21
© Christine Crisp Teach A Level Maths” Teach A Level Maths” Vol. 2: A2 Core Vol. 2: A2 Core Modules Modules 27: Integration by 27: Integration by Substitution Substitution Part 2 Part 2

© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Embed Size (px)

Citation preview

Page 1: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

© Christine Crisp

““Teach A Level Maths”Teach A Level Maths”

Vol. 2: A2 Core Vol. 2: A2 Core ModulesModules

27: Integration by 27: Integration by SubstitutionSubstitution

Part 2 Part 2

Page 2: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

dxxtan

A useful example of integration by substitution is to find

dxx

x

cos

sinWe write dxxtan

Let xu cos xdx

dusin dx

x

du

sin

So, dxx

x

cos

sin

x

du

u

x

sin

sin

duu

1Cu ln

Cx cosln

Page 3: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

Cx 1)(cosln

Using the 3rd law of logs,

Cx

cos

1ln

Cx secln

Cx cosln

Page 4: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

duucos1

u2cos duucos

1

u2sin1

e.g. 1 dx

x 21

1

udu

dxcos duudx cos

ux sinLet

duu

ucos

sin1

12

1sincos 22 uu uu 22 sin1cos

N.B. Instead of defining u as a function of x

we have defined x as a function of u. So,

dx

x 21

1

Can you spot what to do next?

Use the identity:

Page 5: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

duuu

coscos

1

du1

Cu

Cx 1sin

ux sin

dxx 21

1

duuu

coscos

12

So,

dxx 21

1

We need u from the

substitution expression:

xu 1sin

ux sinwhere

Page 6: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2Exercis

e

1. Find dx

x 29

1

ux sin3

using the substitution

2. Show that Cx

dxx

2

tan2

1

4

1 12

ux tan2using the substitution this is an example of the general result

Page 7: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2Solution

s:

udu

dxcos3 duudx cos3

ux sin3Let

dx

x 29

1

duuu

cos3sin99

12

duu

ucos3

)sin1(9

12

duuu

cos3cos9

12

1. dxx 29

1

Page 8: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

duuu

cos3cos3

1

du1

Cu

Cx

3sin 1

ux sin3where

duuu

cos3cos9

12

dxx 29

1

ux

ux sin3

sin3

3sin 1 x

uTo subs. back:

So, dx

x 29

1

Page 9: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

2. Show that Cx

dxx

2

tan2

1

4

1 12

ux tan2using the substitution Solution

:ux tan2

udu

dx 2sec2 duudx 2sec2

duuu

dxx

222

sec2tan44

1

4

1

So,

duuu

22

sec2)tan1(4

1

uu 22 tan1sec Use the identity:

Page 10: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

ux

ux tan2

tan2

duuu

22

sec2)tan1(4

1 duu

u2

2sec2

sec4

12

du2

1

Cu 2

1

Cx

2tan

2

1 1 dx

x 24

1So,

2tan 1 x

u

Page 11: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

Show that x = sin2θ transforms

dsin to dxx

x 221

x = sin2θ 2)(sin

cossind

dx2 Using rule for brackets

dcossin

sin

sin dx

x

xI So 2

11 2

2

dcossindx 2

Page 12: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

dcossin

sin

sin dx

x

xI 2

11 2

2

dcossincos

sinI 22

2

dcossincos

sinI 2

dsinI 22 Proven

221 cossin

Page 13: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

dsinI 22

This can be integrated using cos2 = 1–2sin2

2sin2 = 1–cos2

dcos2–1dsinI 22

22

1sin

Page 14: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

boundaries the change dxx

x find To

4

1

0 1

x = sin2θ So if x= ¼ sin2 = ¼

sin = ½ = /6

So if x= 0 sin2 = 0

sin = 0 =

Page 15: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

22

12

1

6

0

24

1

0

sin dsin dxx

x oS

= /6

6

2

2

1

6sinI

= 0I

4

3

6

I So

4

3

62

3

2

1

6

Page 16: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

Page 17: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied.For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

Page 18: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

e.g. 1 dx

x 21

1

udu

dxcos duudx cos

ux sinLet

duu

ucos

sin1

12

1sincos 22 uu uu 22 sin1cos

duu

ucos

sin1

12 duu

ucos

cos

12

N.B. Instead of defining u

as a function of x we

have defined x as a

function of u.

So,

dx

x 21

1

Use the identity:

Page 19: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

duuu

coscos

1

du1

Cu

Cx 1sin

ux sin

dxx 21

1

duuu

coscos

12

So,

dxx 21

1

We need u from the

substitution expression:

xu 1sin

ux sinwhere

Page 20: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

2. Show that2

tan2

1

4

1 12

xdx

x

ux tan2using the

substitution Solution:

ux tan2

udu

dx 2sec2 duudx 2sec2

duuu

dxx

222

sec2tan44

1

4

1

So,

duuu

22

sec2)tan1(4

1

uu 22 tan1sec Use the identity:

Page 21: © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 Part 2

Integration by Substitution Part 2

duuu

22

sec2)tan1(4

1 duu

u2

2sec2

sec4

12

du2

1

Cu 2

1

Cx

2tan

2

1 1 dx

x 24

1So,

ux

ux tan2

tan2

2tan 1 x

u