14.4], and materials

that were used in the model affect the versatility of the model; the vessel can be

changed easily and the system can be used for a different type of DUS examination.

Due to the model high versatility, it can be used for many purposes such as a

medical lab in Afeka for ME students. Directions for Use (DFU) were written to

ensure correct use of the system [14.5].

The system was examined by an US physician in order evaluate the device

efficacy during training, whether it can help improve it. To the expert opinion, this

device can help the trainee practice the US device and learn how to operate it before

examine a patient. The pulsatile flow capability allows a Doppler examination which

usually can only be practiced on a live patient.

In conclusion, the project can mimic an UC in its natural environment, and may

help improve the physician training allowing a better US Doppler examination in

practice.

12 Suggestion for Future Research12.1 Finalizing the System

There is a lot of work remaining to perfect the system to fit the exact need of

the trainer, though this system is a solid baseline that is capable to yield results as

well. In terms of esthetics, the system might not be good looking, but if duplicated

41

Page 42: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

and built from scratch to fit Meir Hospital, it would be suggested to redesign the

electronics to fit into a single box (i.e. the pump controller and A/D card). The GUI

can be redesigned as well; additions of functionality for ease of use and design it to

be more user-friendly. Furthermore, it is recommended to use a fluid with similar

properties to blood, such as glycerin-water solution with sodium chloride to simulate

blood cell, or other types of fluids. The more viscous solution can help generate a

better image from the model.

12.2 The Experimental System for the Medical Lab

As mentioned in 7.1, one of the objectives of the project is to be used as an

experimental system in Afeka's medial lab. The system, in its current state, is a

prototype and should be considered as a baseline for future projects. In order to

convert it to a lab, a protocol must be composed. The protocol should explain about

the whole system and set objectives that should be studied. Some objectives should

include; experience with the US device function, measure and compare US results to

other methods of measurements, the effect of different tube materials on the US

reading, etc.

12.3 Application model modification

Due to lack of time and budget, some aspects of the model were left out to be

implemented after the system is work in the basic mode and can be execute in the

future. The current vessel model is linear, far different from a real UC. A coiled, three

ways tube is highly recommended; one line upstream and two downstream. The new

vessel should highly resemble an UC, and can further help with the simulation of the

original objective of this project. A new tubing system must be design to support

within the container in order to support the three lined tube.

Another modification that was mentioned in the meetings with the client is a

backflow pump. In some case, the flow in the UC can be reversed, this case is highly

dangerous for the fetus and require immediate intervention. It is recommended to

achieve this feature to add a pump that will push the flow against the main pump. Of

course this will require another tube to bypass the secondary pump. It is reasonable

to think that if the secondary pump will be on a continuous flow, a backflow might be

seen between the intervals of the main pump.

42

Page 43: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

12.4 Ultrasound and flow field correlation

A new project is now suggested to be based on the system; "Ultrasound and

flow field correlation of an embryonic cord model". The purpose of the project is to

analyze the correlation between a computational fluid dynamics (CFD) data in a 3D

UC model and the vessel flow within the application as examined with the US device

13 References1. Spurway J, Logan P and Pak S. The development, structure and blood

flow within the umbilical cord with particular reference to the venous system. AJUM. 2012 15 (3).

2. Naro Di E, Ghezzi F, Raio L, Franchi M, and D’Addario V. Umbilical cord morphology and pregnancy outcome. Eur J Obstet Gynecol Reprod Biol 2001; 96 (2): 150–57.

3. Li WC, Ruan XZ, Zhang HM, and Zeng YJ. Biomechanical properties of different segments of human umbilical cord vein and its value for clinical application. J Biomed Mater Res B Appl Biomater 2006; 76B: 93–7.

4. Kiserud T. Physiology of fetal circulation. Semin Fetal Neonatal Med 2005; 10: 493–503.

5. Medical ultrasonography, Wikipedia, http://en.wikipedia.org/wiki/Medical_ultrasonography. last modified on September 4th, 2014

6. Muller I., Zaretsky U and Naftali S. Development & Design of Experimental System for Flow Measurements in Coronary Arteries Models. Final project book, Department of ME, Afeka College 05/2011.

7. Callen P.W. Ultrasonography in obstetrics and gynecology 5'Th edition. Sounder Elsevier 2008.

8. Laerdal, SimMan 3G http://www.laerdal.com/SimMan3G. Last entry on September 16th, 2014.

9. Simbionix, Lap Mentor http://simbionix.com/simulators/lap-mentor. Last entry on September 16th, 2014.

10. Methodology of Doppler assessment of the placental & fetal circulation Sonoworld.com, http://sonoworld.com/Client/Fetus/html/doppler/capitulos-html/chapter_03.htm Last entry on December 27th, 2014.

11. Çengel Y. A., Cimbala J. M. Fluid Mechanics: Fundamentals and Applications (1st ed.) Boston: McGraw-Hill Higher Education 2006

12. Maulik D, Yarlagadda P, Downing G. Doppler Velocimetry in Obstetrics. Obstet Gynecol Clin North Am 1990;17:163–86

13. Introduction to Doppler Ultrasound, https://youtu.be/tQn8jKtwk6o, Ultrasound Institute at the University Of South Carolina School Of Medicine. YouTube, Last entry on May 8th, 2014.

14. Umbilical Cord Anatomy , http://imgkid.com/umbilical-cord-anatomy.shtml, Last entry on May 11th, 2015.

15. Biometric Fetal Ultrasound Training Phantom, http://www.cirsinc.com/products/all/88/fetal-ultrasound-biometrics-

43

Page 44: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

phantom/, Computerized Imaging Reference Systems, Inc. Last entry on May 11th, 2015.

44

Page 45: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

14 Appendix14.1 National Instrument USB-6009 Electrical drawing

45

Page 46: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

14.2 Venturi tube drawing

46

Page 47: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

14.3 Gear pump specificationsThe pump chosen in system is the miniature gear pump model No.EW-07012-

20 by Cole-Parmer. The following image present the specifications of the pump.

47

Page 48: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

14.4 Project ProcessThe construction of the model was made easy due to careful designing. The

SolidWorks drawing were sent to a Perspex manufacturer and was constructed in

less than a week. After the model was complete a rather long process initiated; small

parts were glued together one part at a time to make sure everything is sealed tight

with no leakage. Initially the Latex sheet was attached using both super glue

adhesive and epoxy cement, the first is to create a fusion between the materials

while the other is used to prevent leaks.

Finding the correct tubes for the project proved to be a difficult task. There are

many types and sizes of tubes, but those that were needed for the project are not a

standard in market. The initial design for the vessel connection was a tube traversing

the container with 2 leak-proof connector in each side. The inner connecter where

then connected to the vessel while the outer ones were connected to the flow

system. Due to the shape of the connectors [Figure 8.24] a more elegant solution

was suggested; inserting the connector to the Perspex drill and using and reducing

the total number of connector to two instead of four. The fitting of the connecter

required widening the original drills, this was done in Afeka's workshop. The

connectors were then glued as well with both layers of super glue adhesive and

epoxy cement.

The integration of the model with the flow system was first seemed to be a

major issue; since the system is currently being used as a medical lab every year, a

new system must be built to support the model. An elegant solution was brought up

to disconnect the tubing in the system at a strategic location and insert leak-proof

connectors [Figure 8.24] that will lead water through the model. This quick fix

prevents any addition costs while maintain the project fully function without affecting

the medical lab.

48

Page 49: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

14.5 Direction for Use (DFU)1. Overview

The Dynamic Simulator Model was developed and designed to simulate a flow within blood vessels of various types. The model was made compatible with the ultrasound (US) device in order to minimize sonic artifact that might occur.

2. Equipmenta. Flow system

The flow system is compiled from an A/D card, pump power supply, pump, fluid container and a Venturi flow sensor. The A/D converts the digital signal from the PC to the pump via power supply. The Venturi flow sensor send a signal of the flow through the A/D to the PC.

b. Application model The model allows a compatible window to the vessel within it for an US transducer

c. GUI Allows the user to control the flow properties that will be sent to the pump.

49

Page 50: ספר פרויקט - סימולטור לימודי דינמי להערכת זרימה בחבל הטבור באמצעות אולטרה סאונד דופלר - אופיר אגרנט

d. GE's Logiq C5 Premium US device

3. MethodIf the application model is currently connected to the system, start from step C.

a. Empty the flow system b. Replace the tube on the flow system and connect the application model

instead.c. In the application model, connect the blood vessel. Make sure it is

tightly connected, soft tube might need to be secured with cuffs.d. Place the model at the correct position. After this step the model will be

too heavy to be moved around.e. Fill the container with water all the up to the drainage. (it is

recommended to place a bottle at the end of the drainage to collect excess water)

f. Place the lid on top. Air bubble might be trapped underneath the latex, apply mild pressure with your hand to remove it. Note that some water can be extracted from the drainage.

g. Make sure the 'Current' knob on the pump controller is on 0 (turn counter-clockwise all the way).

h. Make sure the source switch is set to 'INT'.i. Turn the pump controller ON.j. Slowly increase the controller current to remove air from the system.

When all air is removed, switch the current back to 0.k. Open the GUI.l. Switch the source on the pump controller to 'EXT'. The pump is now

being controlled by the GUI.m. Turn the US device ONn. Select the appropriate probe and preset settings using the 'PROBE"

button.o. Apply small amount of water on the model latex and place the US

transducer.

50