11
Supporting Information Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells Zonghao Liu a,b,† , Aili Zhu a,† , Fensha Cai a , LeiMing Tao a , Yinhua Zhou a , Zhixin Zhao a, *, Qi Chen c , Yi-Bing Cheng a,d , Huanping Zhou b, * a Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China b Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China c Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China d Department of Materials Engineering, Monash University, Victoria 3800, Australia These authors contributed equally to this work. * Corresponding author: Z. Zhao ([email protected]); H. Zhou ([email protected]). Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

$ 7KLV Supporting Information - Royal Society of Chemistryb Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Supporting Information

    Nickel oxide nanoparticles for efficient hole transport in p-i-n and

    n-i-p perovskite solar cells

    Zonghao Liu a,b,†, Aili Zhu a,†, Fensha Cai a, LeiMing Tao a, Yinhua Zhou a, Zhixin

    Zhao a,*, Qi Chen c, Yi-Bing Cheng a,d, Huanping Zhou b,*

    a Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic

    Information, Huazhong University of Science and Technology, Wuhan, Hubei

    430074, P.R. China

    b Department of Materials Science and Engineering, College of Engineering, Peking

    University, Beijing 100871, P. R. China

    c Department of Materials Science and Engineering, Beijing Institute of Technology,

    Beijing 100081, P. R. China

    d Department of Materials Engineering, Monash University, Victoria 3800, Australia

    † These authors contributed equally to this work.

    * Corresponding author:

    Z. Zhao ([email protected]);

    H. Zhou ([email protected]).

    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2017

    mailto:[email protected]

  • Figure S1 Photographs of the contact angle for the pristine NiOx and NiOx with 5 min

    UVO treatment.

  • 290 288 286 284 282

    exp. data background

    fitting total CC CO OC=O

    Binding Energy (eV)

    Inte

    nsity

    (a.u

    .)

    1200 1000 800 600 400 200

    C1s

    O1s

    Ni2pIn

    tens

    ity (a

    .u.)

    Binding Energy (eV)

    NiOx

    885 880 875 870 865 860 855 850

    exp. data backgroundfitting total Ni 2p1/2 Ni 2p2/3 (sat.) Ni 2p1/2 (sat.)

    Ni2+ Ni3+ Ni3+

    Binding Energy (eV)

    Inte

    nsity

    (a.u

    .)

    536 534 532 530 528

    exp. data background

    fitting total O-Ni/C-O-Ni

    O=C/Ni-O OH

    Binding Energy (eV)

    Inte

    nsity

    (a.u

    .)

    885 880 875 870 865 860 855 850

    exp. data backgroundfitting total Ni 2p1/2 Ni 2p2/3 (sat.) Ni 2p1/2 (sat.)

    Ni2+ Ni3+ Ni3+

    Binding Energy (eV)

    Inte

    nsity

    (a.u

    .)

    536 534 532 530 528

    exp. data background

    fitting total O-Ni/C-O-Ni

    O=C/Ni-O OH

    Binding Energy (eV)

    Inte

    nsity

    (a.u

    .)

    290 288 286 284 282

    exp. data background

    fitting total CC CO OC=O

    Binding Energy (eV)

    Inte

    nsity

    (a.u

    .)

    1200 1000 800 600 400 200

    C1s

    O1s

    Ni2p

    Inte

    nsity

    (a.u

    .)

    Binding Energy (eV)

    NiOx-UVO

    a)

    b)

    c)

    d)

    e)

    f)

    g)

    h)

    NiOx

    NiOx -UVO

    NiOx NiOx

    NiOx -UVO NiOx -UVO

    Figure S2. XPS spectra of NiOx and NiOx-UVO films. (a-b) survey scan. (c-d) Ni 2p scan. (e-f) O 1s narrow scan. (g-h) C 1s narrow scan.

  • Figure S3 X-ray diffraction patterns of perovskite films upon NiOx, NiOx-UVO and

    PEDOT:PSS substrate, respectively.

  • 4.0 4.5 5.0 5.5 6.00

    5

    10

    15

    ITO/NiOx-UVO E = 5.35 eV

    NiOx NiOx-UVO

    Coun

    ts

    Energy (eV)

    ITO/NiOx E = 5.24 eV

    Figure S4 Work function of ITO/NiOx and ITO/NiOx-UVO samples measured with

    UPS.

  • 0 100 200 300 4000

    5

    10

    15

    20

    Curr

    ent d

    ensi

    ty (m

    A/cm

    2 )

    Time (s)

    NiOx NiOx-UVO

    8 10 12 14 160

    2

    4

    6

    8

    10

    Coun

    ts

    PCE (%)

    NiOx NiOx-UVO

    b)a)

    Figure S5 a) Power conversion efficiency distribution for 16 devices measured under

    standard one sun AM 1.5G simulated solar irradiation. b) Stabilized output

    measurements: current density as a function of time for the NiOx based device (0.82

    V) and NiOx-UVO based device (0.87 V) held at a forward bias of maximum output

    power point.

  • 0.0 0.2 0.4 0.6 0.8 1.0 1.2-5

    0

    5

    10

    15

    20

    25

    Curr

    ent d

    ensi

    ty (m

    A/cm

    2 )

    Voltage (V)

    10 mV/s FS 10 mV/s RS 20 mV/s FS 20 mV/s RS 40 mV/s FS 40 mV/s RS

    0.0 0.2 0.4 0.6 0.8 1.0 1.2-5

    0

    5

    10

    15

    20

    Curre

    nt d

    ensi

    ty (m

    A/cm

    2 )

    Voltage (V)

    10 mV/s FS 10 mV/s RS 20 mV/s FS 20 mV/s RS 40 mV/s FS 40 mV/s RS

    a) b)

    0.0 0.2 0.4 0.6 0.8 1.0-5

    0

    5

    10

    15

    20

    Cur

    rent

    den

    sity

    (mA

    /cm

    2 )

    Voltage (V)

    10 m V/s FS 10 m V/s RS 20 m V/s FS 20 m V/s RS 40 m V/s FS 40 m V/s RS

    c)

    NiOx NiOx-UVO

    PEDOT:PSS

    Figure S6 J-V curve of NiOx (a), NiOx-UVO (b) and PEDOT:PSS (c) based device

    measured under different directions (forward scan, FS, from -0.2 V to 1.2 V, reverse

    scan, RS, from 1.2 V to -0.2 V) and different scan rate (10, 20, 40 mV s-1,

    respectively).

  • Table S1 Device performance of the NiOx, NiOx-UVO and PEDOT:PSS devices

    measured under simulated AM 1.5 (100 mW cm-2) conditions with under different

    directions (forward scan, FS, from -0.2 V to 1.2 V, reverse scan, RS, from 1.2 V to -

    0.2 V) and different scan rate (10, 20, 40 mV s-1, respectively).

    Device scan

    direction

    scan rate

    (mV s-1)

    Voc

    (V)

    Jsc (mA

    cm-2)

    FF

    (%)

    PCE

    (%)

    FS 10 1.03 20.58 74.7 15.89

    RS 10 1.03 20.66 74.2 15.90

    FS 20 1.04 21.41 72.3 16.03

    RS 20 1.04 20.87 73.6 16.04

    FS 40 1.04 21.26 71.4 15.82

    NiOx-UVO

    RS 40 1.04 21.08 73.6 16.20

    FS 10 1.04 16.31 66.1 11.30

    RS 10 1.04 16.73 68.4 12.00

    FS 20 1.04 16.56 66.3 11.41

    RS 20 1.04 16.83 69.0 12.06

    FS 40 1.04 16.89 66.5 11.62

    NiOx

    RS 40 1.04 16.89 69.6 12.18

  • FS 10 0.948 17.38 74.14 12.22

    RS 10 0.938 17.26 75.37 12.20

    FS 20 0.936 17.55 74.61 12.26

    PEDOT:PSS RS 20 0.936 17.33 74.91 12.16

    FS 40 0.916 17.59 76.77 12.37

    RS 40 0.916 17.45 75.64 12.10

  • 50 100 150 2000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    PC

    E

    Time (h)

    spiro-OMeTAD NiOx without NiOx

    Figure S7 The efficiency of unencapsulated devices stored in ambient air with the

    humidity of 45−50% under dark.

  • Figure S8 The images of water drop on the surface of perovskite layer and perovskite/NiOx layer 1 min later.