71
王 王 王 (Chun-Hsin Wang) 王王王王 王王王王王 Fall 2002 Chap 3 Linear Differential Equations

王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

  • View
    255

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

王 俊 鑫 (Chun-Hsin Wang)

中華大學 資訊工程系

Fall 2002

Chap 3 Linear Differential Equations

Chap 3 Linear Differential Equations

Page 2: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 2

Outline

Second-Order Homogeneous Linear Equations Second-Order Homogeneous Equations with

Constant Coefficients Modeling: Mass-Spring Systems, Electric Circuits Euler-Cauchy Equation Wronskian Second-Order Nonhomogeneous Linear

Equations Higher Order Linear Differential Equations

Page 3: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 3

Outline

線性常微分方程線性

常微分方程二階

常微分方程二階

常微分方程

高階線性常微分方程高階線性常微分方程

二階線性常微分方程二階線性常微分方程

二階線性齊次常微分方程二階線性齊次常微分方程

二階線性非齊次常微分方程

二階線性非齊次常微分方程

常係數二階線性齊次常微分方程

常係數二階線性齊次常微分方程

歐拉 -柯西微分方程歐拉 -柯西微分方程

Page 4: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 4

Second-Order ODE

General Form for Second-Order Linear ODE

Implicit Form

Explicit Form

0),,,( yyyxF

)()()( xryxqyxpy

Page 5: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 5

Second-Order Homogeneous Linear Equations

Second-Order Homogeneous Linear ODE

p(x), q(x): coefficient functions

Example

0)()( yxqyxpy

062)1( 2 yyxyx

Page 6: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 6

Examples of Nonlinear differential equations

0'2)'( 2 yyyyyx

1'' 2 yy

Page 7: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 7

A linear combination of Solutions for homogeneous linear equation

Example:

xx eyey ,

0" yy

xx eey 53

Page 8: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 8

Linear Principle (Superposition Principle)

y is called the linear combination of y1 and y2

If y1 and y2 are the solutions of

y = c1y1+ c2y2 is also a solution(c1, c2 arbitrary constants)

Second-Order Homogeneous Linear Equations

0)()( yxqyxpy

Page 9: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 9

Second-Order Homogeneous Linear Equations

Proof:

0)()()()(

))(())(()(

)()(

22221111

221122112211

2211

yxqyxpycyxqyxpyc

ycycxqycycxpycyc

yxqyxpy

ycycyLet

yccy )(Note 2121 )( yyyy

Page 10: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 10

Does the Linearity Principle hold for nonhomogeneous linear or nonlinear equations ?

Example: A nonhomogeneous linear differential equation

Example: A nonlinear differential equation

)sin1()cos1(

1"

sin1,cos1

xx

yy

xyxy

1

0'"

1,

2

2

x

xyyy

yxy

Page 11: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 11

Initial Value Problem for Second-Order homogeneous linear equations

For second-order homogeneous linear equations,

a general solution will be of the form

, a linear combination of two solutions involving two arbitrary constants c1 and c2

An initial value problem consists two initial conditions.

0)()( yxqyxpy

1000 )(',)( kxykxy

2211 ycycy

Page 12: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 12

Initial Value Problem

Example:

Observation:

Our solution would not have been general enough to satisfy the two initial conditions and solve the problem.

2)0(',4)0(

,0" 21

yy

ececyyy xx

xx leyey 21 ,

Page 13: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 13

A General Solution of an Homogeneous Linear Equation

Definition: A general solution of an equation

on an open interval I is a solution

with y1 and y2 not proportional solutions of the equation on I and c1 ,c2 arbitrary constants.

The y1 and y2 are then called a basis (or fundamental system) of the equation on I

A particular solution of the equation is obtained if we assign specific values to c1 ,c2

0)()( yxqyxpy

2211 ycycy

Page 14: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 14

Linear Independent

Two functions y1(x) and y2(x) are linear independent on an interval I where they are defined if

Example

0,00)()( 212211 kkxykxyk

0"

sin,cos 21

yy

xyxy

Page 15: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 15

How to obtain a Bass if One Solution is Known ?

Method of Reduction Order

Given y1

Find y2

0)()( yxqyxpy

dxy

eyy

dxxp

21

)(

12

Page 16: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 16

Second-Order Homogeneous Linear Equations

Proof:

0)(2

,0)(2

0))()(())(2(

0))(())(()2(

0)()(

2,

1

11

1

11

111111

111111

1112112

12

Uy

yxpyU

uULetuy

yxpyu

yxqyxpyuyxpyuyu

uyxqyuyuxpyuyuyu

yxqyxpy

yuyuyuyyuyuy

uyyLet

Page 17: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 17

Second-Order Homogeneous Linear Equations

Proof:

dxy

eyUdxyy

y

eU

dxxpyU

dxy

yxpy

U

dU

dxxp

dxxp

21

)(

112

21

)(

1

1

11

)(ln2ln

)(2

Page 18: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 18

Second-Order Homogeneous Linear Equations

Example 3-1:

Sol:

212 ,,0 yFindxyyyxyx

xx

dxx

xdxx

ex

dxx

exdx

y

eyy

yx

yx

y

x

dxx

dxxp

ln

1

011

2

ln

2

1

21

)(

12

2

Page 19: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 19

Second-Order Homogeneous Linear Equations Exercise 3-1: Basic Verification and

Find Particular Solution

09 yy6)0( ,4)0( yy

Basis

Initial Condition

)3sin( ),3cos( xx

02 yyy0)0( ,1)0( yy

Basis

Initial Condition

-xx xee ,

034 2 yyx5.2)1( ,3)1( yy

Basis

Initial Condition

3/22/1 , xx

Page 20: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 20

Exercise: Reduce of order if a solution is known.

31

2 ,09'5" xyyxyyx

Page 21: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 21

Second-Order Homogeneous Equations with Constant Coefficients

General Form of Second-Order

Homogeneous Equations with Constant

Coefficients

whose coefficients a and b are constant.

0 byyay

Page 22: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 22

Second-Order Homogeneous Equations with Constant Coefficients

Sol:

0)(

0

0)()(

0

2

2

x

xxx

xxx

x

eba

beeae

beeae

eyTry

byyay

02 baCharacteristicEquation

Page 23: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 23

Case 1: 兩相異實根

Case 2: 重根

Case 3: 共軛虛根

Second-Order Homogeneous Equations with Constant Coefficients

042 ba

042 ba

042 ba

xx ececy 2121

xexccy 1)( 21

21,

11,

nim)sincos( nxBnxAey mx

Page 24: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 24

Second-Order Homogeneous Equations with Constant Coefficients

Example 3-2:

Sol:

Step 1: Find General Solution

5)0(,4)0(,02 yyyyy

xx ececy 221

2

2,1

,02

Page 25: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 25

Second-Order Homogeneous Equations with Constant Coefficients

Step 2: Find Particular Solution

xx

xx

xx

eey

cc

ccy

ccy

ececy

ececy

2

21

21

21

221

221

3

3,1

52)0(

4)0(

2

Page 26: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 26

Second-Order Homogeneous Equations with Constant Coefficients

Step 3: Plot Particular Solution

x=[0:0.01:2];

y=exp(x)+3*exp(-2*x);

plot(x,y)

MATLAB Code

Page 27: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 27

Case 2 Real Double Root = -a/2

21

2 ,04 axeyba

221

212

21

1

1112

1

111

111111

111111

1112112

12

)(

,

0" ,0"

0'2,'2

0

0)()2(

0)()()2(

0

2,

ax

ax

ax

exccy

xexyyxutake

cxcu

uyu

ayyayaey

byyay

byyayuayyuyu

uybyuyuayuyuyu

byyay

yuyuyuyyuyuy

uyyLet

Page 28: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 28

Second-Order Homogeneous Equations with Constant Coefficients

Example 3-3:

Sol:

Step 1: Find General Solution

1)0(,3)0(,044 yyyyy

xexccy 221

2

)(

2,2

,044

Page 29: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 29

Second-Order Homogeneous Equations with Constant Coefficients

Step 2: Find Particular Solution

x

xx

x

exy

cc

ccy

cy

exccecy

exccy

2

21

12

1

221

22

221

)53(

5,3

12)0(

3)0(

)(2

)(

Page 30: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 30

Second-Order Homogeneous Equations with Constant Coefficients

Step 3: Plot Particular Solution

x=[0:0.01:2];

y=(3-5*x).*exp(2*x);

plot(x,y)

MATLAB Code

Page 31: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 31

Euler Formula

Euler Formula

Proof:

xixeix sincos

0

32

!!3!21

n

nx

n

xxxxe

0

2642

)!2(

)1(

!6!4!21)cos(

n

nn

n

xxxxx

0

12753

)!12(

)1(

!7!5!3)sin(

n

nn

n

xxxxxx

MaclaurinSeries

Page 32: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 32

Euler Formula

Proof:

xixeix sincos

)sin()cos(

!7!5!3!6!4!21

!7!6!5!4!3!21

!

)(

!3

)(

!2

)(1

753642

765432

0

32

xix

xxxxi

xxx

ixxixxixxix

n

ixixixixe

n

nix

Page 33: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 33

Euler Formula

1ie自然數

幾何

分析

虛數

負數

Page 34: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 34

Complex Exponential Function

)sin(cos titeeeee

itszsitsitsz

Page 35: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 35

Case 3 042 ba

)sincos(

sin,cos

)sin(cos

)sin(cos

4

1

,2

,2

2

22

21

)2()2(

)2()2(

2

21

2

1

wxBwxAey

wxeywxey

wxiwxeee

wxiwxeee

abw

iwa

iwa

ax

axax

xaiwxxax

xaiwxxax

Page 36: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 36

Second-Order Homogeneous Equations with Constant Coefficients

Example 3-4:

Sol:

Step 1: Find General Solution

2)0(,0)0(,001.42.0 yyyyy

)2sin2cos(

21.0

,001.42.0

1.0

2

xBxAey

ix

Page 37: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 37

Second-Order Homogeneous Equations with Constant Coefficients

Step 2: Find Particular Solution

xey

BA

By

Ay

xBxAe

xBxAey

xBxAey

x

x

x

x

2sin

1,0

22)0(

0)0(

)2cos22sin2(

)2sin2cos(1.0

)2sin2cos(

1.0

1.0

1.0

1.0

Page 38: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 38

Second-Order Homogeneous Equations with Constant Coefficients

Step 3: Plot Particular Solution

x=[0:0.1:30];

y=exp(-0.1*x).*sin(2*x);

plot(x,y)

MATLAB Code

Page 39: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 39

Second-Order Homogeneous Equations with Constant Coefficients

Exercise 3-2: Find General Solution

0344 yyy

092 yy

044 yyy

025309 yyy

022 yyy

兩相異實根

01044 yyy

重根

共軛虛根

Page 40: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 40

Modeling: Mass-Spring Systems

0 kyycym

Page 41: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 41

Modeling: Electric Circuits

Inductor(heries)

Resistor(ohms)

Capacitor(farads)

01

IC

IRIL

Page 42: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 42

Modeling 0 kyycym

21

2

22,1

2

,

42

1,

2

42

1

2

0

0

mkcmm

c

mkcmm

cm

k

m

c

kyycym

Page 43: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 43

Modeling

Overdamping 042 mkc

tt ececty )(2

)(1)(

Page 44: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 44

Modeling

Critical Damping 042 mkc

tetccty )()( 21

Page 45: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 45

Modeling

Underdamping

042 mkc

ABBAC

twCe

twBtwAetyαt

t

tan,

),cos(

)sincos()(

22

*

**

Page 46: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 46

Euler-Cauchy Equation

Euler-Cauchy Equation

02 byyaxyx

0)1(

0)1(

)1(,, :122

21

mmm

mmm

mmm

bxamxxmm

bxaxmxxmmx

xmmymxyxySubstituteSol

0)1(2 bmamThe Auxiliary Equation

Page 47: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 47

Euler-Cauchy Equation

Case 1: Distinct Real Roots m1, m2

Example 3-5:

2121

mm xcxcy

42

5.01

2

4 ,5.0

025.3

EquationAuxiliary :

xcxcy

m

mm

Sol

00.25.22 yyxyx

Page 48: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 48

Euler-Cauchy Equation

Case 2: Double Roots m=(1-a)/2

mxxccy )ln( 21

Page 49: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 49

Euler-Cauchy Case 2 :Example

Example 0432 yyxyx

221

2

)ln(

2 ,2

044

EquationAuxiliary :

xxccy

m

mm

Sol

Page 50: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 50

Euler-Cauchy Equation

Case 3: Complex Roots m = a ± bi

)lnsin()lncos( xbBxbAxy a

Page 51: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 51

Euler-Cauchy Case 3 :Example

Example 01372 yyxyx

)ln2sin()ln2cos(

23

0136

EquationAuxiliary :

3

2

xBxAxy

im

mm

Sol

Page 52: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 52

Existence and Uniqueness Theory

If p(x) and q(x) are continuous function on some open interval and x0 is in , then the initial value problem consisting of (1) and (3) has a unique solution y(x) on the interval .

)1(0)()( yxqyxpy

)3()(',)( 1000 kxykxy

)2(2211 ycycy

Page 53: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 53

Wronskian

A set of n functions y1(x), y2(x), …, yn(x),

is said to be linearly dependent over an interval I if there exist n constants c1, c2, …, cn, not all zero, such that

Otherwise the set of functions is said to be linearly independent

0)()()( 2211 xycxycxyc nn

Page 54: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 54

Wronskian

A set of n functions y1(x), y2(x), …, yn(x), is

linearly independent over an interval I if and only if the determinant (Wronski determinant, or Wronskian)

0

),,,(

)()(2

)(1

21

21

21

nn

nn

n

n

n

yyy

yyy

yyy

yyyW

Page 55: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 55

Wronskian

Example 3-8:

Sol:

01

sincos

cossin

sincos)sin,(cos

22

xx

xx

xxxxW

xx sin ,cos

cosx, sinx are linearly independent

Page 56: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 56

Linear Dependence and Independence of Solution

Suppose that (1) has continuous coefficients p(x) and q(x) on an open interval . Then two solutions y1 and y2 of (1) on are linear dependent on if and only if their Wronskian W is zero at some x0 in .

Furthermore, if W=0 for x= x0, then W=0 on ; hence if there is an x1in at which W is not zero, then y1 ,y2 are liner independent on .

Page 57: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 57

Illustration of Theorem 2

Example 1

Example 2

0"

,2

21

ywy

sinwxycoswxy

xexccy

yyy

)(

,0'2"

21

Page 58: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 58

A General Solution of (1) includes All Solutions

Theorem 3 (Existence of a general solution)If p(x) and q(x) are continuous on an open interval , then (1) has a general solution on .

Theorem 4 (General solution)Suppose that (1) has continuous coefficients p(x) and q(x) on some open interval . Then every solution y=Y(x) of (1) is of the form

where y1 , y2 form a basis of solutions of (1) on and c1, c2 are

suitable constants. Hence (1) does not have singular solutions (I.e., solutions not obtainable from a general solution)

)1(0)()( yxqyxpy

)()( 2211 xycxycY

Page 59: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 59

Nonhomogeneous Equations

Theorem (a) The difference of two solutions of (1)

on some open interval is a solution of (2) on

(b) The sum of a solution of (1) and a solution of (2) on is a solution of (1) on

)2(0)()(

)1()()()(

yxqyxpy

xryxqyxpy

Page 60: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 60

A general solution of the nonhomogeneous equation (1) on some open interval is a solution of the form

where yh(x)=c1y1(x)+c2y2(x) is a general solution of the homogeneous equation (2) on and yp(x) is any solution of (1) on containing no arbitrary constants.

A particular solution of (1) on is a solution obtain from (3) by assigning specific values to the arbitrary constants c1 and c2 in yh(x).

)2(0)()(

)1()()()(

yxqyxpy

xryxqyxpy

)3()()()( xyxyxy ph

Page 61: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 61

Practical Conclusion

To solve the nonohomegeneous equation (1) or an initial value problem for (1) , we have to solve the homogeneous equation (2) and find any particular solution yp of (1)

)2(0)()(

)1()()()(

yxqyxpy

xryxqyxpy

Page 62: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 62

Initial value problem for a nonhomogeneous equation

Example

9.0)0(',1.1)0(

4.10101'2"

yy

eyyy x

Page 63: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 63

Solution by Undetermined Coefficients

Method of Undetermined Coefficients

General Solution: y = yh + yp

yh : Homogeneous Solution

yp : Particular Solution

)(xrbyyay

Page 64: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 64

Solution by Undetermined Coefficients

nkx

nxke

)(xr

xk cosxk sinxkenx cosxkenx sin

py

011

1 KxKxKxK nn

nn

xKxK sincos 21 xKxK sincos 21

)sincos( 21 xKxKenx

)sincos( 21 xKxKenx

nxke

Page 65: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 65

Rules for the Method of Undetermined Coefficients

Basic Rule Modification Rule Sum Rule

Page 66: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 66

Solution by Undetermined Coefficients

Example 3-9:

Sol:

12

1,0,2

8)42(44

8)(42

2

2

012

2021

22

201

222

2

012

2

xy

KKK

xKKxKxK

xKxKxKK

Ky

KxKxKy

p

p

p

pyFindxyy ,84 2

Page 67: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 67

Example for Modification Rule

Example 1: in the case of a simple root

Example 2: in the case of a double root

Example 3: sum rule.

px yFindeyyy ,2'3

1)0(',1)0(

,1'2

yy

eyy x

1.60)0(',2.0)0(

,4sin554cos4025.15'2 5.0

yy

xxeyyy x

Page 68: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 68

Second-Order Non-homogeneous Linear Equations

Method of Variation of Parameters

Particular Solution:

y1, y2 : Homogeneous Solutions

W : Wronskian of y1 and y2

)()()( xryxqyxpy

dxW

ryydx

W

ryyxy p 1

22

1)(

Page 69: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 69

Second-Order Non-homogeneous Linear Equations

Example 3-10:

Sol:

12

2sin2cos22sin22sin

2cos2sin22cos22cos

2sin42sin22sin2cos42cos22cos

2

2cos82sin

2

2sin82cos

22cos22sin2

2sin2cos

2sin,2cos

2

2

2

22

22

12

21

21

x

xxxxxx

xxxxxx

xdxxxxxxdxxxxx

dxxx

xdxxx

x

dxW

ryydx

W

ryyy

xx

xxW

xyxy

p

pyFindxyy ,84 2

Page 70: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 70

Higher Order Linear Differential Equations

Higher Order Homogeneous Linear ODE

0)()()( 01)1(

1)(

yxpyxpyxpy nn

n

If y1, y2, …, yn are the solutions of

y = c1y1+ c2y2 +… + cnyn will be the general solution

0)()()( 01)1(

1)(

yxpyxpyxpy nn

n

Page 71: 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 3 Linear Differential Equations

Page 71

Higher Order Linear Differential Equations

Higher Order Nonhomogeneous Linear ODE

General Solution: y = yh + yp

yh : Homogeneous Solution

yp : Particular Solution

)()()()( 01)1(

1)( xryxpyxpyxpy n

nn