13
FE Modelling approaches for soil-bridge systems towards better emergency response planning Authors: Wazeer Ali, Dr Helder de Sousa and Dr Paolo Bocchini Presentation: 11 th October 2018, University of Porto, Porto, Portugal

& D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

FE Modelling approaches for soil-bridgesystems towards better emergency responseplanning

Authors: Wazeer Al i , Dr Helder de Sousa and Dr Paolo BocchiniPre s entat ion : 1 1 th O cto ber 2 0 1 8 , U n ivers i ty o f Po r to, Por to, Por tuga l

Page 2: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Index• Background

• Gaps in the state of the art & objectives

• Methodology

• Case study

Overview

FE modelling approach

Results I, II, III

• Conclusion

Page 3: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Risk analysis in bridge management

Fragility curves

Prioritise resources’ allocation

Formulate Emergency evacuation plans

Background

Support vulnerability assessment

Formulation by means of the function:

(Chang et. al., 2012)

Page 4: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Gaps in the state-of-art and objectives

Assessment of bridge fragility on 2 different site profiles

Effects of soil-structure interaction analysis

Cost-benefit analysis associated with different models

Bridge deck displacements (value-engineering)

Gaps

Objectives

Variances in site conditions are loosely addressed

One SSI method used to assess liquefaction

Costs associated with different levels of analysis

Page 5: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Methodology

Probabilistic Seismic Demand Model (section 4.1)

Random variables (section 3.6.1)Random variable Distribution type Units

Steel strength Lognormal l = 6.13 x = 0.08 Mpa

Concrete strength Normal µ = 33.8 σ = 4.3 Mpa

Deck mass Uniform l = 0.9 u = 1.1 %

Fixed Bearing coefficient of friction Lognormal l = -1.56 x = 0.5

Rocker Bearing coefficient of friction Lognormal l = -3.22 x = 0.5

Parameter 2Parameter 1

3 Types of SSI models (section 3.5) Winkler spring Lumped spring Direct FE method

Page 6: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Case study - overview

Soil #1: Clay, no liquefaction potential

Type of Soils:

Soil #2: Sand, has potential to liquefy

Type of Bridge:

Multi Span Continuous Steel Girder

Pile foundationsBridge

Elevation

Deck cross-section

(Nielson, 2005)

Page 7: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Winkler spring model (MIDAS software)

Lumped spring model (MIDAS software)

P-y curves derived using ALP software Abutment spring parameter from separate analysis Relatively fast analysis run-time ( 15 min)

Spring parameters from pier & abutment analyses Faster analysis run-time than Winkler ( 3 min) Higher level of preparatory work

Direct FE model (PLAXIS software) Soil modelled as linear strain elements Boundary distances affect analysis results Relatively long analysis run-time ( 30 min)

Case study – FE modelling approach

Page 8: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Winkler spring model (DIANA software)

Lumped spring model (DIANA software)

P-y curves derived using ALP software Abutment spring parameter from separate analysis Relatively fast analysis run-time

Spring parameters from pier & abutment analyses Faster analysis run-time than Winkler Higher level of preparatory work

Direct FE model (PLAXIS software) Soil modelled as linear strain elements Boundary distances affect analysis results Relatively long analysis run-time ( 30 min)

Case study – FE modelling approach

Page 9: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Case study: Results I – bridge components

Complete damage – Column (Winkler spring) Moderate damage – Bearing (Direct FE)

As a function of the type of soil: Fragility curves show:

High scatter between different soil profiles,

Different patterns observed depending on the bridge component,

Soil #2 (with liquefaction) has the highest probability,

Soil #1 has lowest probability.

Winkler SpringDirect FE MethodLowest probability of failure

Abutments

Highest probability of failure

Winkler Spring

Lumped Spring

Lumped Spring

Direct FE Method

Winkler Spring

Lumped Spring

Lumped Spring

Direct FE Method

Fixed bearings Rocker bearingsColumn/Pier

Winkler SpringDirect FE Method

As a function of the type of the SSI model approach:

Highest values for Direct FE

Highest values for Lumped spring

Legend:

Page 10: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Case study: Results II – bridge system Type of the SSI model approach vs. the type of soil:

Slight damage Moderate damage Extensive damage

Winkler spring

Lumped spring

Direct FE

Soil type effect at damage levels

SSI m

etho

d

Fragility curves show:

Consistent patterns between different SSI approaches,

Lower probability of failures as the SSI approach becomes more refined,

Soil type has more effect at higher levels of damage,

Lumped-spring method produced highest probabilities, followed by Winkler-spring and Direct-method.

Page 11: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Case study: Results III – deck displacements

As a function of both the SSI model approach and the type of soil :

Soil Profile #1 Soil Profile #2 – no liquefaction Soil Profile #2 – liquefaction

Displacement curves show: Consistent patterns between different SSI approaches Scatter increases as the soil properties becomes weaker Direct FE leads to higher displacements

Page 12: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

Impact of SSI modelling on fragility curves Greater effect at the bridge component level (important for retrofitting decisions)

Consistent patterns between different SSI approaches at the bridge system level

Scatter increases between results from different SSI models as the soil properties becomes weaker

Lumped-spring method produced highest probabilities of failure but it is the fastest method

Direct FE leads to higher displacements

Comparison of modelling methods A more comprehensive SSI approach may not always be the most efficient approach

The Winkler spring method provides acceptable results, on a comparative basis

Define requirements (e.g. probability of failure, displacements, etc) before selecting a method of analysis

Conclusions

Page 13: & D } o o ] v P } Z ( } } ] o r ] P Ç u } Á u P v Ç } v o ...pab409/lifecyclefem/docs/... · D Z } } o } P Ç W } ] o ] ] ^ ] u ] u v D } o ~ ] } v ð X í Z v } u À ] o ~ ] }

THANK YOU!

1 1 th O cto ber 2 0 1 8 , U n ivers i ty o f Po r to, Por to, Por tuga l