30
1 1 ) ( 2 1 ) ( 2 ) ( ) ( B B B M B M eq -1 -0.5 0 0.5 1 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0 s 0.1 ms 0.5 ms 1 ms 2 ms 3 ms M/M s µ 0 H (T) 0.04 K 11 GHz 0.001 T/s period: 10 ms Absorption of microwaves Max ~ 5 s -1 W. Wernsdorfer et al , EPL (2003)

Absorption of microwaves Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

  • View
    219

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

1

1

)(21

)(2

)(

)(

B

B

BM

BM

eq

-1

-0.5

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0 s0.1 ms0.5 ms1 ms2 ms3 ms

M/M

s

µ0H (T)

0.04 K11 GHz

0.001 T/s

period: 10 ms

Absorption of microwaves

Max ~ 5 s-1

W. Wernsdorfer et al , EPL (2003)

Page 2: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Gaussian absorption lines

Important broadening by nuclear spins Loss of coherence

R ~ b ~ 30 kHz2~ ~ 0.2 GHz

Rabi oscillations, require larger b.

N = BMax/2 = B2/ ~20

Precession ~ 20 turns

tbBbB

bP 2

1222

22

2

)(2

1sin

)()(

)(

)()(4

2LL Bfb

Page 3: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Photon assisted tunneling in a SMM (Fe8) Absorption of circular polarized microwaves

-10 -5 0 5 10

En

erg

y

quantum number m

²M = +1

tunneling

²M = -1

H = 0

-1 -0.5 0 0.5 1-40

-30

-20

-10

0

En

erg

y (

K)

µ0Hz (T)

²M = ±1

-10

-9

-8

-7

10

9

8

7

Page 4: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Absorption of circular polarized microwaves(115 GHz)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.091

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.119

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.131

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.151

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.167

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.190

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.207

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.237

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.256

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.292

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.320

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.366

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.458

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.568

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.693

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

00.841

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

01

M/M

s

µ0H (T)

0.007 T/s

P/P 0 =

Sorace et al, PRB 2003

Page 5: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Photon induced tunnel probabilityPassisted = P - n±10P±10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

0.001 0.01 0.1

P_EPRB

B

PEP

R

(au)

n = 1n = 0

Ts

0.8

n=0

n=1

Ts= T0 + ћmws /Cs

Sorace et al, PRB (2003)

Page 6: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Environmental effects

Central molecule spinMn12, Fe8

Spin-bathEnvironmental spins

Enhance tunnelingMesoscopic spins

Decoherence

Phonon-bath

Spin-phonons transitionBottleneck (TB>>T1)

Electromagnetic radiation bath

Spin-photons transitions(incoherent)

Free carriersStrong decoherenceRKKY interactions

Kondo, Heavy fermions

Central ionic spin Rare-earths

Strong hyperfine interactions

Coherent dynamicsTowards new spin-qubits

V15

Page 7: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Rare-earths ions

A new direction

Tunneling of the angular momentum J ofHo3+ ions in Y0.998Ho0.002LiF4

Example of a metallic matrix: Ho3+ ions in Y0.999Ho0.001Ru2Si2

Mesocopic nanomagnetism

Resonant microwave absorption : towards spin qubits

Page 8: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

A new direction:

Tunneling of the angular momentum of rare-earths ions

A quasi- infinite number of systems for the study of mesoscopic quantum dynamics:

- different CF and 4f symmetries - different concentrations - insulating, metallic, semi-conducting …

Ho3+ in Y0.998Ho0.002LiF4

Tetragonal symmetry (Ho in S4); (J = L+S = 8; gJ=5/4)

Dipolar interactions ~ mT << levels separation

Page 9: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

-6 -4 -2 0 2 4 6-200

-150

-100

-50

0

50

100

150

-9 -6 -3 0 3 6 9-240

-200

-160

-120

-80

-40b)a) E (K)

<Jz>

E (K)

0H

z (T)

R. Giraud, W. Wernsdorfer, D. Mailly, A. Tkachuk, and B. Barbara, PRL, 87, 057203-1 (2001)

B20 = 0.606 K, B40 = -3.253 mK, B44 =- 42.92 mK, B60 =-8.41mK, B64 =- 817.3mK Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (1978);

N.I. Agladze et al, PRL, 66, 477 (1991)

Barrier short-cuts

Energy barrier ( ~ 10 K)

Strong mixing

Singlet excited state

Doublet ground-state

Large 1 (Orbach

process)

CF levels and energy barrier of Ho3+ in Y0.998Ho0.002LiF4

46

46

44

44

06

06

04

04

02

02 OBOBOBOBOBHCF

Page 10: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Hysteresis loop of Ho3+ ions in YLiF4

-1

-0,5

0

0,5

1

-3 -2 -1 0 1 2 3

1.5K

1.6K

1.9K

2.4K

M/M

S

BL (T)

Comparison with Mn12-ac

dH/dt=0.55 mT/s

-80 -40 0 40 80 120

-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

0H

z (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/ 0

dm

/dH

z (1/

T)

Many steps !

L.Thomas, F. Lionti, R. Ballou, R. Sessoli, R. Giraud, W. Wernsdorfer, D. Mailly, A.Tkachuk,

D. Gatteschi,and B. Barbara, Nature, 1996. and B. Barbara, PRL, 2001

Steps at Bn = 450.n (mT) Steps at Bn = 23.n (mT)

Tunneling of Mn12-ac Molecules Tunneling of Ho3+ ion

… Nuclear spins…

Page 11: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Ising CF Ground-state + Hyperfine Interactions

H = HCF-Z + A{JzIz + (J+ I- + J- I+ )/2}

-80 -40 0 40 80 120

-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

0H

z (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/ 0

dm/d

Hz (

1/T)

-200 -150 -100 -50 0 50 100 150 200

-180,0

-179,5

-179,0

-178,5

I = 7/2

E (

K)

0H

z (mT)

-7/2

7/2

7/2

5/2

3/2

-7/2

Co-Tunneling of electronic and nuclear momenta: Electro-nuclear entanglement

The ground-state doublet 2(2 x 7/2 + 1) = 16 states

-5/2

5/2

gJBHn = n.A/2 A = 38.6 mK

Avoided Level Crossings between |, Iz and |+, Iz’ if I= (Iz -Iz

’ )/2= odd

Page 12: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

-75 -50 -25 0 25 50 75-1.0

-0.5

0.0

0.5

1.0

T = 30 mKv = 0.6 mT/s

HT=190 mT

HT=170 mT

HT=150 mT

HT=130 mT

HT=110 mT

HT=90 mT

HT=70 mT

HT=50 mT

HT=30 mT

HT=10 mT

M/M

S

0H

z (mT)

dB/dt ~ 1 mT/s

Acceleration of quantum dynamicsin a transverse field

…. slow sweeping field: meas >> bott > 1

Near thermodynamical equilibrium at the cryostat temperature…

Page 13: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

-1

-0.5

0

0.5

1

-0.08 -0.04 0 0.04 0.08

0.136 mT/s0.068 mT/s0.034 mT/s0.017 mT/s

M/M

s

µ0H (T)

0.04 K

n=1

n=2

Case of a metallic matrix: Ho3+ ions in Y0.999Ho0.001Ru2Si2

n=0

These steps come from tunneling transitions of J+I of single Ho3+ ions,In a sea of free electrons.

Page 14: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Y0.998Ho0.002LiF4

Ho0.001Y0.999Ru2Si2

-1

-0.5

0

0.5

1

-0.08 -0.04 0 0.04 0.08

0.136 mT/s0.068 mT/s0.034 mT/s0.017 mT/s

M/M

s

µ0H (T)

0.04 K

-80 -60 -40 -20 0 20 40 60 80-1,0

-0,5

0,0

0,5

1,0

-80 -60 -40 -20 0 20 40 60 80

-180,0

-179,5

v = 0.11 mT/s

b)

M/M

S

0H

z (mT)

a)

E (

K)

0H

z (mT)

The resonances fields of Ho3+

ions, in YLiF4 and

YCu2Si2 are the same

Y1-HoRu2Si2 ~ 0.1%

Same resonance

fields

Many body tunneling events

mediated by RKKY interactions ?

Multiparticle Kondo ?Screening ?

(See Stamp and Prokofiev, 1997)

Page 15: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Effect of a transverse field: Step 2 merges with the continuous one

-80 -60 -40 -20 0 20-1.0

-0.5

0.0

0.5

1.0v = 0.14 mT/s

n = 2

n = 1

HT = 0

HT = 10 mT

T = 40 mK

M/M

S

0H

z (mT)

Page 16: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Ising CF Ground-state + Hyperfine Interactions

H = HCF-Z + A{JzIz + (J+ I- + J- I+ )/2}

-80 -40 0 40 80 120

-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

0H

z (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/ 0

dm/d

Hz (

1/T)

-200 -150 -100 -50 0 50 100 150 200

-180,0

-179,5

-179,0

-178,5

I = 7/2

E (

K)

0H

z (mT)

-7/2

7/2

7/2

5/2

3/2

-7/2

Co-Tunneling of electronic and nuclear momenta: Electro-nuclear entanglement

The ground-state doublet 2(2 x 7/2 + 1) = 16 states

-5/2

5/2

gJBHn = n.A/2 A = 38.6 mK

Avoided Level Crossings between |, Iz and |+, Iz’ if I= (Iz -Iz

’ )/2= odd

Page 17: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

-200 -150 -100 -50 0 50 100 150 200

-180,0

-179,5

-179,0

-178,5

I = 7/2

E (

K)

0H

z (mT)

50 mK0.3 T/s

120 160 200 240

0

4

8

-150 -75 0 75 150 225

0

20

40

60

-300 -200 -100 0 100 200 300-1,0

-0,5

0,0

0,5

1,0

-8 -6 -4 -2 0 2 4 6 8 10-180

-120

-60

0

60

120

180

240

n = 6

n = 7n = 8

n = 9

b)

dH/dt<0

n=1

n=0

1/ 0

dm

/dH

z (1/

T)

0H

z (mT)

a)

M/M

S

0H

z (mT)

integer n half integer n

linear fit

0H

n = n x 23 mT

0H

n (

mT

)

n

Giraud et al, PRL 87, 057203 1 (2001)

Additional steps at fields: Hn = (23/2).n (mT)single Ho3+ tunneling being at avoided level crossings at Hn = 23.n (mT)

50 mK 200 mK0.3 T/s

Simultaneous tunneling of Ho3+ pairs (4-bodies entanglement)Two Ho3+ Hamiltonian avoided level crossings at Hn = (23/2).n

Fast measurements: meas ~ bott > 1 >> s

Page 18: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Single-ion level structure En = nE geffBHn/2

Tunneling: gJBHnn’ = (n’-n)A/2

Co-tunneling: gJBHnn’=(n’-n+1/2)A/2

Two-ions Level structureCo-tunnelingBiais tunnelingDiffusive tunneling

-2000 -1000 0 1000 2000

-180.0

-179.5

-179.0

-178.5

-2000 -1000 0 1000 2000

-360

-359

-358

-357

0 100 200 300 400 500

-360.0

-359.6

n=-9b)

a)

n=-8 n=3/2

. . .

. . .

mI=+5/2

mI=+7/2

mI=+5/2

mI=+7/2

I = 7/2E

ner

gy

(K)

Hz (Oe)

87654

32

1

0

En

erg

y (K

)

Hz (Oe)

n = 0

Hbias

n = 2n = 3/2n = 1/2

n = 1

En

erg

y (K

)

Hz (Oe)

Page 19: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Toy model of two coupled effective spins, with gz /gx >> 1

H/J = ijSi

zSjz +

ij(Si

+Sj- + Sj

+Si-)/2 + ij (Si

+Sj+ + Sj

-Si-)

with

= (Jx + Jy)/4J = (Jx - Jy)/4J

This is why dipolar interactions induce co-tunneling

Co-tunnelingDiffusive tunneling

Page 20: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Single-ion level structure En = nE geffBHn/2

Tunneling: gJBHnn’ = (n’-n)A/2

Co-tunneling: gJBHnn’=(n’-n+1/2)A/2

Two-ions Level structureCo-tunnelingBiais tunnelingDiffusive tunneling

-2000 -1000 0 1000 2000

-180.0

-179.5

-179.0

-178.5

-2000 -1000 0 1000 2000

-360

-359

-358

-357

0 100 200 300 400 500

-360.0

-359.6

n=-9b)

a)

n=-8 n=3/2

. . .

. . .

mI=+5/2

mI=+7/2

mI=+5/2

mI=+7/2

I = 7/2E

ner

gy

(K)

Hz (Oe)

87654

32

1

0

En

erg

y (K

)

Hz (Oe)

n = 0

Hbias

n = 2n = 3/2n = 1/2

n = 1

En

erg

y (K

)

Hz (Oe)

Page 21: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Higher temperatures: cross-spin relaxation through excited singlets

R. Giraud et al PRL, 2003 and JMMM (also ICM’2003, Rome).

S. Bertaina, B. Barbara, R. Giraud, B. Malkin, M. Vanyunin, A. Takchuk, PRB submitted.

-Single-ion tunneling (LT: spins-bath and phonons-bath )

- Co-tunneling (LT: spins-bath, HT: phonons-bath )

Page 22: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Extension to N >2 multi-tunneling

gJBHn(N) = nA/2N n-D

Multi-molecule resonant tunneling at gBHn(N) = nD/2N n-D

Case of strong coupling (J>>D): S =S1+S2+…+ SN gBHn(N)=nD …Wrong!

Reason: D decreases when S increases.

Multi-tunneling should fill the space between single spins tunneling

Spin-glass regimeProfile of (Hz/A)

Page 23: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

-200 0 200 400 600 8000

2

4

6

8

10 ' T=1.75 K

LiYF4:Ho (0.11%), 1200 Hz

-200 0 200 400 600 800

0

2

4

T=1.75 K

''

-200 0 200 400 600 8000

2

4

6

8

10

T=2.5 K

-200 0 200 400 600 800

0

2

4

T=2.5 K

-200 0 200 400 600 8000

2

4

6

8

10

T=3 K

-200 0 200 400 600 800

0

2

4

T=3 K

-200 0 200 400 600 8000

2

4

6

8

10

T=3.5 K

Magnetic field (Oe)

-200 0 200 400 600 800

0

2

4

T=3.5 K

Magnetic field (Oe)

Numerical fits (Malkin, Vanyunin et al, PRB submitted)

Page 24: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

Why D decreases when S increases:

Take N spins with anisotropy energies: En= DnSn2

Assume they are coupled with J >> Dn to form a SMM:

The total energy ET =∑DnSn2 = DT ST

2 DT = ∑DnSn2 / (∑Sn)2 << Dn

Dn=D and Sn=S DT = D/N gBHn(N)=n(D/N) n-D, as for Weak C.

1 10 100 1000

Quantum worldClassical world

Mn4

Mn12 Mn84Mn30

Technological applications : Magnetic recording on nm scale Quantum information, Molecular electronic and spintronics,Biomedical applications…

…..

Incredible impact on molecular and supra-molecular chemistry.

Larger and larger molecules DS2

AFTER Mn12-ac…

Co cluster

Assume:

DT

N0

Page 25: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

2,8 3,2 3,6 4,0 4,4 4,8 5,2 5,6 6,0 6,4 6,8 7,2 7,640

60

80

100

120

140

160

180

200

220

240

Magnetic field (kOe)

J

frequency 100 GHz

0,00 0,05 0,10 0,15 0,20 0,25 0,30-250

-225

-200

-175

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

m=0

Ener

gy (G

Hz)

Magnetic field B (T)

m=2

Hyperfine sublevels of Ho3+ ion in LiYF4

Direct check of hyperfine sublevels from EPR In Ho:YLiF4 (Malkin group)

G. Shakurov et al, Appl. Magn. Res. 2005

250 GHz

Page 26: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

0,00 0,05 0,10 0,15 0,20 0,25 0,30-250

-225

-200

-175

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

m=0

Ener

gy (G

Hz)

Magnetic field B (T)

m=2

Hyperfine sublevels of Ho3+ ion in LiYF4

…but too small transition amplitude …

0 200 400 600 800 1000 1200 1400 1600

-4000

-2000

0

2000

4000

dI/d

H (

u.a

.)

Champ magnétique (Oe)

LiYF4 - Ho:0.001%

0 200 400 600 800 1000 1200 1400 1600-3000

-2000

-1000

0

1000

2000

dI/d

H (

u.a

.)

Champ magnétique (Oe)

CaWO4 - Ho:0.05%

RPE continue de Ho3+ (9.5 GHz)

CaWO4 :

Same Structure as YLiF4Almost no nuclear spins

Page 27: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

0,00 0,05 0,10 0,15

210.80

210.55

210.35

210.90

Magnetic field B (T)

210.25

(GHz)

An example of the direct observation of the anticrossing of hyperfine sublevels (m=2)

in the EPR spectra (G. Shakurov, B. Malkin, B.Barbara. Appl. Magn. Res. 2005 )

7

Page 28: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

8

20 22 24 26205,2

205,5

205,8

206,1

206,4

206,7

209,7

210,0

210,3

210,6

210,9

Iz=-3/2, 1/2

w

w

w

Tra

nsi

tion

fre

qu

en

cy (

GH

z)

s

s

s

s

w

Iz=-1/2

68 70 72

Iz=-5/2, -1/2

Iz=-3/2

w

w

w

w

Magnetic field (mT)

s

s

s

s

116 118 120

Iz=-7/2, -3/2

Iz=-5/2

m=0

w

w

w

ws

s

s

s

m=2

The anticrossings detected in the EPR spectra in LiYF4 (0.1% Ho)

Page 29: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

0,00 0,05 0,10 0,15 0,20 0,25 0,30-250

-225

-200

-175

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

m=0

Ener

gy (G

Hz)

Magnetic field B (T)

m=2

Hyperfine sublevels of Ho3+ ion in LiYF4

…but too smal transition amplitude …

0 200 400 600 800 1000 1200 1400 1600

-4000

-2000

0

2000

4000

dI/d

H (

u.a

.)

Champ magnétique (Oe)

LiYF4 - Ho:0.001%

0 200 400 600 800 1000 1200 1400 1600-3000

-2000

-1000

0

1000

2000

dI/d

H (

u.a

.)

Champ magnétique (Oe)

CaWO4 - Ho:0.05%

Continuous EPR on Ho3+ (9.5 GHz)

CaWO4 :

Structure isomorphe à LiYF4Amost no nuclear spins

Page 30: Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)

CONCLUSION

NanoparticlesThe Micro-SQUID technique : unique tool for single particles measurements

(from micron to nanometer scales)

Classical spins dynamics

Molecular magnetsQuantum Tunneling and quantum dynamics of large spins

Effects of environmental degrees of freedom (spin-bath)

Very short coherent time in molecular magnets (in « normal » conditions)

Rare-Earth in insulating and metalic matrixesEvidence for tunneling of the total angular momentum J

Crucial role of hyperfine interactions

Multi-tunneling effects

Coherent quantum dynamics and new type of spin-qubits