37
© meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

Embed Size (px)

DESCRIPTION

© meg/aol ‘02 Transform Methods where Kernel of the transform Laplace kernel Independent variable (time). Laplace transform converts an object function, F(t), to its image function, F(p). ~

Citation preview

Page 1: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Solutions To The Linear Diffusion Equation

Martin Eden GlicksmanAfina Lupulescu

Rensselaer Polytechnic InstituteTroy, NY, 12180

USA

Page 2: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Outline• Transform methods

• Linear diffusion into semi-infinite medium– Boundary conditions

– Laplace transforms

• Behavior of the concentration field

• Instantaneous planar diffusion source in an infinite medium

• Conservation of mass for a planar source– Error function and its complement

– Estimation of erf(x) and erfc(x)

• Thin-film configuration

Page 3: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Transform Methods

whereK t, p Kernel of the transform

e pt Laplace kernel

t Independent variable (time).

L F t F t K t, p d t

a

b

˜ F p

L F t Laplace transform converts an object function, F(t), to its image function, F(p). ~

Page 4: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Linear diffusion into a semi-infinite

medium

time

Initial state

Final state

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

Page 5: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Boundary Conditions

1) Initial state:C = 0, for x > 0, t = 0.

2) Left-hand boundary: At x = 0, C0 is maintained for all t > 0.

Ct

D 2Cx2

• The diffusion equation is a 2nd-order PDE and requires two boundary or initial conditions to obtain a unique solution.

Page 6: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Laplace Transform of the Diffusion Equation

object functionC x, t

e ptLaplace kernel

e pt

0

2 Cx2 dt

2

x2 C e pt

0

dt d2 ˜ C d x2

˜ C x, p C x,t e pt d t0

2 Cx 2

Linear Diffusion Equation

˜ C image function

Laplace transformof C(x,t)

˜ C x, p

1D

Ct

0

e pt

0

2 Cx2 dt

Laplace transform ofthe spatial derivative.

Page 7: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Laplace Transforms

The Laplace transform of Fick’s second law when C(x,0)=0

d2 ˜ C d x2

pD

˜ C 0

1D

e pt

0

Ct

dt

1D

Ce pt0

p Ce pt

0

dt

pD

˜ C

integration by parts

Ce pt0

0 C t 0 0 boundary

condition

1D

e pt

0

Ct

dt

Page 8: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Laplace Transforms

˜ C 0 C0e pt

0

dt C0

pe pt

0

˜ C 0 C0

p

Transform of the boundary condition:

˜ C C0

pe

pD

xGeneral transform solution:

˜ C x C0

pe

pD

x

The particular transform solution for the image function arises from the negative root, because the positive root leads to non-physical behavior, . ˜ C (x)

Page 9: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Laplace Transforms

C x, t C0 erfc x2 Dt

The concentration field associated with the image field is found by inverting the transform either by formal means, a look-up table,or using a computer-based mathematics package.

erfc z 1 erf z 1 2

e 2

d0

z

The error function, erf (z) , and its complement, erfc (z) , are defined

Page 10: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Estimation of the Error Function

erf(z) erf( z) 2

z z3

31 !

z5

52 !

z7

73 ! ...

, ( z 1)

• For small arguments:

erf(z) 1 e z 2

z 1

12z2 ...

, (z )

• For very large arguments:

Page 11: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Estimation of the Error Function

erf(z)

1.12838z, (0 z 0.15) 0.0198 z 1.2911 0.4262z , (0.15 z 1.5)0.8814 0.0584z, (1.5 z 2)1, (2 z)

• Piecewise approximations for restricted ranges of the argument:

erf z 1 10.278393z 0.230389z2

0.000972z3 0.078108z4

4

z 5 10 5

• Rational approximation for positive arguments, z > 0:

Useful for spreadsheet calculations.

Page 12: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Error Function

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

Err

or F

unct

ion,

erf

(z)

zz

Erf(

z)

Antisymmetric: erf(z)=-erf(-z)

Page 13: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Complementary Error Function

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

erfc

(z)

zz

Erfc

(z)

Non-antisymmetric: erfc(z) -erfc(-z)

Page 14: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Linear diffusion into a semi-infinite

medium

time

Initial state

Final state

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

t

t =4

t =16

C0

t =1

t =0

x

Page 15: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Concentration versus the similarity variable

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Rel

ativ

e co

ncen

tratio

n, C

/C0

Space-time similarity variable, x/2(Dt)1/2

C x,t C0 erfc x2 Dt

Rel

ativ

e C

onc.

C/C

0

Similarity Variable, x/2(Dt)1/2

Page 16: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Concentration field versus distance

 = 2(Dt)1/2 is the “time tag”

(Note: has the units of distance!)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10Rela

tive

Conc

entra

tion,

C(x

)/C0

Distance, x [ in units of =1]

0.20.5

1

23

510

20=100

Rel

ativ

e C

onc.

C/C

0

Distance, x [units of =1]

time

Page 17: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Diffusion Penetration X*

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10Rela

tive

Conc

entra

tion,

C(x

)/C0

Distance, x [ in units of =1]

0.20.5

1

23

510

20=100

X* = K t1/2

Rel

ativ

e C

onc.

C(x

)/C0

Rel

ativ

e C

onc.

C/C

0

Distance, x [units of =1]

Page 18: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Penetration versus square-root of time

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

X*(0.8)X*(0.6)X*(0.4)X*(0.9)

Pen

etra

tion

Dis

tanc

e, X

* (C/C

0)

Time tag, 2(Dt)1/2

Pen

etra

tion

Dis

tanc

e, X

*(C

/C0)

0.40.6

0.8

0.9

Page 19: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Instantaneous planar diffusion source in an

infinite medium

These diffusion problems concern placing a finite amount of diffusant that spreads into the adjacent semi-infinite solid.

Initial state

Final state

Tim

e

0 x

M

t = 0

-

t

t =1

t =10

Page 20: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

0 x

M

t = 0

-

t

t =1

t =10

0 x

M

t = 0

-

t

t =1

t =10

0 x

M

t = 0

-

t

t =1

t =10

0 x

M

t = 0

-

t

t =1

t =10

Instantaneous planar diffusion source in an

infinite medium

These diffusion problems concern placing a finite amount of diffusant that spreads into the adjacent semi-infinite solid. Ti

me

Page 21: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Instantaneous planar diffusion source

pD

˜ C x, p d2 ˜ C x, p

d x2 C x, 0

D

C x,t

dx M

Application of the Laplace transform to Fick’s second law gives:

The diffusion process is subject to the mass constraint for a unit area:

t = 0, C (x, 0), for all x 0

Initial condition

C (∞, t) = 0

Boundary condition

Page 22: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Instantaneous planar source

pD

˜ C x, p d2 ˜ C x, p

d x2 0

˜ C Ae p D x Be p D x

Reduction of the Laplace transform:

The general solution for which is:

˜ C Ae p Dx , x 0, B 0

˜ C Be p D x, x 0 , A 0

Page 23: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Instantaneous planar source

or e pt

0

C x,t dx dt0

M20

e ptdt

or Bp

De

pD

x

0

M2 p

and so B M

2 pD

C x,t 0

dx M2

Mass constraint for the field:

L C x,t d x

0

L M

2

Laplace transform the mass constraint:

˜ C x, p d x0

M2p

The integral constraint for the image function is:

Page 24: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Instantaneous planar source solution

˜ C x, p M

2 De

xD

p

p

Laplace transforms table shows, L-1 e a p

p

1 t

e a24t

The transform solution

where a = x / (D)1/2.

L-1 ˜ C C x,t = M2 D

L-1 p 12e a p

Inverting the transform solution

C x,t = M

2 Dte

x2

4 Dt .

Diffusion solution

Page 25: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

C(x

)/M [

leng

th]-1

x [distance]

.075

.05

Dt=0

0.025

0.25

13

C (x

) M [l

engt

h] -1

x [distance]

Normalized plot of the planar source solution

time

Page 26: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Conservation of mass for a planar source

x

dx 1C x,t M

(x), thus

C x,t M

d x

1

1

e u2

du

1Gauss’s integral

Page 27: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Thin-film configuration

Thin-film diffusion configuration is used in many experimental studies for determining tracer diffusion coefficients. It is mathematically similar to the instantaneous planar source solution.

C x,t = M

2 Dte

x2

4 Dt .C x, t Mthin film

Dte x 2

4 Dt

where Mthin-film represents the instantaneous thin-film source “strength.”

2Mthin-film=M

Page 28: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Procedure for Analysis of Thin-Film Data

C x,t Mthin film

Dte x 2

4 DtTake logs of both sides of

ln C x, t lnMthin film

Dt

x 2

4Dt

A plot of lnC versus x2 yields a slope=-1/4Dt

Page 29: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Thin-Film Experiment

0

1 105

2 105

3 105

4 105

5 105

0 10 20 30 40 50

Counts 100s

Cou

nts

in 1

00 s

Distance, [microns]

Geiger counter data after microtoning 25 slices from the thin-film specimen.

Page 30: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Log Concentration versus x2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4

log e R

adio

activ

ty, l

nA*

x2, [cm2 25104]

Slope=-1/4Dt

Page 31: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Exercise1. Show by formal integration of the concentration distribution, C(x,t), given by eq.(3.31), that the initial surface mass, M, redistributed by the diffusive flow is conserved at all times, t>0.

C(x,t)d x

M

2 Dte

x 2

4 Dt d x

The mass conservation integral is given by:

C(x, t)d x

2 M2 Dt

e

x2

4Dt d x0

Symmetry of diffusion flow allows:

Page 32: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Exercise

Introduce the variable substitution u= x /2 (Dt )1/2 and obtain:

C(x,t)d x

MDt

e u2

2 Dt d u0

Simplification yields:

C(x, t)d x

M 2

e u2

du0

The diffusant mass is conserved according to:

C(x,t)d x

M erf M

Page 33: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Exercise2a) Two instantaneous planar diffusion sources, each of “strength” M, are symmetrically placed about the origin (x=0) at locations =1, respectively, and released at time t=0. Using the linearity of the diffusion solution develop an expression for the concentration, C(x,t), developed at any arbitrary point in the material at a fixed time t>0. Plot the concentration field as a function of x for several fixed values of the parameter Dt to expose its temporal behavior.

2b) Find the peak concentration at x=0 and determine the time, t*, at which it develops, if D=10-11 cm2/sec, M=25 g/cm2, and the sources are both located 1m to either side of the origin.

2c) Plot the concentration at the plane x=0 against time.

Page 34: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Exercise

2a) C x, t M

2 Dte x 1 2 4 Dt e x1 2 4 Dt

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

C(x

,t)/M

x

0.5

0.05

2

0.025

Dt=0

0.1

0.25

Page 35: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Exercise

C 0,t;ˆ x MDt

e ˆ x 2 4 Dt

2b)For two sources of strength M the concentration is:

C 0,t;ˆ x t

MDt

e ˆ x 24 Dt ˆ x 2

4Dt 2 12t

Differentiate with respect to t :

Dt ˆ x 2

2

The concentration reaches its maximum at t *:

Cmax 0,t M

ˆ x e / 2 0.484 M

ˆ x

The maximum concentration reached at x = 0

Page 36: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Exercise

2c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6 7

C(0

,t) [g

/cm

3 ]

Time [103 sec]

D=10-11 cm/sM=5.10-4 g/cm2

Page 37: © meg/aol ‘02 Solutions To The Linear Diffusion Equation Martin Eden Glicksman Afina Lupulescu Rensselaer Polytechnic Institute Troy, NY, 12180 USA

© meg/aol ‘02

Key Points• Solutions to the linear diffusion equations require two initial or boundary conditions. Examples of

problems with constant composition and constant diffusing mass are demonstrated.

• Laplace transform methods were employed to obtain the desired solutions.

• Solutions are in the form of fields, C(r, t). Exposing the behavior of such fields requires careful parametric description and plotting.

• Similarity variables and time tags are used, because they capture special space-time relationships that hold in diffusion.

• Diffusion solutions in infinite, or semi-infinite, domains often contain error and complementary error functions. These functions can be “called” as built-in subroutines in standard math packages, like Maple® or Mathematica® or programmed for use in spreadsheets.

• The theory for the classical “thin-film” method of measuring diffusion coefficients was derived using the concept of an instantaneous planar source in linear flow.