14
1980 -3- (EGCg) 3T3-L1 L6 4 (GLUT4) (AhR) Hepa-1c1c7 EGCg nM

, G9GTG;G Fþ#Õ q*f Ð$S £75 ÝH #Õ@ µ+ 6ä$Î ì ÛHOolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinease. Food and Functions,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1980

    -3- (EGCg)

    3T3-L1L6

    4 (GLUT4)

    (AhR)Hepa-1c1c7

    EGCg

    nM

  • 1. Akiko Takagaki, Yasukiyo Yoshioka, Yoko Yamashita, Tomoya Nagano, Masaki Ikeda, Aya Hara-Terawaki,Ryota Seto -epigallocatechin gallate on glucose uptakein L6 skeletal muscle cell and glucose tolerance in ICR mice. Biological and Pharmaceutical Bulletin, in press,2019.

    2. Manabu Ueda-Wakagi, Kaori Hayashibara, Tomoya Nagano, Masaki Ikeda, Sihao Yuan, Shuji Ueda, YasuhitoShirai, Ken-ichi Yoshida and Hitoshi Ashida, Epigallocatechin gallate induces GLUT4 translocation in skeletalmuscle through both PI3K- and AMPK-dependent pathways, Food and Function, 9, 4223-4233, 2018.

    3. Masaki Ikeda, Manabu Ueda-Wakagi, Kaori Hayashibara, Rei Kitano, Masaya Kawase, Kunihiro Kaihatsu,Nobuo Kato, Yoshitomo Suhara, Naomi Osakabe, Hitoshi Ashida. Substitution at the C-3 position of catechinshas an influence on the binding affinities against serum albumin. Molecules, 22, 314, 2017.

    4. Itsuko Fukuda, Shin Nishiumi, Rie Mukai, Ken-ichi Yoshida, and Hitoshi Ashida. Catechins in tea suppress theexpression and activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway inrat livers. International Journal of Food Sciences and Nutrition, 66, 300-307, 2015.

    5. Tomoya Nagano, Kaori Hayashibara, Manabu Ueda-Wakagi, Yoko Yamashita, Hitoshi Ashida. Black teapolyphenols promotes GLUT4 translocation through both PI3K- and AMPK-dependent pathways in skeletalmuscle cells. Food Science and Technology Research, 21, 489-494, 2015.

    6. Manabu Ueda-Wakagi, Rie Mukai, Naoya Fuse, Yoshiyuki Mizushina, Hitoshi Ashida. 3-O-Acyl-epicatechinsincrease glucose uptake activity and GLUT4 translocation through activation of PI3K signalling in skeletalmuscle cells. International Journal of Molecular Science, 16, 16288-16299, 2015.

    7. Yoko Yamashita, Liuqing Wang, Lihua Wang, Yuki Tanaka, Tianshun Zhang, Hitoshi Ashida. Oolong, black andpu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinease. Food and Functions,5, 2420-2429, 2014.

    8. Manabu Ueda, Hitoshi Ashida. Green tea prevents hyperglycemia by increasing expression of insulin-likegrowth factor binding protein-1 in adipose tissue of high-fat diet-fed mice. Journal of Agricultural and FoodChemistry. 60, 8917-8923, 2012.

    9. Yoko Yamashita, Lihua Wang, Zhang Tinshun, Toshiyuki Nakamura, Hitoshi Ashida. Fermented tea improvesglucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeketal muscle. Journal ofAgricultural and Food Chemistry, 60, 11366-11371, 2012.

    10. Rie Mukai, Yasuhito Shirai, Naoaki Saito, Itsuko Fukuda, Shin Nishiumi, Ken-ichi Yoshida, Hitoshi Ashida.Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Archivesof Biochemistry and Biophysics, 501, 134-141, 2010.

    11. Manabu Ueda, Takashi Furuyashiki, Kayo Yamada, Yukiko Aoki, Itsuko Fukuda, Ken-ichi Yoshida, HitoshiAshida. Tea catechins modulate translocation of the glucose transporter 4 in 3T3-L1 adipocytes. Food andFunction, 1, 167-173, 2010.

    12. Shin Nishiumi, Hiroyuki Bessyo, Mayuko Kubo, Yukiko Aoki, Akihito Tanaka, Ken-ichi Yoshida, Hitoshi Ashida.Green and black tea suppress hyperglycemia and insulin resistance by retaining the expression of glucosetransporter 4 in muscle of high-fat diet-fed C57BL/6J mice. Journal of Agricultural Food Chemistry, 58, 12916-12923, 2010.

    13. Itsuko Fukuda, Miki Tsutsui, Iwao Sakane, Hitoshi Ashida. Suppression of cytochrome P450 1A1 expressioninduced by 2,3,7,8-tetrachlorodibenzo-p- dioxin in mouse hepatoma Hepa-1c1c7 cells treated with serum of

    -epigallocatechin-3-gallate- and green tea extract-administered rats. Bioscience, Biotechnology, andBiochemistry, 73, 1206-1208, 2009.

    14. Manabu Ueda, Shin Nishiumi, Hironobu Nagayasu, Itsuko Fukuda, Ken-ichi Yoshida, Hitoshi Ashida.Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochemical Biophysical ResearchCommunications, 377, 286-290, 2008.

    15. Itsuko Fukuda, Rie Mukai, Masaya Kawase, Ken-ichi Yoshida, Hitoshi Ashida. Interaction between the arylhydrocarbon receptor and its antagonists, flavonoids. Biochemical Biophysical Research Communications, 359,822-827, 2007.

    16. Hiroyuki Sakakibara, Hitoshi Ashida, Itsuko Fukuda, Takashi Furuyashiki, Takashi Sano, Yuji Nonaka, TakashiHashimoto, Kazuki Kanazawa. A frequent drinking of green tea lowers the levels of endogenous oxidativestress in small intestines, erythrocytes and kidneys in rats. Journal of Clinical Biochemistry and Nutrition, 39,32-39, 2006.

    17. Itsuko Fukuda, Iwao Sakane, Yoshiyuki Yabushita, Shin-ichi Sawamura, Kazuki Kanazawa, Hitoshi Ashida. Blacktea theaflavins suppress dioxin-induced transformation of the aryl hydrocarbon receptor. Bioscience,Biotechnology, and Biochemistry, 69, 883-890, 2005.

    18. Takashi Furuyashiki, Hironobu Nagayasu, Yukiko Aoki, Hiroyuki Bessyo, Takashi Hashimoto, Kazuki Kanazawa,Hitoshi Ashida. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation ofPPARgammma2 and C/EBPalpha in 3T3-L1 cells. Bioscience Biotechnology and Biochemistry, 68, 2353-2359,2004.

    19. Hitoshi Ashida, Takashi Furuyashiki, Hironobu Nagayasu, Hiroaki Bessho, Hiroyuki Sakakibara, TakashiHashimoto, Kazuki Kanazawa. Anti-obesity actions of green tea: possible involvements in modulation of theglucose uptake system and suppression of the adipogenesis-related transcription factors. BioFactors, 22, 135-140, 2004.

    20. Hitoshi Ashida, Itsuko Fukuda, Takatoshi Yamashita, Kazuki Kanazawa. Flavones and flavonols at dietary levelsinhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Letters, 476, 213-217, 2000.8

    (

  • III I

    II

    AhR Nrf2

    EGCg

    etc…

    AAhhRR

    III

    NNrrff22

    IAhR

    IIII

    I

    TCDD

    DMSO

    Flavone

    Apigenin

    Luteolin

    Kaempferol

    TC

    DD

    IINrf2

    II

    AhRII

    Nrf2II

  • 1. Tomoya Kitakaze, Atsushi Makiyama, Yumi Samukawa, Songyan Jiang, Yoko Yamashita, Hitoshi Ashida. Aphysiological concentration of luteolin induces phase II drug-metabolizingenzymes through the ERK1/2signaling pathway in HepG2 cells. Archives of Biochemistry and Biophysics, 663, 151-159, 2019.

    2. Rika Nakai, Shun Fukuda, Masaya Kawase, Yoko Yamashita, Hitoshi Ashida, Curcumin and its derivativesinhibit 2,3,7,8,-tetrachloro-dibenzo-p-dioxin-induced expression of drug metabolizing enzymes through arylhydrocarbon receptor-mediated pathway. Bioscience Biotechnology and Biochemistry, 82,616-628, 2018.

    3. Itsuko Fukuda, Shin Nishiumi, Rie Mukai, Ken-ichi Yoshida, and Hitoshi Ashida. Catechins in tea suppress theexpression and activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway inrat livers. International Journal of Food Sciences and Nutrition, 66, 300-307, 2015.

    4. Hitoshi Ashida, Kiyonari Harada, Sakiho Mishima, Takakazu Mitani, Yoko Yamashita, Fumio Matsumura.Luteolin suppresses TCDD-induced wasting syndrome in a cultured adipocyte model. Pesticide Biochemistryand Physiology, 120, 14-20, 2015.

    5. Tianshun Zhang, Yuki Kimura, Songyan Jiang, Kiyonari Harada, Yoko Yamashita, Hitoshi Ashida. Luteolinmodulates expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways in hepatic cells.Archives Biochemistry and Biophysics. 557, 36-46, 2014.

    6. Hitoshi Ashida, Tianshun Zhang, Yuki Kimura, Songyan Jiang, Kiyonari Harada, Yoko Yamashita. Effects ofluteolin on TCDD- and tert-butylhydroquinone-induced drug-metabolizing enzynes and nuclear factor-erythroid-2-related factor 2. Organohalogen Compounds. 76, 317-320, 2014.

    7. Tianshun Zhang, Songyan Jiang, Chao He, Yuki Kimura, Yoko Yamashita, Hitoshi Ashida. Black soybean seedcoat polyphenols prevent B(a)P-induced DNA damage through modulating drug-metabolizing enzymes inHepG2 cells and ICR mice. Mutat Res, 752, 34-41, 2013.

    8. Sayuri Shimazu, Masaya Ohta, Hitoshi Ashida. Application of Solidago canadensis extract to phytomoniteringof polychlorinated biohenyl congeners in the transgenic Arabidopsis plants carrying the recombinant guineapif aryl hydrocarbon receptor-mediated -glucuronidase reporter gene expression system. OrganohalogenCompounds, 75, 398-401, 2013.

    9. Chao He, Norio Yamamoto, Hitoshi Ashida. Inhibitory effect of cardamonin on transformation of arylhydrogen receptor. Organohalogen Compounds, 75, 620-624, 2013.

    10. Takakazu Mitani, Masaki Kinehara, Ken-ichi Yoshida, Hitoshi Ashida. Aryl hydrocarbon receptor enhances theexpression of multidrug-resistant mdr1b through p53 in mouse hepatoma cells. Organohalogen Compounds,75, 625-628, 2013.

    11. Rie Mukai, Yasuhito Shirai, Naoaki Saito, Itsuko Fukuda, Shin Nishiumi, Ken-ichi Yoshida, Hitoshi Ashida.Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Archivesof Biochemistry and Biophysics, 501, 134-141, 2010.

    12. Shin Nishiumi, Masaru Yoshida, Takeshi Azuma, Ken-ichi Yoshida, Hitoshi Ashida. 2,3,7,8-Tetrachlorodibenzo-p-dioxin impairs an insulin signaling pathway through the induction of tumor necrosis factor-alpha inadipocytes. Toxicology Science, 115, 482-491, 2010.

    13. Mika Hamada, Hideo Satsu, Hitoshi Ashida, Yoshiko Sugita-Konishi, Makoto Shimizu. Metabolites of galanginby 2,3,7,8-tetrachlorodibenzo-p-dioxin- inducible cytochrome p450 1A1 in human intestinal epithelial Caco-2cells and their antagonistic activity toward aryl hydrocarbon receptor. Journal of Agricultural Food Chemistry,58, 8111-8118, 2010.

    14. Sayuri Shimazu, Yukiko Kawabata, Akito Inayoshi, Hiroshi Inui, Hitoshi Ashida, Hideo Ohkawa. Recombinanthuman AhR-mediated GUS reporter gene assays for PCB congeners in transgenic tobacco plants incomparison with recombinant mouse and guinea pig AhRs. Journal of Environmental Science and Health B.45, 764-772, 2010.

    15. Sayuri Shimazu, Masaya Ohta, Hiroshi Inui, Yoshihiko Nanasato, Hitoshi Ashida, Hideo Ohkawa. Biosurfactantsuseful for assays of PCB congeners in transgenic arabidopsis plants carrying a recombinant guinea pig AhR-mediated GUS reporter gene expression system. Journal of Environmental Science and Health B, 45, 773-779,2010.

    16. Masaki Kinehara, Itsuko Fukuda, Ken-ichi Yoshida, Hitoshi Ashida. Aryl hydrocarbon receptor-mediatedinduction of the cytosolic phospholipase A2alpha gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mousehepatoma Hepa-1c1c7 cells. Journal of Bioscience and Bioengineering, 108, 277-281, 2009.

    17. Itsuko Fukuda, Atsushi Kaneko, Shin Nishiumi, Masaya Kawase, Rika Nishikiori, Nobuhide Fujitake, HitoshiAshida. Structure-activity relationships of anthraquinones on the suppression of DNA-binding activity of thearyl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Bioscience andBioengineering, 107, 296-300, 2009.

    18. Itsuko Fukuda, Miki Tsutsui, Iwao Sakane, Hitoshi Ashida. Suppression of cytochrome P450 1A1 expressioninduced by 2,3,7,8-tetrachlorodibenzo-p- dioxin in mouse hepatoma Hepa-1c1c7 cells treated with serum of

    -epigallocatechin-3-gallate- and green tea extract-administered rats. Bioscience, Biotechnology, andBiochemistry, 73, 1206-1208, 2009.

    19. Rie Mukai, Hideo Satsu, Makoto Shimizu, Hitoshi Ashida. Inhibition of p-glycoprotein enhances thesuppressive effect of kaempferol on transformation of the aryl hydrocarbon receptor. BioscienceBiotechnology and Biochmistry, 73, 1635-1639, 2009.

    20. Shin Nishiumi, Norio Yamamoto, Rie Kodoi, Itsuko Fukuda, Ken-ichi Yoshida, Hitoshi Ashida. Antagonistic andagonistic effects of indigoids on the transformation of an aryl hydrocarbon receptor. Archives of Biochemistryand Biophysics, 470, 187-199, 2008.23

    (

  • GLUT4

    IRS

    Akt/PKB

    AMPKPI3K

    P

    P

    P P

    PP

    GLUT4

    GLUT4

    30 60 1200 15 [min]-60

    75%, 4 (GLUT4) GLUT4

    AMP (AMPK) , ,, GLUT4 ,

    , ,, GLUT4

    2.2- -

    2-c.

    3.4.

    3-a. 3-b.

    1-b.

    1.

    ROS AMPK1-a.

    24

    AMPKmyristicin licarinB HO

    HO

    OO

    O

    OHO

    4-b.

    B( )

    AMPKJAK/STAT

    4-a.

    2-b.

    -AMPK

    4-geranyloxyfeulic acid (GOFA), 7-isopentenyloxycoumarin,7-geranyloxycoumarin (auraptene)

    GLUT4

  • 1. Maeda A, Shirao T, Shirasaya D, Yoshioka Y, Yamashita Y, Akagawa M, Ashida H.(2018) Piperine Promotes Glucose Uptake through ROS-Dependent Activation of theCAMKK/AMPK Signaling Pathway in Skeletal Muscle. Molecular Nutrition and FoodResearch. 62(11); e1800086.

    2. Yoshioka Y, Harada E, Ge D, Imai K, Katsuzaki H, Mishima T, Gabazza E, Ashida H.(2017) Adenosine isolated from Grifola gargal promotes glucose uptake via PI3K andAMPK signalling pathways in skeletal muscle cells. Journal of Functional Foods.33;268-277.

    3. Yamamoto N, Yamashita Y, Yoshioka Y, Nishiumi S, Ashida H. (2016) Rapid Preparationof a Plasma Membrane Fraction: Western Blot Detection of Translocated GlucoseTransporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.Current Protocols in Protein Science. 85:29.18.1-29.18.12.

    4. Hsu C.Y, Shih H.Y, Chia H.C, Lee C.H, Ashida H, Lai Y.K, Weng C.F. (2014) Rutinpotentiates insulin receptor kinase to enhance insulin-dependent glucose transporter4 translocation. Molecular Nutrition and Food Research. 58, 1168-1176.

    5. Tachibana N, Yamashita Y, Nagata M, Wanesaki S, Ashida H, Horio F, Kohno M. (2013)Soy -rats. Nutrition Research. 34(2), 160-167.

    24

    1. Daishi Shirasaya, Yoko Yamashita, Hitoshi Ashida: The preventive effect on Italianpropolis on postprandial hyper glycemia. International Conference and Exhibition onNeutraceuticals and Functional Foods 2018 (ICoFF), 2018, Canada

    2. Megumi Aya, Yoko Yamashita, Hitoshi Ashida: Fisetin, but not robinetin, promotesglucose uptake in skeletal muscle cells. 8th International Conference on Polyphenolsand Health (ICPH), 2017, Canada

    3. , , , , , :. , 2017,

    4. , , , : AMPK. 70 , 2016,

    5. , , , :. 62 , 2015,

    99

    1. , : , , : ,: 2010-1594.

    2. , : , , , , :, , 2007-160478, 2008-31154

    8

  • ,, , , ,

    , , ,. , ,

    , ., 3- ,

    (2 15 ) , .1 . , , , ,

    .,

    , ., ,

    1. ORAC AAPHROS) DNA

    2.

    3. 1.2.

    4. GLUT4

    5.

    6.

    7. Ames

    8.9.

    1.

    Dimer Trimer Tetramer

    10 M4.85 g/mL=10 M C3G8-OHdG

    ROS 8-OHdG

    2.

    BE)

    3.

    4.

    (GLP-1 AMP(AMPK)

    GULT4 4

    5.

    AMPK

    6.

    7.

    9.

    8.4

  • [ ]1. Yamashita Y, Yoshioka Y, Ashida H. Food Biotechnology 3rd Edition : Health beneficial functions of black

    soybean polyphenols, CRC Press, in press (2019).2. 2. , . : , , ,

    231, 2 , pp. 100-106 (2018).3. . :

    289, 1 4 pp. 135-140 (2016).4. . : ,

    281, 12 177-195 (2015).[ ]1. Yamashita Y*, Okabe M, Natsume M, Ashida H. Cacao liquor procyanidins prevent postprandial

    hyperglycemia by increasing glucagon-like peptide-1 activity and AMP-phosphorylation in ICR mice. J Nutr Sci. Vol. 8, e2, pp, 1-9 (2019).

    2. Wang L, Yamashita Y, Komeda S, Saito A, Ashida H. Absorption, metabolism, distribution and faecalexcretion of B-type procyanidin oligomers in mice after a single oral administration of black soybean seedcoat extract. Food Funct. Vol.9, pp. 5362-5370 (2018).

    3. Wang L, Yamashita Y, Saito A, Ashida H. An analysis method for flavan-3-ols using high performance liquidchromatography coupled with a fluorescence detector. J Food Drug Anal, Vol. 25, pp. 478-487 (2017).

    4. Yoshioka Y, Li X, Zhang T, Mitani T, Yasuda M, Nanba F, Toda T, Yamashita Y, Ashida H. Black soybean seedcoat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells. J Clin Biochem Nutr. Vol.60, pp. 108-114 (2017).

    5. Zhang T, Jiang S, He C, Kimura Y, Yamashita Y, Ashida, H. Black soybean seed coat polyphenols preventB(a)P-induced DNA damage through modulating drug-metabolizing enzymes in HepG2 cells and ICR mice.Mutat Res. Vol. 752, pp. 34-41 (2014).

    6. Yamashita Y, Okabe M, Natsume M, Ashida H. Cinnamtannin A2, a tetrameric procyanidin, increases GLP-1activity and insulin secretion. Biosci Biotechnol Biochem. Vol. 77, pp. 888-891 (2013).

    7. Yamashita Y, Okabe M, Natsume M, Ashida H. Prevention mechanisms of glucose intolerance and obesityby cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Arch Biochem Biophys. Vol. 527, pp.95-104 (2012).

    8. Yamashita Y, Okabe M, Natsume M, Ashida H. Cacao liquor procyanidin extract improves glucose toleranceby enhancing GLUT4 translocation and glucose uptake in skeletal muscle. J Nutr Sci. Vol. 1, pp. e2 (9

    ) (2012).9. Kanamoto Y, Yamashita Y, Nanba F, Yoshida T, Tsuda T, Fukuda I, Nakamura-Tsuruta S, Ashida H. A black

    soybean seed coat extract prevents obesity and glucose intolerance by up-regulating uncoupling proteinsand down-regulating inflammatory cytokines in high-fat diet-fed mice. J Agric Food Chem. Vol. 59, pp.8985-8993 (2011).5

    [ ]1. , , in press (2019).2. , , , ,

    , , Vol. 7, pp. 32-40 (2018).3. *, , Vol. 17, 467-

    474 (2017).4. , Vol. 35, pp 31-35 (2015).5. : Vol. 52, pp. 493-494

    (2014).6. , : . Foods and

    Food Ingredients Journal of Japan, Vol. 218, pp. 58-165 (2013).7. : . , Vol. 86,

    pp. 163-173 (2012).2

    92 24 10

    1. , : , , , : , 2016-554141 ( 2016/060259, 2014-213249), PCT/JP/2015/079363,

    WO2016/0602592. , : ,

    , , , : , , 2012-2731285, 2014-118369

  • (Angelica keiskei)

    4-hydroxyderricin (4HD) xanthoangelol (XAG)

    4-Hydroxyderricin(4HD)

    Xanthoangelol(XAG)

    --

    -

    4HD XAG•••

    4HD XA

    G

    -

    -

    4HD XAG 4 (GLUT4)

    GLUT4

    4HDXAG

    4HDXAG

    AMPK

    p

    Time after administration (h)

    Plas

    ma

    conc

    entr

    atio

    n (μ

    M)

    200 mg/kg body weight

    [email protected]; [email protected]

  • 1. Kawabata K., Sawada K., Ikeda K., Fukuda I., Yamamoto N., Ashida H., Prenylated chalcones 4-hydroxyderricin and xanthoangelol stimulate glucose uptake in skeletal muscle cells by inducingGLUT4 translocation. Mol. Nutr. Food Res. 55 (2011) 467-475.

    2. Nakamura T., Tokushima T., Kawabata K., Yamamoto N., Miyamoto M., Ashida H., Absorption andmetabolism of 4-hydroxyderricin and xanthoangelol after oral administration of Angelica keiskeiin mice. Arch. Biochem. Biophys. 521 (2012) 71-76.

    3. Zhang T., Sawada K., Yamamoto N., Ashida H., 4-Hydroxyderricin and xanthoangelol fromAshitaba (Angelica keiskei) suppress differentiation of preadiopocytes to adipocytes via AMPKand MAPK pathways. Mol. Nutr. Food Res. 57 (2013) 1729-1740.

    4. Yasuda M., Kawabata K., Miyashita M., Okumura M., Yamamoto N., Takahashi M., Ashida H.,Ohigashi H., Inhibitory Effects of 4-Hydroxyderricin and Xanthoangelol on Lipopolysaccharide-Induced Inflammatory Responses in RAW264 Macrophages. J. Agric. Food Chem. 62 (2014) 462-467

    5. Zhang T., Yamamoto N., Yamashita Y., Ashida H., The chalcones cardamonin and flavokawain Binhibit the differentiation of preadipocytes to adipocytes by activating ERK. Arch. Biochem.Biophys. 15 (2014) 44-54.

    6. Zhang T., Yamamoto N., Ashida H., Chalcones suppress fatty acid-induced lipid accumulationthrough a LKB1/AMPK signaling pathway in HepG2 cells. Food Funct. 5 (2014) 1134-1141.

    7. Zhang T., Yamashita Y., Yasuda M., Yamamoto N., Ashida H., Ashitaba (Angelica keiskei) extractprevents adiposity in high-fat diet-fed C57BL/6 mice. Food Funct. 6 (2015) 135-145.

    8. Zhang T., Wang Q., Fredimoses M., Gao G., Wang K., Chen H., Wang T., Oi N., Zykova T.A., ReddyK., Yao K., Ma W., Chang X., Lee M.H., Rathore M.G., Bode A.M., Ashida H., Lippman S.M., Dong Z.,The Ashitaba (Angelica keiskei) Chalcones 4-hydroxyderricin and Xanthoangelol SuppressMelanomagenesis By Targeting BRAF and PI3K. Cancer Prev. Res. (Phila.), 11 (2018) 607-620.

    1. Kawabata K., Sawada K., Fukuda I., Kawasaki K., Yamamoto N., Ashida H., 4-Hydroxyderricin andxanthoangelol, prenylated chalcones from Ashitaba (Angelica keskei), stimulate glucose uptake inskeletal muscle cells via inducing GLUT4 translocation", 4th International Conference onPolyphenol and Health, Abstructs p.375.

    2. Zhang T., Ashida H., Inhbition mechanism of chalcones on differentiation of preadiopocytes toadipocytes. 2011 International Conference on Food Factors, Taipei, Taiwan, Program p.210.

    3. Zhang T., Ashida H., Chalcones suppress differentiation of preadipocytes to adipocytes via MAPKand AMPK pathways. International Conference and Exhibition on Nutraceuticals and FunctionalFoods (ISNFF2012), Abstact p.153.

    4. Zhang T., Ashida H., 4-Hydroxyderricin and xanthoangerol from Ashitaba (Angelica keisei)suppress differentiation of preadipocytes to adipocytes via AMPK and MAPK pathways. The IUNS20th International Congress of Nutrition (ICN2013), Granada, Spain, PO2767.

    5. Ashida H., Zhang T., Yamashita Y., Yamamoto N., Chalcones suppress differentiation ofpreadiopocytes to adipocytes via AMPK and MAPK pathways. The 7th International Conferenceon Polyphenols and Health (ICPH2015). Tours, France

    6. Ashida H. Prevention of obesity by chalcones. Food for Health International Conference(FOHIC2016) (Kagoshima)

  • (Glabridin)

    KK-Ay(LFO)

    AMPK

    AMPK(GLUT4)

    GLUT4

    Glabridin

    AMPK

    pCAMKII

    pLFO AMP

    K

    p GLUT4

    Aktp

    Glablidin

    LFO AMPK AktGLUT4LFO Akt

    p38/FoxO3a

  • 1. Sawada K., Yamashita Y., Zhang T., Nakagawa K., Ashida H., Glabridin induces glucose uptake viathe AMP-activated protein kinase pathway in muscle cells. Mol Cell Endocrinol. 393, (3014) 99-108.

    2. Yamashita Y., Kishida H., Nakagawa K., Yoshioka Y., Ashida H., Liquorice flavonoid oil suppresseshyperglycaemia accompanied by skeletal muscle myocellular GLUT4 recruitment to the plasmamembrane in KK-Ay mice. Int. J. Food Sci. Nutr. 10 (2018) 1-9.

    3. Yoshioka Y., Yamashita Y., Kishida H., Nakagawa K., Ashida H., Licorice flavonoid oil enhancesmuscle mass in KK-Ay mice. Life Sci. 15 (2018) 91-96.

    4. Yoshioka Y., Kubota Y., Samukawa Y., Yamashita Y., Ashida H., Glabridin inhibits dexamethasone-induced muscle atrophy, Arch. Biochem. Biophys.

    1. , , , New Food Industry. 60 (2018) 23-29.

    1. Sawada K., Nakagawa K., Ashida H., Glabridin, an isoflavane in licorice, induced glycogendegradation and subsequent glucose uptake in L6 myotubes. International Society forNutraceuticals &Functional Foods, 2011 Annual conference (ISNFF2011), Sapporo, Japan,Abstract, p. 138.

    2. Sawada K., Hamada K., Kishida H., Kitano M., Nakagawa K., Ashida H., Glabridin, an isoflavane inlicorice, stimulates glucose uptake via Ca2+/calmodulin-dependent protein kinase II in L6myotubes. The 25th Annual and International Meeting of the Japanese Association for AnimalCell Technology (JAACT2012), Program and Abstracts p. 153. Best Poster Award

    3. Yamashita Y., Sawada K., Kishida H., Nakagawa K., Ashida H., Glabridin suppresses hyperglycemiathrough promotion of glucose uptake accompanied by translocation of glucose transporter 4 inmuscle. XXVIth International Conference on Polyphenols & 8th Tannin Conference (ICP2014),Nagoya, Japan.

    4. Kubota Y., Ashida H., Search for food compounds to increase protein synthesis or decreaseprotein degradation in skeletal muscle, and elucidation its mechanism. The 29th Annual andInternational Meeting of Japanese Association for Animal Cell Technology (JAACT2016) (Kobe)Poster Award

    5. Kubota Y., Ashida H., Search for food ingredients to increase protein synthesis or decreaseprotein degradation in skeletal muscle, and elucidation its mechanism. JSBBA Kansai 3rd StudentForum (Kobe Univ.)

    6. Ashida H., Kubota Y., Yoshioka Y., Yamashita Y., Glabridin inhibits glucocorticoid-induced muscleatrophy in C2C12 cells and C57BL/6J mice. 8th International Conference on Polyphenols andHealth (ICPH2017) (Canada)

    7. Ashida H., Kubota Y., Yoshioka Y., Glabridin inhibits muscle atrophy through p38/FOXO3a andGlucocorticoid receptor signals. IUNS 21st International Congress of Nutrition (IUNS 21st ICN)(Argentina)

  • ESG

    ESG

    ESG

    ESG

    ESG 4

    UV PM2.5

    ESG I

    DSSESG

    RGFine-ESG

    Fine-ESGRG

    RGFine-ESG

    Fine-ESGRG

    UVPM2.5

    UV PM2.5

    ELISA

    ESG

    ESG +

    (%) 18.3±0.9b 24.2±1.2a

    (%) 9.5±0.6c 12.2±0.6b

    (%) 8.8±0.4b 12.3±0.6a

    ESG +

    (%) 18.3±0.9b 24.2±1.2a

    (%) 9.5±0.6c 12.2±0.6b

    (%) 8.8±0.4b 12.3±0.6a

    420%ESG

    +ESG

    B

    ELISA

  • 1. Furuyashiki, T., Takata, H., Kojima, I., Kuriki, T., Fukuda, I. and Ashida, H. (2011): Metabolic fate oforally administered enzymatically synthesized glycogen in rats. Food Funct, 2(3-4), pp. 183-189.

    2. Nakamura-Tsuruta, S., Yasuda, M., Nakamura, T., Shinoda, E., Furuyashiki, T., Kakutani, R., Takata,H., Kato, Y., and Ashida, H. (2012): Comparative analysis of carbohydrate-binding specificities oftwo anti-glycogen monoclonal antibodies using ELISA and surface plasmon resonance.Carbohydr Res, 350, pp. 49-54.

    3. Furuyashiki, T., Ogawa, R., Nakayama, Y., Honda, K., Kamisoyama, H., Takata, H., Yasuda, M., Kuriki,T., Ashida, H. (2013): Enzymatically synthesized glycogen reduces lipid accumulation in diet-induced obese rats. Nutrition Research, 33, pp. 743-752.

    4. Yasuda, M., Furuyashiki, T., Nakamura, T., Kakutani, R., Takata, H., and Ashida, H. (2013):Immunomodulatory activity of enzymatically synthesized glycogen end its digested metabolite ina co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages. FoodFunct, 4(9), pp. 1387-1393.

    5. Oe, Y., Baba, O., Ashida, H., Nakamura, K., Hirase, H. (2016):Glycogen distribution in themicrowave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia, 64, pp. 1532-1545.

    6. Mitani, T., Yoshioka, Y., Furuyashiki, T., Yamashita, Y., Shirai, Y., and Ashida, H. (2017):Enzymatically synthesized glycogen inhibits colitis through decreasing oxidative stress. Free RadicBiol Med, 106, pp. 355-367.

    7. Furuyashiki, T., Ogawa, R., Nakayama, Y., Honda, K., Kamisoyama, H., Takata, H., Yasuda, M., Kuriki,T., Ashida, H. (2018): Effects of enzymatically synthesized glycogen on lipid metabolism in dietinduced obese mice. Food Science and Teshnology Research, 24, pp. 119-127.

    1. Yasuda, M., Furuyashiki, T., Kakutani, R., Takata, H., Nakamura, T., NakamuraTsuruta, S., andAshida, H. (2011): Metabolism and function of enzymatically synthesized glycogen in intestine. XIAsian Congress of Nutrition (ACN2011) Abstract, p. 212.

    2. Ashida, H., Furuyashiki, T., Kakutani, R., Kajiura, H., Yasuda, M., Takata, H., and Kuriki, T. (2012):Enzymatically synthesized glycogen as a novel functional food ingredient. InternationalConference and Exhibition on Nutraceuticals and Functional Foods (ISNFF2012), Abstact p. 218.

    24

    2012-183000

    /UV WO2016111265A1