95
第8第 第第第第第第第第第 第第第 第第第第第 西

第 8 章 光通信无源器件技术

Embed Size (px)

DESCRIPTION

第 8 章 光通信无源器件技术. 朱京平 西安交通大学. 第 8 章 光通信无源器件技术. 8.1 光纤连接器 8.2 光衰减器 8.3 光耦合器 8.4 光波分复用器 8.5 光隔离器 8.6 光开关. 光纤通信、光纤传感及其他光纤应用领域不可缺少的光器件, 工作原理:遵守光线理论和电磁波理论, 各项技术指标、计算公式、测试方法等与纤维光学、集成光学息息相关。. 8.1 光纤连接器. 以低损耗的方法把光纤或光缆相互连接起来的器件 方法 采用某种机械或光学结构使两根光纤的纤芯对准 性能 实现光路接续,保证光纤网络 90% 以上光通过。 分类: - PowerPoint PPT Presentation

Citation preview

Page 1: 第 8 章   光通信无源器件技术

第 8 章 光通信无源器件技术

朱京平西安交通大学

Page 2: 第 8 章   光通信无源器件技术

第 8 章 光通信无源器件技术 8.1光纤连接器 8.2光衰减器 8.3光耦合器 8.4光波分复用器 8.5光隔离器 8.6 光开关

• 光纤通信、光纤传感及其他光纤应用领域不可缺少的光器件,• 工作原理:遵守光线理论和电磁波理论,• 各项技术指标、计算公式、测试方法等与纤维光学、集成光学息息相关。

Page 3: 第 8 章   光通信无源器件技术

8.1 光纤连接器 以低损耗的方法把光纤或光缆相互连接起来的器件 方法

采用某种机械或光学结构使两根光纤的纤芯对准 性能

实现光路接续,保证光纤网络 90% 以上光通过。 分类: 永久性:采用熔接法、粘接法或固定连接器来实现 活动性,光纤活动连接器。

指标 插入损耗 ( 简称插损 ) 、回波损耗 ( 简称回损 ) 、以及谱

损耗、背景光耦合、串扰、带宽等等; 对于活动光纤连接器还有重复性和互换性

Page 4: 第 8 章   光通信无源器件技术

8.1.1 光纤连接器主要指标— (1) 插损

光纤中的光信号通过连接器之后的输出光功率与输入光功率比值的分贝数:

其中 IL 为插损, Pi 为输入端光功率, Po 为输出端光功率。• 插损越小越好, ITU 建议应不大于 0.5dB 。• 多模光纤连接器注入的光功率应当经过稳模器以滤

去高次模,使光纤中的模式为稳态分布,以准确衡量连接器插损

)(lg10 dBP

PIL

i

o

Page 5: 第 8 章   光通信无源器件技术

8.1.1 光纤连接器主要指标— (2) 回损 ( 后向反射损耗 )

用以衡量输入光功率中从连接器反射并沿输入通道反向传输的光功率占输入光功率的份额。

会引起激光器相对强度噪声、非线性啁啾及激射飘移等,使通信系统性能恶化。

光纤连接处后向反射光对输入光的比率的分贝数:

其中 RL 为插损, Pi 为输入端光功率, Pr 为后向反射光功率。

• 回损越大越好,以减少反射光对光源和系统的影响。• 典型值初期要求应不小于 25dB ,现要求不小于 38dB 。

)(lg100

dBP

PRL r

Page 6: 第 8 章   光通信无源器件技术

8.1.1 光纤连接器主要指标— (3) 重复性与互换性

• 重复性 光纤(光缆)活动连接器多次插拔后插入损耗的变化情况,

用 dB 表示。

• 互换性 连接器插头与转换器两部分的任意互换或有条件互换的性能

指标,可以考核连接器结构设计和加工工艺的合理性,也是表明连接器实用化的重要标志,用户和厂家一般要求互换连接器的附加损耗应限制在小于 0.2dB 的范围内。

Page 7: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (1) 纤芯错位损耗

由于纤芯横向错位 ( 如图 8-1a) 引起的损耗。 连接损耗的重要原因

Page 8: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (1) 纤芯错位损耗 芯径 2a渐变多模光纤模式稳态分布时错位 d 引起的损耗:

单模光纤传输半径 w 的高斯分布时错位 d 引起的损耗:

其中

令错位损耗为 0.1dB

多模渐变光纤芯径 50m 、 ,算得横向错位 2.46m; 统计值 3m

单模光纤芯径 10m , ,算得横向错位 0.72m; 统计值 0.8m 。

——理论与实践符合良好

])/(35.21log[102

sin24

11

1lg10 212

2

ada

d

a

d

a

dILd

2)/( )/(34.4lg102

wdeIL wdd

aVV

w

62/3

879.2619.165.0

%1

%3.0

Page 9: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (2) 光纤倾斜损耗

由于两光纤轴线的角度倾斜 ( 如图 8-2a)而引起在连接处的光功率损耗。

Page 10: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (2) 光纤倾斜损耗

多模渐变光纤模式稳态分布时倾角引起的倾斜损耗为:

其中 单模光纤传输半径 w 的高斯分布时倾角引起的损耗表示为:

图 8-2(b) 实际光纤倾斜损耗统计平均值,倾角以弧度表示,包层折射率 n2=1.455 ,芯折射率 n1=1.46 , =1.31 m 。

损耗 0.1dB 对应多模渐变型光纤倾角 0.7° ,单模光纤 0.3° 。——实际生产中倾角可控制在 0.1° 内——常可忽略不计

..

21lg10

ANIL

22 )/(1lg10 wnIL

22

210.. nnakAN

Page 11: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (3) 端面间隙损耗 由于光纤连接端面处存在间隙 Z而引起的损耗 多模渐变光纤在模式稳态分布时,端面间隙损耗:

n0 :空气折射率, Z: 端面间隙。 单模光纤端面间隙 Z 引起的损耗:

n2=1.455 , n1=1.46 , =1.31 m , Z=1m时, 芯径 50 m 多模渐变光纤端面间隙损耗为 0.006dB

芯径 10m单模光纤端面间隙损耗为 0.089dB

——只要端面间隙控制在 1m 之内,端面间隙损耗即可忽略不计。这一点目前工艺可保证

0

1

41lg10

an

ZnILZ

122221lg10

wnZILZ

Page 12: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (4)菲涅耳反射损耗 由于光纤两个端面间隙中存在不同的介质,当光进入其中时就会产生多次反射,从而产生的损耗,表示为

n0 :空气折射率, n1: 纤芯折射率。

n1=1.46 , =1.31 m时算得菲涅耳反射损耗为 0.32dB

2

201

01

)1(

)(4lg10

nn

nnIL f

Page 13: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (5) 芯径失配损耗

多模渐变光纤芯径失配损耗:

单模光纤芯径失配损耗:

图 8-3 为实际单模光纤芯径失配损耗曲线

2

21

22

21

2lg10

ww

wwILa

212 )lg(10 aaILa

光从纤芯半径为 a1 的光纤射向纤芯半径为 a2(a2<a1) 的光纤时导致的损耗

图 8-3单模光纤芯径失配损耗曲线

212 )lg(10 aaILa

Page 14: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (6) 数值孔径失配损耗

光纤数值孔径失配损耗:2

12 )../..lg(10 ANANILNA

当光从数值孔径为 N.A.1 的光纤射向数值孔径为 N.A.2 (N.A.2< N.A.1) 的光纤时导致的损耗

图 8-4 单模光纤数值孔径失配损耗曲线

Page 15: 第 8 章   光通信无源器件技术

8.1.2 影响插入损耗的各种因素 (7) 其他损耗

• 除了上述 6 种因素外,还有• 光纤端面的不光滑• 光纤端面不平整• 光纤端面与轴线不垂直等都会产生耦合损耗。

• 这种种因素不仅影响光纤插入损耗,而且影响连接器的重复性和互换性,因而在连接器设计和制作时必须针对以上各种因素进行优化设计并提高加工精度,以期连接损耗最小,并且同时提高器件的重复性和互换性指标

Page 16: 第 8 章   光通信无源器件技术

8.1.3 改进回波损耗的方法

球面接触 (PC) 将装有光纤的插针体端面加工成曲率半径 25~60mm 的球面,两插针接触时纤芯间隙接近于 0 ,达到“物理接触”,则端面间隙损耗和菲涅耳损耗将为 0 ,从而后向反射光大大减小。

——可使回波损耗达到 50dB 以上

斜球面接触 (APC) 将插针体端面先加工成 8左右倾角,再抛磨成斜球面,连接时插针体按照预定方位对准

——除了具有 PC优点,还可将微弱后向反射光旁路,提高改进回损

——可使回波损耗 >60dB 。——要求保证连接时插针体严格按照预定方位对准。

出发点:光通信系统中需回波损耗 >40dB,甚至 >60dB手段:光纤端面形状改变,或镀增透膜 ( 减小菲涅耳损耗 )

Page 17: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器 (俗称活接头 ) (1) 基础

用于连接两根光纤或光缆形成连续光路的可重复使用的无源器件

应用:光纤传输线路、光纤配线架和光纤测试仪器仪表中

功能:连接光纤与光纤、光纤与有源器件、光纤与其他无源器件、光纤与系统和仪表等,

目前使用数量最多的光无源器件基本结构含: 对中:可以采用套管、双锥、 V 型槽、透镜耦合等结构 插针:可以是微孔、三棒、多层等结构, 端面:有平面、球面、斜面等结构。

Page 18: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器 (2) 类型—— 根据功能分

连接器插头 (Plug Connector) :实现光纤在转换器或变换器间插拔

跳线 (Jumper) :将一根光纤的两头都装上插头就形成跳线

转换器 (Adaptor) :将光纤插头连在一起 变换器 (Converter) :转变光纤插头类型裸光纤转接器 (Bare Fiber Adaptor) 。 ——可以单独使用,也可结合为组件使用。 ——我国一套光纤活动连接器一般包括两个连接器插头和一个转换器。

Page 19: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 2 )类型——根据插针 + 对中类型分

1. 套管结构 两个插针和一个套筒组成。插针为一带有微孔的精密圆柱体,将光纤插入微孔后用胶固定并加工形成插针体。套筒是一种加工精密的套管,有开口和不开口两种,开口套筒使用最普遍。

对准时,以插针的外圆柱面为基准面,插针插入套筒并与其实现紧配合,以保证两根光纤精密对准。

连接器发展主流。设计合理、能通过加工达到要求精度,量产容易,为 FC 、 SC 、 ST 、 D4 等型号连接器的基本结构

Page 20: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 2 )类型——根据插针 + 对中类型分

2. 双锥结构 插针外端面加工成圆锥面,基座内孔也加工成双圆锥面。

两个插针插入时利用锥面定位进行对接。 加工精度要求极高,插针和基座常采用聚合物模压成型,

内外锥面的结合不仅保证纤芯对中,而且保证两光纤端面间距恰好符合要求。

AT&T 的专利技术,由其创立和使用。

Page 21: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 2 )类型——根据插针 + 对中类型分

3. V 型槽结构 将两个插针放入精密设计的 V 型槽中,再用盖板将插针压紧,使纤芯达到对准。

荷兰飞利浦的专利技术, 单纤连接时一般不被采用,常用于单纤 / 多纤与平板波导连接或多纤之间互相连接。

Page 22: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 2 )类型——根据插针 + 对中类型分

4. 球面定心结构 由装有精密钢球的基座和装有圆锥面的插针组成。钢球开有一内径比插针外径大的通孔,当两插针插入基座时,球面与锥面切合使纤芯对准并使纤芯间距符合要求

结构设计巧妙,但结构复杂,未被广泛采用。

Page 23: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 2 )类型——根据插针 + 对中类型分

5. 透镜耦合结构 通过球透镜或自聚焦透镜来实现光纤的对准。透镜将一

根光纤的出射光变成平行光后进入另一透镜聚焦并耦合入第二根光纤。

可以降低对机械加工的精度要求,但结构复杂、体积大、调整元件多、损耗大,在短距离便捷通信中采用 。

球透镜耦合 自聚焦透镜耦合

Page 24: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 2 )类型——根据插针 + 对中类型分

以上五种基本结构的插针体(插针 + 对中)再加上若干外部零件就组成连接器插头,用来实现光纤在转换器或变换器之间完成插拔功能,其机械机构必须保证使光纤不受外界损害。

Page 25: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 3 )跳线——结构与功能

将一根光纤的两头都装上插头就形成跳线。 可以是单芯的也可以是多芯的 两个插头的型号可以相同也可以不同。 最常用的光连接器功能元件,用于终端设备和光缆线路及各光无源器件间互连

Page 26: 第 8 章   光通信无源器件技术

8.1.4 光纤活动连接器( 3 )跳线——选择参数

插头型号——跳线两头的型号可以相同也可以不同光纤型号——如:单模、多模、色散位移、保偏等光纤芯径——如: 62.5m 、 50m 、 9m 、 8m 、 4m光纤芯数——如:单芯、双芯、四芯等光缆类型——如:塑料光纤、涂覆光纤、带状光缆等光缆外径——如: 3.5mm 、 3mm 、 2.5mm 、 2mm 、 0.9m

m 等光缆长度——如: 0.5m 、 1m 等插头数 ——如:一头装单插头、两头各装单插头、两头各装双插头等插入损耗——如: <0.5dB 、 <0.3dB 等回波损耗——如: >40dB 、 >50dB 、 >60dB 等插针材料——如:陶瓷、玻璃、不锈钢、塑料等套筒材料——如:磷青铜、铍青铜、陶瓷等。插针端面形状——如:平面、球面、斜球面

Page 27: 第 8 章   光通信无源器件技术

8.1.5 光纤固定连接器(固定接头或接线子)

作用: 使一对或几对光纤之间形成永久性连接,要求 要求损耗低、后向反射光小、操作简便、性能稳定。 对互换性、重复性没有要求制作方法:熔接法:应用最广。插损很小,无后向反射光,理想接头V形槽法:多芯连接。插损小,后向反射小,小巧、操作简毛细管法:插损小,一定后向反射光,小巧、操作简,适合野外作业套管法:插损小,一定后向反射光,小巧、操作简便,适合野外作业

这些方法各有优缺点,都能制作出满足工程需要的固定接头 。

Page 28: 第 8 章   光通信无源器件技术

8.1.5 光纤固定连接器——制作方法 (1)

1.熔接法 用加热的办法将光纤熔融接合在一起。 操作得当,熔接机设计合理,则插入损耗很小,无后向反射光——理想接头

eg. 电弧式光纤熔接机

采用电极高压放电使光纤熔融连接。操作方便,熔接质量高 ( 插损均值 <0.1dB) 、接头一致性、稳定性等性能好应用广泛,光纤固定连接必不可少的机具,形成多种型号和规格的产品。由光纤准直与夹紧结构、对准机构、电弧放电机构、控制机构 4 部分组成。电弧放电和光纤对准可通过微机控制实现自动化作业。

图 8-11 电弧式光纤熔接机

熔接方法分 电弧熔接 氢焰熔接 激光熔接

Page 29: 第 8 章   光通信无源器件技术

8.1.5 光纤固定连接器——制作方法 (2)

2. V形槽固定接头

插入损耗很小,有一定的后向反射光,指标虽略低于熔接法。携带方便、操作简单,无需贵重仪表设备。在线路抢修、短距离线路连接、特殊环境光纤连接等现场,特别架空作业和我国县以下地区使用中很受欢迎。典型结构:由合金铝片等制成的芯件和压盖两个元件构成。芯件:先在铝片上加工出对准 V形槽和稍大导引 V形槽,后将铝片相对折叠组成压盖:将铝片弯折成 U字形制成,用于夹紧芯件,固定光纤。

图 8-12 单芯 V形槽固定接头内部结构与封装后形状

Page 30: 第 8 章   光通信无源器件技术

8.1.5 光纤固定连接器——制作方法 (3)

3.毛细管固定接头 一般采用玻璃材料制作。 接续原理与过程• 将两根处理好的光纤从两头穿入毛细管内,利用其精密的内孔使两光纤纤芯对准;• 在两光纤端面之间加入匹配液,消除菲涅耳反射,降低插入损耗,减小后向反射;• 用机械方法使光纤紧固。光纤包层外径与毛细管内径之差控制在 1m 以内。 操作简便,体积很小,插损小、性能较好。

Page 31: 第 8 章   光通信无源器件技术

8.1.5 光纤固定连接器——制作方法 (4)

4.套管式固定接头 结构原理:

与活动连接器完全一致,主要零件也是插针和套筒,

但在材料的选择和外形设计上与活动连接器有很大区别: 插针和套筒可选陶瓷、玻璃、金属和塑料等, 外形设计更多考虑如何将固定接头放置在光缆接头盒中。 插针端面要现场粘接、研磨,端面之间要加注匹配液。

图 8-14 AT&T 公司套管式固定接头

Page 32: 第 8 章   光通信无源器件技术

8.1.5 光纤固定连接器——发展方向

除光纤熔接机外,其他固定连接器发展方向:

多芯化

提高加工精度和研制更好的匹配液

利用 V形槽和毛细管结构实现带状光纤、光波 导阵列、光有源器件阵列

Page 33: 第 8 章   光通信无源器件技术

8.2 光衰减器

可按照用户的要求将光信号能量尽量进行预期衰减的器件 用途: 光通信线路系统的评估、研究及调整、校正。 分类 ( 根据工作原理分 ) :

液晶型光衰减器衰减片型光衰减器

反射膜光衰减器吸收膜光衰减器

直接镀膜型光衰减器

纵向位移型光衰减器横向位移型光衰减器

位移型光衰减器

光衰减器

Page 34: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构和工作原理 (1) 位移型光衰减器 工作原理: 两段光纤进行连接时,纤芯错位、端面间隙都会引起连接器损耗。 反之,将光纤对中精度做适当调整,可以控制连接时的衰减量。

——有意让光纤在对接时发生一定错位,引起光能量损失,达到控制衰减量目的。

分类:(a)横向位移型(b) 轴向位移型

Page 35: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (1) 位移型光衰减器

200

0 exp2

)( wrw

rE

(a) 横向位移型光衰减器采用波动光学的理论推导光纤耦合过程。

理想状态下,无论光纤端面形状如何,单模光纤基模总可近似为高斯函数

该光束经过横向错位 d 传输到第二根光纤的端面时,模场分布变为:

)(1 rE

其中,

即在第二根光纤端面处,相对于第二根光纤纤芯,入射光束的模场分布发生了变化,带来了由于模场失配产生的能量损失。

01 ww

0s

(8-13)

(8-14) ])(exp[

2)( 2

11

1 wrw

rE

0212

001 ])(1[ w

w

dww

Page 36: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (1) 位移型光衰减器

0 0

2

1

2

0

2

0

2

0

2

0

10

2

0

rdrEdrdrEd

rdrEEd

将前述各式代入,得横向位移光能量损耗:

式中,

同样,模式稳态分布情况下多模渐变光纤的耦合损耗:

式中, k=n1/n0 , n0 为两端面间物质折射率, n1 为纤芯折射率, n2 为包层折射率, d 为两光纤间横向位移, a 为纤芯半径,为波长, A0 、 A0’ 为修正因子。

0A0A

设光纤间轴向间隙 z0 可忽略,则横向耦合效率可表示为两模场的交叠积分:

20 )(

0 lg10lg10 wdd eAIL 反

4

2

)1(

16

k

k

反2

0 35.21lg10 adAILd

(a) 横向位移型光衰减器

Page 37: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (1) 位移型光衰减器

图 8-15(b) 为 k=1时的 Ldd曲线图。实际制作中常根据该类曲线图确定所需衰减量对应的横向位移量,并通过一定的机械定位方式、用熔接或粘接法制作成需要的固定衰减器。这类衰减器回波损耗很高 ( 通常大于 60dB) ,目前仍具有较大市场。

k=1时的 Ldd曲线图

(a) 横向位移型光衰减器

Page 38: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (1) 位移型光衰减器20wZ

0B1k m 50 ZILZ 利用光纤端面间隙带来光通量损失的原理制作的光衰减器。

即使 3dB衰减器对应间隙 > 在 0.1mm ,工艺易控制,被很多厂家采用 实现方式:用机械的方式将两根光纤拉开一定距离进行对中 可制作衰减器类型:固定光衰减器和一些小型可变光衰减器。 可看成一个损耗大的光纤连接器,与连接器结构结合可形成转换器式光衰减器和变换器式光衰减器。可与系统中的连接器配套使用。

(b)轴向位移型光衰减器

Page 39: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (1) 位移型光衰减器

22

2

0 )2(

)1(4lg10

反BILZ

, B0: 修正因子, Z: 两光纤端面间的距离。1k m 50

ZILZ 可通过高斯光束失配法求得光纤端面间的轴向间隙 Z 引起的光能量损失。

单模光纤:

(b)轴向位移型光衰减器

20wZ

模斑直径 10微米, k=1

Page 40: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (2)直接镀膜型光衰减器

直接在光纤端面或玻璃基片上镀制金属吸收膜或反射膜来衰减光能量的衰减器。常用的蒸镀金属膜包括: Al 、 Ti 、 Cr 、 W膜等。

如果采用 Al膜,常在上面加镀一层 SiO2 或 MgF2薄膜作为保护膜。

图 8-17 直接镀膜型光衰减器结构示意图

Page 41: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (3)衰减片型光衰减器

将具有吸收特性的衰减片通过机械装置直接固定在光纤端面或准直光路中的衰减器。

可制作固定光衰减器、变光衰减器。 光信号经 1/4节距 GRIN透镜准直、衰减片衰减后,再被第二个 GRIN聚焦

耦合进光纤 使用不同衰减量的衰减片,就可得到相应衰减值的光衰减器。 一般常选用有色玻璃和滤光片作衰减片。 分类

(a)双轮式可变光衰减器(b)平移式光衰减器(c)智能型机械式光衰减器

Page 42: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (3)衰减片型光衰减器

(a)双轮式可变光衰减器:将光衰减单元插入由一对 1/4节距 GRIN透镜和单模光纤构成的光纤准直器间距中分类——根据衰减圆盘上衰减片的不同步进式双轮可变光衰减器:

每个轮上有多个固定衰减量衰减片,轮旋转,二轮衰减片组合,得多档衰减连续可变光衰减器: 将其中一个轮上的衰减片换成一片连续变化的衰减片即可。——连续衰减片:采用真空镀膜法在圆形光学玻璃片上镀制金属吸收膜而制成的扇形渐变滤光片。

图 8-18 双轮式可变光衰减器

Page 43: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (3)衰减片型光衰减器(b) 平移式光衰减器: 将双轮改用全量程连续变化的中性滤光片,垂直光路平移滤光片即可调节衰减量。 全量程连续变化的中性滤光片:光学密度随滤光片平移方向呈线性变化。 连续变化滤光片的透过率:

式中, k 为常数,由滤光片吸收系数 和滤光片的几何尺寸决定; s 为滤光片垂直 于光路的位移量; d0 为滤光片起始处透过率。只要滤光片上吸收膜足够均匀,滤光片位移面足够平整,就具有理想线性度。

图 8-19 平移式可变光衰减器

ksdTp 0

Page 44: 第 8 章   光通信无源器件技术

8.2.1 光衰减器结构与工作原理 (3)衰减片型光衰减器

(c)智能型机械式光衰减器:

通过电路控制电动齿轮带动平移滤光片,再将数据编码盘检

测到的实际衰减量反馈信号反馈到电路中进行修正,从而实现

自动驱动、自动检测和显示光衰减量。

提高了光衰减器衰减精度,同时体小、质轻、使用方便。

Page 45: 第 8 章   光通信无源器件技术

利用液晶的电光效应制作的光衰减器eg.扭转向列 P 型液晶光衰减器 (液晶光轴与 P1夹角 45°) :

光强 Ii、波长的入射光经 GRIN透镜准直后被分束器 P1 分为 o光和 e

光, 进入厚度为 z 的液晶。

液晶元件不加压时, o光 e光同时旋转 90° 后通过 P1 的 P2 出射并由第二个 GRIN透镜耦合进光纤;

液晶两电极加压后,扭转向列小盒使输出光强 其中 随外加电场增强而增大,——随着电场不断增大, Io逐渐变小,耦合进入出纤的信号越小

)/2cos( nzII io

8.2.1 光衰减器结构与工作原理 (4)液晶型光衰减器

oe nnn

图 8-20 液晶型光衰减器工作原理示意图

Page 46: 第 8 章   光通信无源器件技术

8.2.2 光衰减器的性能光通信系统中光衰减器要求:

• 插损低

• 回损高

• 衰减量可调范围大

• 衰减精度高

• 分辨率线性度高

• 分辨率重复性好、

• 环境性能好。

分辨率线性度取决于衰减元件特性和所采用的读数显示方式及机械调整结构

重复性取决于所采用的读数显示方式及机械调整结构。

Page 47: 第 8 章   光通信无源器件技术

8.2.2 光衰减器的性能1.衰减量和插入损耗

固定光衰减器:插损指标要求高质量可变光衰减器插损 <1.0dB ,普通可变光衰减器 <3.0dB 。来源:光纤准直器的插入损耗和衰减单元的透过率精度及耦合工艺。若光纤和 GRIN透镜及两光纤准直器耦合很好,则整个光衰减器插损可大大降低

2.衰减精度

机械式光衰减器:其衰减量的 ±0.1倍。• 衰减量取决于金属蒸发镀膜层的透过率和均匀性。 t 为膜层厚度,呈线性变化——对吸收材料的均匀性应做严格要求。 取决于材料吸收本领,是波长的函数——选择随波长变化小的材料• 机械式光衰减器的读数显示方式及机械调整方式也将影响到衰减精度。

tA 10

3.频谱特性 在计量、定标等场合使用中,需要衰减器在一定的带宽范围内有较高的衰减精度,其衰减谱线具有较好的平坦性。——不作为衰减器常规测试指标,仅在需要时测量。一般情况下,固定光衰减器的频谱损耗在- 30~ 30nm 的范围内不大于 0.5dB 。

Page 48: 第 8 章   光通信无源器件技术

8.2.2 光衰减器的性能4. 回波损耗 指入射到光衰减器中的光能量和衰减器中沿入射光路反射出的光能量之比。 一般由各元件和空气折射率失配造成的反射引起,平面元件引起的回损约 14dB光衰减片是引起回损的一个重要原因。倾斜放置可提高回损。准直器型光衰减器回损主要来源于入射光的准直光路部分:单模光纤端面反射、GRIN透镜前后端面反射

提高回损的方法 表面镀制抗反射膜 采用斜面透镜 将光学衰减元件倾斜于光轴放置 进行折射率匹配——运用范围有限

•连接器不断插拔中折射率匹配材料受到不断摩擦,从而影响光衰减器寿命•可变光衰减器中衰减元件使用时常处于移动状态,不宜填加折射率匹配材料

•不同的斜面倾角有不同的折射率最佳匹配 •未镀膜、倾角 0时,回损 14dB左右;•光纤准直器 GRIN透镜端面镀 0.1%增透膜,衰减元件倾角 8时,回损可 >60dB

wn10 / 021

0 Anw 0

Page 49: 第 8 章   光通信无源器件技术

8.3 光耦合器

使传输中的光信号在特殊结构耦合区发生耦合并进行再分配。 应用:早期用于从传输干路取出一定的功率进行监控等。 随着光纤通信、光纤用户网、光纤 CATV 、无源光网络(PON) 、光纤传感技术等领域的迅猛发展,应用越来越广,已形成多功能、多用途的产品系列

除具有一般光无源器件特性参数外,还另有特定含义参数。

OUTiP INP

)(lg10 dBP

PIL

IN

OUTii

Page 50: 第 8 章   光通信无源器件技术

8.3 光耦合器——分类 从功能分

光功率分配器 (Splitter) 光波长分配(合 / 分波)耦合器( WDM coupler )

从端口形式上划分 X形( 2×2 )耦合器 Y形( 1×2 )耦合器 星形( N×N , N>2 )耦合器、 树形( 1×N , N>2 )耦合器等;

从工作带宽的角度划分 单工作窗口的窄带耦合器( Standard Coupler ) 单工作窗口的宽带耦合器( Wave Length Flattened Coupler ,简称 WF

C ) 双窗口的宽带耦合器( Wavelength Independent Coupler ,简称 WIC );

从传导光模式差异分 多模耦合器 单模耦合器之分;

从结构上分 分立光学元件组合型 全光纤型 平面波导型

Page 51: 第 8 章   光通信无源器件技术

8.3.1 光耦合器特性参数

反映器件制作过程带来的固有损耗定义:所有输出端口的光功率总和相对于全部输入光功率以分贝表示的减小值:

3. 分光比( Coupling Ratio ) 定义:耦合器各输出端口的输出功率相对输出总功率的百分比

%100 OUTi

OUTi

P

PCR

1. 插入损耗 (Insertion Loss)

反映各输出端口的输出功率状况——与分光比有关,不能反映器件制作质量定义:以分贝表示的第 i个输出端口的光功率 POUTi 相对全部输入光功率 PIN 的减少值

2. 附加损耗( Excess Loss )

)(lg10 dBP

PIL

IN

OUTii

)(lg10 dBP

PEL

IN

OUTi

%100 OUTi

OUTi

P

PCR

Page 52: 第 8 章   光通信无源器件技术

8.3.1 光耦合器特性参数4. 方向性( Directivity )

光耦合器所特有的衡量器件定向传输特性的参数。以标准 X形耦合器为例定义:耦合器正常工作时输入侧非注光端输出光功率与全部注入光功率比值的分贝数

其中, PIN1 为注入光功率, PIN2代表输入侧非注光端的输出光功率。

5.均匀性( Uniformity )用来衡量均分型光耦合器“不均匀程度”的参数。定义:在器件的工作带宽范围内各输出端口输出光功率的最大变化量:

6.偏振相关损耗( Polarization Dependent Loss )衡量器件性能对传输光信号偏振态敏感程度的参数,俗称偏振灵敏度。定义:当传输光信号的偏振态发生 360o 变化时,器件各输出端光功率的最大变化量:

1

2lg10IN

IN

P

PDL

)max(

)min(lg10

OUTi

OUTi

P

PFL

)max(

)min(lg10

OUTi

OUTii P

PPDL

Page 53: 第 8 章   光通信无源器件技术

8.3.1 光耦合器特性参数7.隔离度( Isolation )

反映WDM 器件对不同波长信号分离能力的参数定义:指光纤耦合器某一光路对其他光路中光信号的隔离能力

式中 Pt 是某一光路输出端测到的其他光路信号的功率值。• 隔离度高则串扰( crosstalk )小。• 隔离度对于分波耦合器意义更为重大,要求也更高 (>40dB) ;• 一般合波耦合器对隔离度要求不苛刻, 20dB左右不带来实际应用明显不利影响。

in

t

P

PI lg10

Page 54: 第 8 章   光通信无源器件技术

8.3.2 熔融拉锥 (FBT, Fiber biconical taper) 型全光纤耦合器 将两根或两根以上除去涂覆层的光纤以一定的方式靠拢,在高温加热下

熔融,同时向两侧拉伸,最终形成双锥体形式的特殊波导结构,实现传输光功率耦合的一种方法。

可用计算机较精确控制各过程参量,并随时监控光纤输出端光功率变化 附加损耗极低 (已可低于 0.05dB) 、方向性好 ( 一般超过 60dB) 、环境

稳定性好 ( 工作范围- 40℃~ 85 )℃ 、控制方法简单且灵活 ( 一机多用 ) 、制作成本低廉、适于批量生产

图 8-21 电弧式光纤熔接机

Page 55: 第 8 章   光通信无源器件技术

8.3.2 熔融拉锥 (FBT, Fiber biconical taper) 型全光纤耦合器

在单模光纤中,传导模是两个正交基模 (HE11) 归一化频率 V 中除了纤芯直径 2a 以外的其它参数都为常数。当传导模进入熔锥区时,随着纤芯不断变细, V 值不断减小,模场直径越来越比纤芯直径大,于是越来越多的光模传输到光纤包层中 : 熔锥区,由于两光纤包层合并在一起,纤芯足够逼近,光从一根纤芯耦合到另一纤芯 逐渐离开拉锥区时,随着纤芯的逐渐变粗, V 值重新增大,光模以特定的比例重新被限制在两光纤纤芯中,实现了功率的再分配

8-22 熔融拉锥型单模光纤耦合器工作原理

Page 56: 第 8 章   光通信无源器件技术

8.3.2 熔融拉锥 (FBT, Fiber biconical taper) 型全光纤耦合器 多模光纤中,当传导模(模式数越高,离光轴越远)进入多模光纤耦合

器熔锥区时,纤芯逐渐变细,导致 V 值减小,纤芯中束缚的模式数减小,较高阶的模进入包层中,形成包层模;

在熔锥区中,两光纤的包层合并,所以当输出端纤芯又逐渐变粗时,“耦合臂”的纤芯将可以一定比例“捕获”这些较高阶的模式,获得耦合光功率。而“直通臂”纤芯中传输的较低阶的模式只能继续由“直通臂”输出,不参与耦合过程。

两输出端的传导模一般不同,器件性能对传输光信号的模式比较敏感。 对传统熔融拉锥工艺改进,使多模信号在熔锥区实现模式混合,各阶模

式均参与耦合过程,输出端的模式一致,从而消除器件的模式敏感性

8-23 熔融拉锥型多模光纤耦合器工作原理

Page 57: 第 8 章   光通信无源器件技术

8.3.3 波导型光耦合器 指利用平面介质光波导工艺制作的一类光耦合器件, 制作:在铌酸锂 (LiNbO3) 等衬底材料上,以薄膜沉积、光刻、扩散等

工艺形成所需的波导结构制成芯片 芯片与单模光纤耦合有端面直接耦合和通过迅衰场表面耦合等方法。 优点

体积小、重量轻、易于集成、机械及环境稳定性好、耦合分光比易于精确控制、易于制成小型化的宽带耦合器件

顺应光纤通信等领域未来发展趋势,为主流发展方向 问题

技术欠完善,工艺设备昂贵,母板成本高,不适于批量生产。 目前利用平面波导技术已成功地研制出包括(树形)分路器、星型耦合

器、波分复用器、宽带耦合器等在内的多种无源光耦合器件。这类器件常以波导的特殊结构作为分类的依据。

以分路器为例介绍

Page 58: 第 8 章   光通信无源器件技术

8.3.3 波导型光耦合器1.单模波导型 对单模光信号进行功率分配的器件,由于基本结构的不同可分为分支波导、方向耦合器和间隙渐变的方向耦合器等种类。 (a) 分支波导型光耦合器结构与光的分布耦合无关,带宽仅取决于模色散限制,极适合制作宽带分路器, 单窗口带宽可达 100nm 。目前市场上的波导型分路器多采用这种结构。制作技术关键在于抑制分支点产生二阶横模及确定最佳的分支角。前者要求在分支点前加合适的过渡波导,后者则要兼顾最小分支角和分支点处散射损耗随分支角增大而增加。

(a) 分支波导形状 (b) 两种波导型耦合器 图 8-25 波导型分支波导耦合器

Page 59: 第 8 章   光通信无源器件技术

功率分路器的另一种重要的结构,也是制作星型耦合器的基础器件• 由两条单模波导构成的方向耦合器• 把交连部分做成能够传输两个模的波导耦合器• 以三条波导为基础形成的方向耦合器。

分光比通过耦合长度来调整。

8.3.3 波导型光耦合器

图 8-26 方向耦合器

(b) 方向耦合器

Page 60: 第 8 章   光通信无源器件技术

8.3.3 波导型光耦合器

2. 多模波导型

在局域网中,目前较多采用的是多模耦合器。多模波导往往激励出多种不同的模式,在输出端口通常有不同的分配特性。 为获得均匀的输出信号,必须在波导结构中实现模式混合。实际中,通过设计合适的耦合区长度,使各种模式因衍射而展宽,在侧壁上往返反射,直至横向的光强分布达到相同,从而实现光功率在各输出端口的均匀分配。

Page 61: 第 8 章   光通信无源器件技术

8.4 光波分复用器 对光波波长进行分离与合成的光无源器件,其一个端口作为器件的输出

/ 输入端, N个端口作为器件的输入 / 输出端 系统容量升级 制作单纤双向传输系统 接入网的图像传送 对光纤 / 光缆进行全网监控并确定线路中光纤接点 监控随着时间 /环境的变化引起光纤光缆的损耗变化情况 确定光纤故障断点的位置、在全光网络中实现波长复用及全光化光波系统。

发展: 稀疏波分复用( CWDM ,主要是指 1310nm 与 1550nm 的复用 ) 4 信道以上的密集波分复用( DWDM ) 成百信道的超密集波分复用( UDWDM )

图 8-28 WDM 复用器与解复用器示意图

Page 62: 第 8 章   光通信无源器件技术

8.4.1 光波分复用器特性 解复用器

注入到入射端 (单端口 ) 的各种光波信号分别按波长传输到对应出射端 不同工作波长其输出端口不同,以光信号波长为函数的解复用器的光学特性,

可以用输入端到 N个输出端的各信道的波长——插入损耗关系曲线来表达。 给定工作波长的光信号从输入单端口传输到对应的输出端口时器件具有最低

的插入损耗,而其它输出端口对该输入光信号具有理想的隔离。 复用器

以光信号波长为函数的复用器的光学特性可以用对于给定的输入端口到输出端的插入损耗——波长关系曲线表示。

以不同端口作为输入端口,其插入损耗最小值分布在端口所对应的中心波长附近,而其它输入端口对该输入光则有理想的隔离。

图 8-29 WDM解复用器波长—插损关系曲线 图 8-30 WDM 复用器波长—插损关系曲线

Page 63: 第 8 章   光通信无源器件技术

8.4.1 光波分复用器特性

1. 中心波长(或通带) 1 、 2 、……、 n

由设计、制造者根据相应国际、国家标准或实际应用要求来选定。ITU-T规定 DWDM 在 1550nm区域以 1552.52nm 为标准波长,其它复用波长与标准波长间隔 100G ( 0.8nm )或其整数倍。

nmn 8.02. 中心波长工作范围 Δλ1 、 Δλ2 、……、 n

指每一工作通道允许的中心波长变化范围,常以平均信道间隔的 10% 表示。限定了选用光源( LED 或 LD )的谱线宽度及中心波长位置。

3. 中心波长对应的最小插入损耗 IL1 、 IL2 、……、 ILn

指器件输入端和对应的输出端光功率以分贝表示的减小值。以两波长复用器为例,其最小插损 IL1 、 IL2 分别为:

02

22 lg10

P

PIL

越小越好。对于 DWDM必须给出器件最大一路插入损耗的值,并以小于“ X”dB 表示。

01

11 lg10

P

PIL

02

22 lg10

P

PIL

Page 64: 第 8 章   光通信无源器件技术

8.4.1 光波分复用器特性4. 相邻信道隔离度(最大串扰) I12 、 I23 、……、 I(n-1)n

指器件输出端口的光进入非指定输出端口光能量大小。如两波长复用器隔离度为

在数字通信系统中一般应大于 30dB ,在模拟通信中则应大于 50dB 。DWDM 标准是假定相邻信道间串扰最大,必须给出器件串扰最小值,以“ >XdB” 表示5. 光回波损耗 RL

指光信号从指定端口输入时,由于器件引起反向回传的光能量。现在厂家制作的各类器件回损均可大于 50dB ,完全满足各类系统的要求。

6.偏振相关损耗 PDL

指光信号以不同的偏振状态输入时,对应输出端口插入损耗最大变化量。均值一般应小于 0.1dB ,根据应用要求确定。7最大光功率 Pma

x.指器件允许通过的最大光功率值,以 mW 表示。

除此外,还有环境参数:温度稳定性、温度波长漂移、工作温度 (0C) 、储存温度 (0C)等。

2

112 lg10

P

PI

1

221 lg10

P

PI

Page 65: 第 8 章   光通信无源器件技术

8.4.2 光波分复用器结构与工作原理

根据工作原理 (基于色散、偏振、干涉等物理现象 ) 分类:

Page 66: 第 8 章   光通信无源器件技术

8.4.2 光波分复用器结构与工作原理

以两波长器件为例说明其工作原理。构成:双光纤、 1/4GRIN透镜和多层介质膜。光学膜:中心波长 2 的超窄带滤光片; GRIN透镜:其中光轨迹呈正 /余弦曲线1+2 经入纤进入第一个 GRIN透镜后会聚成近平行光,射到多层介质膜上分成两路 2绝大部分透过,再经第二个自聚焦透镜会聚成一点出射, 1 反射并经第一个 GRIN透镜会聚并出射。

波长复用间隔可小于 1nm 。

1. CWDM 器件(1)干涉膜型光波分复用器 (又称介质膜片法、介质薄膜法、介质薄膜滤波器法 )

图 8-31 两波长干涉膜滤波器型波分复用器

Page 67: 第 8 章   光通信无源器件技术

8.4.2 光波分复用器结构与工作原理(2)嵌入式光纤波分复用器 由厚度为几十m 量级超薄型光学滤波片和光纤嵌入玻璃或金属基体之中而构成。全光纤型,省去准直元件,降低了插损,又能有效抑制回损。易于批量生产,产品一致性好。

图 8-32 嵌入式光纤波分复用器

(3) 耦合器型光波分复用器件 可以是波导型的,也可以是熔融拉锥型的。熔融拉锥型是一种全光纤器件,插入损耗可低于 0.05dB 、工作信道带宽 10nm~20nm 、隔离度大于 18dB 、偏振灵敏度一般小于 0.1dB 。通过串拉法或加滤波片法可以进一步提高其隔离度。 图 8-33 耦合器型光纤波分复用器

Page 68: 第 8 章   光通信无源器件技术

8.4.2 光波分复用器结构与工作原理2.DWDM 器件 一般有 4 波、 8 波、 16 波、 32 波等,工作波长一般在 1550nm区域。市场上最多的是介质膜滤波器 (TFF) 型器件,研究最热、最有前途的是光纤光栅 (FBG) 型、蚀刻衍射光栅 (EDG) 型与阵列波导光栅 (AWG) 型器件。

(1) TFF 型 4 通道 DWDM 器件由 5支 GRIN透镜软线、 4组高稳定带通滤光片和一个通光基体构成。经第一级滤波的光分离出波长 1 ,反射光再进入下一路滤波器,分离出波长

2,如此反复,则可将所有波长都分离出来。实际器件并非简单串联,而是按一定规则组合,以减小最后一路的插入损耗,并使各路能量均衡;入射光以一定的角度入射滤光片,保证了回波损耗大于 50dB 。

图 8-34 TFF 型 DWDM 器件

几十 Gb/s 通信系统首选方案, 技术成熟,低通道数 100GHz 系统 市场占有率 >40% ,不适用于 50GHz 、 32 路以上 DW

DM

Page 69: 第 8 章   光通信无源器件技术

8.4.2 光波分复用器结构与工作原理(2)衍射光栅型 利用光栅对输入光束进行散射的原理工作,每个波长通道对应于空间唯一的衍射角,衍射光被各自的光纤接收。低空间频率光栅(小于 400 线 /mm )型光波分复用器、高空间频率光栅型光波分复用器体全息光栅型光波分复用器。可以制作 100GHzDWDM 。器件通道数仅决定于光纤阵列制作,可 >128 路。

(3) EDG 型衍射光栅集成化产物,将光波导阵列、光栅采用微加工工艺制作在平板波导上形成工作原理 : 同普通光栅型波分复用器,但体积更小巧、紧凑,稳定性更好

图 8-35 光栅型 DWDM 器件 图 8-36 EDG 型 DWDM 器件

Page 70: 第 8 章   光通信无源器件技术

8.4.2 光波分复用器结构与工作原理4. AWG 型 通过标准的集成光学工艺在硅、磷化铟、有机聚合物上制成 由输入波导、输出波导、平板耦合器和波导阵列光栅集成在单一衬底上构成。 输出、输入波导结构及光学参数要尽量与单模光纤匹配,以减小耦合损耗; 输出、输入波导和阵列波导的位置满足罗兰圆规则; 1st 平板耦合器将各种波长的输入信号耦合进阵列波导输入端,实现 1:1 的光学成像。 几百条光程差为 0/2整数倍的波导构成阵列波导,以充分接收平板波导区衍射光功率 ; 产生的波长相关相移使阵列波导呈衍射光栅特性,使输出端按波长顺序输出光波 阵列波导输出光波通过 2nd 平板耦合器传输到相应输出波导端——除具有干涉、光栅法器件的光学特性之外,还具有组合分配功能。

图 8-37 AWG 型 DWDM

Page 71: 第 8 章   光通信无源器件技术

8.4.2 光波分复用器结构与工作原理5. FBG

利用光纤制造中的缺陷,用紫外光照射光纤,令光纤纤芯折射率分布呈周期变化,从而使得入射多波长光在满足布拉格光栅条件的波长上全反射,而其余的波长则透过

图 8-38 FBG 型 DWDM 滤波作用

Page 72: 第 8 章   光通信无源器件技术

8.5 光隔离器

为避免回返光对光源等器件的工作产生影响并对回返光进行抑制光通信系统中光传输会经过许多光学界面,界面反射产生的回返光逆原光路传回光源,使光源工作不稳定,致频率漂移、幅度变化等,影响系统工作。作用: 对正向传输光具有较低插入损耗,而对反向传输光有很大衰减, 可抑制反射对光源的不利影响,确保光通信系统的工作质量,一般置于光源后,为一种非互易器件工作原理:磁光晶体的法拉第效应 。

Page 73: 第 8 章   光通信无源器件技术

8.5.1 光隔离器元件

1. 光纤准直器 (Optical Fiber Collimator)

由 1/4节距 GRIN透镜和单模光纤组成,一般成对使用,中间可插光学元件。 对光纤中传输的高斯光束进行准直,以提高光纤耦合效率。

图 8-39 光纤准直器

2. 法拉第旋转器 (Faraday Rotator)

法拉第效应:线偏振光通过厚 L 的磁光晶体时旋转角为:

VBL材料越长、磁场强度越大,则旋转角越大。旋角与磁场方向有关,与光传播方向无关

Page 74: 第 8 章   光通信无源器件技术

8.5.1 光隔离器元件

3.偏振器 (Polarizator)

双折射晶体: 基于单轴晶体各向异性性能而工作,一般加工成楔形。薄膜起偏分束器 SWP :两种人造各向异性介质周期层迭制成,厚 <400μm ,性能稳定线栅起偏器: 由金属和电介质周期交替层迭构成,厚几十 μm ,但消光比却很高;玻璃偏振器线:在玻璃上掠射溅银并激化制成,偏振输出很高,主透射系数也很高, 接收角大于 60° ,体积小,化学稳定性和热稳定性优良。

4.特种光纤

磁敏光纤:在光纤的制作过程中掺稀土元素 ( 如铽 )

在外磁场作用下有良好透光性和法拉第旋光性,配起偏器可制成光隔离器。扩束光纤 (TEC 光纤 ) :将 SiO2 光纤中掺 GeO2 经热处理后形成。 可使隔离器不再需要自聚焦透镜。

Page 75: 第 8 章   光通信无源器件技术

8.5.2 光隔离器 (Isolator) 的结构与工作原理 根据光隔离器的偏振特性分

偏振相关型:不论入射光是否为偏振光,出射光均为线光 偏振无关型:对输入光偏振态依赖性很小 ( 典型值 <0.2dB) , 利用有角度分离光束原理制成

根据隔离器的内部结构分 块状型:通过分立的棒透镜、偏振器和法拉第旋转器将光纤间接耦合起来 光纤型:将光纤断面作适当抛光、镀膜等实现,其它元件几乎不介入光路 波导型:采用 Ti:LN 经波导工艺制成磁光波导,再与其它元件及光纤耦合

根据其外部结构分 在线型 (尾纤型 + 连结器端口型 )——偏振无关型光隔离器则常作成在线

型 微型化型——偏振相关型光隔离器常作成微型化型

Page 76: 第 8 章   光通信无源器件技术

8.5.2 光隔离器 (Isolator) 的结构与工作原理 以微型空间型偏振相关光隔离器为例了解隔离器工作原理。

包括两个透光方向夹角 45° 的偏振器和一个法拉地旋转器。

入射平行光往返一次时,偏振角变化 90° ,反向光不能通过 P1 ,实现反向隔离。

图 8-40 微型空间型偏振相关光隔离器典型结构

Page 77: 第 8 章   光通信无源器件技术

8.5.3 光隔离器的性能指标光通讯系统对光隔离器性能要求:正向插入损耗低、反向隔离度度高、回波损耗高、器件体积小、环境性能好

1. 插入损耗

来源于偏振器、法拉第旋转器和光纤准直器的插损。偏振相关光隔离器的插损表达式

偏振无关光隔离器插入损耗 ( 在线式典型值 0.3~ 0.4dB) 主要来源:• 法拉第旋转器出射 o 光和 e 光的会聚效果• 偏振器 / 法拉第旋转器消光比• o 光和 e 光所经过的光学界面的反射率• 准直器的耦合效率• 各元件存在的尺寸和装配误差等。'

rP'P

])([coslg10 02 IL

微型化偏振相关光隔离器可达 0.1dB 以下

Page 78: 第 8 章   光通信无源器件技术

8.5.3 光隔离器的性能指标

P

PI rso

lg10

偏振相关光隔离器

3. 回波损耗 指正向入射到隔离器中的光功率与沿输入路径返回隔离器输入端口的光功率之比 rP

i

r

P

PRL

lg10

由各元件和空气折射率失配并形成反射引起,主要来源于入射光的准直光路部分。

4.偏振相关损耗 PDL

当输入光偏振态发生变化而其它参数不变时,器件插入损耗的最大变化量衡量器件插入损耗受偏振态影响程度的指标,主要产生在折射率发生突变的界面上。偏振无关隔离器中存在能引起偏振的元件,当输入光信号偏振态不同时会引起 PDL

2. 反向隔离度 当光从隔离器输出端入射时,输入端反向出射光功率与入射光功率的比值

P

PI rso

lg10

])([coslg10 02 soI

i

r

P

PRL

lg10

表征隔离器对反向传输光的衰减能力

Page 79: 第 8 章   光通信无源器件技术

8.5.3 光隔离器的性能指标5. 30dB隔离度带宽

以 30dB 带宽表示的光隔离器能够覆盖的工作波长范围,一般在 -20~ 20nm左右。

6.偏振模色散 PMD

指通过器件的信号光不同偏振态之间的相位延迟。偏振无关光隔离器中双折射晶体产生的两束线偏光以不同相速和群速度传输,形成的色散,称偏振无关隔离器的偏振模色散 PMD ,用双折射晶体中两束线偏振光的光程差 L 表示为:

式中, Lo 表示整个器件中 o 光传播的光程, Le 表示整个器件中 e 光传播的光程。 c

LL

c

LPMD eo

Page 80: 第 8 章   光通信无源器件技术

8.6 光开关 一种具有一个或多个可选择的传输端口、可对光传输线路或

集成光路中的光信号进行相互转换或逻辑操作的器件, 用途:光纤通信系统、光纤网络系统、光纤测量系统或仪器

以及光纤传感系统。 根据端口数量不同可分为

1×1 (即通断开关) 1×2

1×N

2×2

4×4

N×M

Page 81: 第 8 章   光通信无源器件技术

8.6 光开关分类根据工作原理分 机械式:靠光纤或光学元件移动使光路发生改变,

优点:插入损耗较低 ( 一般不大于 2dB) 、隔离度高 ( 一般大于 45dB) 、不受偏振和波长的影响;

不足:开关时间较长 ( 一般为毫秒数量级 ) ,有的还存在回跳抖动、重复性较差

MEMS 式:利用 MEMS 技术制作的微型化的自由空间光开关 优点:结构小巧、开关时间较短、隔离度较高, 不足:各通道一致性差、控制困难。

集成光波导式 依靠光电、磁光、声光及热光效应来改变波导折射率,使光路发生改变 优点:开关时间短 (达到毫微秒数量级甚至更低 ) ,体积小,便于光集成或

光电集成; 不足:插损大,隔离度低 (只有 20dB左右 ) 。

Page 82: 第 8 章   光通信无源器件技术

8.6.1 光开关的特性参数 1. 插入损耗

输入和输出端口之间以分贝表示光功率的减少:

插损与开关状态有关。

OUTP0P2. 回波损耗(也称为反射损耗或反射率) 从输入端返回的光功率与输入光功率的比值,以分贝表示。

回损也与开关状态有关。 0P rP

3.隔离度i 端口输入时m 端口测得的光功率与相隔离的 n 端口输出光功率的比值,以分贝表示。

0

log10P

PIL OUT

0

log10P

PRL r

im

inmn P

PI lg10,

Page 83: 第 8 章   光通信无源器件技术

8.6.1 光开关的特性参数

imP4.远端串扰 光开关接通端口的输出光功率与串入另一端口的输出光功率的比值。 对于 1×2 光开关,当第一输出端口接通时,远端串扰定义为:

1P 2P

5.近端串扰

其他端口接终端匹配,连接端口与另一个名义隔离端口的光功率之比。对于 1×2 光开关,当端口 1 与匹配终端相连接时,近端串扰定义为:

1P 2P

1

212 log10

P

PFC

1

212 log10

P

PNC

Page 84: 第 8 章   光通信无源器件技术

8.6.1 光开关的特性参数

式中: 为 m 、 n 端口导通时的插损, 为非导通状态的插损。

6.消光比两个端口处于导通和非导通状态的插入损耗之差

7.开关时间 开关端口从某一初始态转为通或断所需的时间,

从在开关上施加或撤去转换能量的时刻起测量。

•机械式光开关还有•回跳时间•寿命•重复性等

•波导型开关还有•偏振相关性•温度稳定性•耐冲击与振动性•环境性能

onmnmnm ILILER

nmIL 0nmIL

Page 85: 第 8 章   光通信无源器件技术

8.6.2 机械式光开关

1. 移动光纤型光开关 光开关的输入、输出端口中一端光纤固定,另一端活动,移动活动光纤,使之与固定光纤中的不同端口相耦合以实现光路切换。 活动光纤的移动方式:机械拨动、电磁吸引或压电陶瓷伸缩效应等。 结构简单、重复性好、插入损耗低,不依靠电驱动时不会产生回跳抖动。

图 8-41 移动光纤型光开关

“V” 型槽定位方式

导杆定位方式

簧片定位式 压电陶瓷式

Page 86: 第 8 章   光通信无源器件技术

8.6.2 机械式光开关2. 移动套管型光开关

输入、输出光纤分别固定在两套管中,其一固定在底座上,另一个可带着光纤相对固定套管移动,实现光路转换。活动套管移动方式:机械外力拨动、电磁铁吸引、双稳态移动。活动套管需通过插针定位法或侧壁定位法以很高的精度定位在两个或多个位置上。

图 8-42 移动套管型光开关

插针定位法 2×2 光开关动作前后状态。动作前, 1 通 3 、 2 通 4 ,动作后 1 通 4 、 2 通 3

Page 87: 第 8 章   光通信无源器件技术

8.6.2 机械式光开关3. 移动透镜型光开关

输入输出端口光纤均固定,依靠微透镜精密的准直而实现输入、输出光路的连接——光从入纤进入输入透镜后变成平行光,装在由微处理器控制的步进电机或其他移动机构上的输入透镜移动,可使得光准直到输出透镜或零位置。

当两透镜成互相准直状态后,光被输出透镜,聚焦进入输出光纤。

微处理器控制步进电机可实现精密的定位活动套管移动方式:机械外力拨动、电磁铁吸引、双稳态移动。

活动套管需通过插针定位法或侧壁定位法以很高的精度定位在两个或多个位置上。

Page 88: 第 8 章   光通信无源器件技术

8.6.2 机械式光开关4. 移动反射镜型光开关 出入纤均固定,依靠旋转球面或平面反射镜,使输入光与不同的输出端口接通。

图 8-43 移动反射镜型光开关

Page 89: 第 8 章   光通信无源器件技术

8.6.2 机械式光开关5. 移动棱镜型光开关

出入纤与其准直光学元件 ( 如自聚焦透镜、平凸棒透镜、球透镜等 ) 相连接,并固定不动,通过移动棱镜而改变输入输出端口间的光路

图 8-44 移动棱镜型光开关

Page 90: 第 8 章   光通信无源器件技术

8.6.2 机械式光开关6. 移动自聚焦透镜型光开关

适用于光纤与光纤的远场耦合,广泛应用于各种光学器件中。除 P/4GRIN透镜可用于准直耦合外, P/2 的自聚焦透镜还可用作移动光束的开关

图 8-45 移动自聚焦透镜型光开关

Page 91: 第 8 章   光通信无源器件技术

8.6.3 MEMS 式光开关利用 MEMS 技术制作的微型化的自由空间光学平台 , 能将光束从入纤移到出纤。

1.微反射镜型 MEMS 光开关通过偏转微反射镜来改变入射光束的方向,实现光开关。

图 8-46 二维微反射镜MEMS 光开关阵列 图 8-47 微铰链与推动杆的详细结构

Page 92: 第 8 章   光通信无源器件技术

8.6.3 MEMS 式光开关2.微透镜型 MEMS 光开关 通过透镜的移动实现光束的移动完成开关动作的。

如图是采用 MEMS 结构控制的聚合物微透镜光开关的结构,它采用 830nm 的垂直腔表面发射激光器 (VCSEL) 和光电二极管阵列分别作为光发射端和接收端,利用移动聚合物微透镜来偏转入射光束,再经过滤波光栅,从而使光束到达目标探测器。

图 8-48 二维微透镜MEMS 光开关阵列

Page 93: 第 8 章   光通信无源器件技术

8.6.4 集成光波导式光开关利用一些材料具有电光、声光、磁光和热光效应,采用波导结构做成。相对于机械式光开关,具有较高的开关速率,一般为 ns级,甚至可达 ps级;采用微电子工艺可以做到高密度集成,可适用于未来集成光交换或光电子交换系统,不足之处 : 插损大,隔离度低。

1. 集成电光波导光开关典型的是马赫 -泽德干涉仪 (MZI) 。由一对平行的条波导以及分布在条波导上面的表面电极构成。当电极外加大小相等、方向相反的偏压后,出现相位失配,由于相位的变化,引起在波导耦合器中的光发生干涉现象,从而实现对光的开关或调制。

图 8-49 电光波导光开关

Page 94: 第 8 章   光通信无源器件技术

8.6.4 集成光波导式光开关2. 集成声光波导光开关

工作原理基于声光衍射效应。换能器加射频电压后产生声表面波,使波导中产生一个相位光栅,导致波导中光强和传播方向都发生变化,从而实现光的开关或调制

图 8-50 声光波导光开关

Page 95: 第 8 章   光通信无源器件技术

8.6.4 集成光波导式光开关3. 集成热光波导光开关

Y 分束器型 双 3dB 定向耦合器型

图 8-51 热光波导光开关

当金属电极通电发热后,导致其下波导折射率发生变化:

t: 温度变化; n0:温度变化前折射率 ; a: 折射率热系数,与材料种类有关。

t 0nn /2 nL

tantntn 0