32
: Quo ? Hans Lüth Institute of Bio - and Nanosystems ( IBN 1 ) Research Centre Jülich and Jülich-Aachen-Research Allience (JARA) JARA-FIT (Fundamentals of Future Information Technology) KITP Conference, Santa Barbara, Nov.2-6, 2009 Electronic Electronic Structure Structure and Transport in and Transport in Semiconductor Semiconductor Nanostructures Nanostructures : : Experiments and Experiments and Theoretical Challenges Theoretical Challenges

: Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

: Quo ?

Hans LüthInstitute of Bio- and Nanosystems ( IBN 1 )

Research Centre Jülich andJülich-Aachen-Research Allience (JARA)

JARA-FIT (Fundamentals of Future Information Technology)

KITP Conference, Santa Barbara, Nov.2-6, 2009

Electronic Electronic Structure Structure and Transport in and Transport in SemiconductorSemiconductorNanostructuresNanostructures: :

Experiments and Experiments and Theoretical ChallengesTheoretical Challenges

Page 2: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Promising Semiconductor Nanostructures:Nano-Devices

Semicond. Nanocolumns

Carbon Nanotubes

Graphene Ribbons

Quantum Dots Q-dot

Page 3: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

OUTLINESemiconductor Nanowires

• Growth and Doping, Band Gap• Electronic Transport

-Effect of Space Charge Layers-Quantum Transport in Narrow Gap SC Wires

Theoretical Challenges

Graphene Ribbons• General Properties, Doping• Multilayer Stacks with Dirac Cone• Dead Edge Region: Gap and Transport

Coupled Quantum Dots as Q-bit

Theoretical Challenges

Theoretical Challenges

Page 4: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

metallic seedseutecticsolution

Successivegrowth of

heterostructure

III-V Semiconductor Whisker Growth (bottom-up)( Vapour-Liquid-Solid Growth )

M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson,K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl.Phys.Lett.,80, (2002) 1058

5 µm

Marker

Preparation forTransport Measurements

Page 5: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Ordered Selective Growth by means of MasksMask Preparation

HSQ Maskon GaAs (111)

GaAs pillarson GaAs (111)

Vera Klinger, J. Wensorra et al. (2008)

MOVPE Growth

Precursors: AsH3, TMGa

Growth Temp.: 7500C

Selected area Growth

Page 6: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

NW1 // <110> NW2 // <110> NW3 // <100> NW4 // <100> NW5 // <112>

A.K. Singh, V. Kumar, R. Note,Y.Kawazoe :Nano Lett. 6, 920 (2006)

Si Nanowires in the Quantum Confinement Regime:Electronic Band Structure Calculations (DFT)

Page 7: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

CdSe Nanowires in the Quantum Confinement Regime

Zhen Li, A. Kornowski, A. Myalitsin, A. Mews: Small 4, 1698 (2008)

Preparation by Solution-Liquid-Solid Synthesis (SLS)1.Step: Bi nanoparticles as catalysts:

BiCl3 and tri-n-octylphosphine (TOP) as reducing agent

2.Step: CdSe wires by addition of:CdO or Cd(Me)2 and TOPSe, Reaction Temperature 3300C

Bi

Precursor: CdO,Cd/Se=7/1

Precursor: Cd(Me)2

3.Step: Termination by Toluene

Precursors:Cd(Me)2 CdO

1.82 eV 1.72 eV

Fluorescence

Bulk gap: 1.7 eV

Page 8: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Doping Deactivation in Si Nanowires: Dielectric MismatchPreparation: Vapour-Liquid-Solid Growth (CVD)

ND determined from thickwires (resistivity)

M.T. Björk, H. Schmid, J. Knoch, H. Riel, W. Riess: Nature Nanotechnology 4, 103 (2009)

22

2

0

2 2

( )(1 )2

phys f phys it oelec phys

physD A it

s

r Q r e Dr r

r ee N N D

ψ

ε ε

−= +

− +

20

0

2 s air sI I

s elec s air air

eE E Fr

ε ε εε ε ε ε ε

− ⎛ ⎞− ≈ ⎜ ⎟+ ⎝ ⎠

corrected for space charge

Dopantelectricallyactive volume

From analysis of exp. data:Dit=6x1012cm-2eV-1

Effect of space chargelayer

Qf=0 fixed oxide charge

sρ0ρ bulk value

Doping: PH3, P built in as in Bulk Material

1 mμChange of Dopant Ionisation Energy:

1/ elecr∝

Page 9: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

OUTLINESemiconductor Nanowires

• Growth and Doping, Band Gap• Electronic Transport

-Effect of Space Charge Layers-Quantum Transport in Narrow Gap SC Wires

Theoretical Challenges

Graphene Ribbons• General Properties, Doping• Multilayer Stacks with Dirac Cone• Dead Edge Region: Gap and TransportTheoretical Challenges

Coupled Quantum Dots as Q-bitTheoretical Challenges

Page 10: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

d<80nm:d<80nm: photocurrents photocurrents exponentiallyexponentiallydecayingdecaying with decreaswith decreas. . thicknessthickness;;fast fast responseresponse

d>80nm: d>80nm: persistentpersistent photocurrentsphotocurrentsafterafter UV UV illuminationillumination, ,

PersistentPhotocurrent

GaN WhiskersGaN Whiskers: : Thickness dependent PhotocurrentThickness dependent Photocurrent

R. Calarco, M. Marso, R. Meijers, T. Richter, A.I. Aykanat, N. Thillosen, T. Stoica, H.L.: NanoLetters 5, 981 (2005)

Page 11: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

)/exp(Photo kTI Φ∝

crit

D

critcrit

D

ddfordqN

ddforconstdqNwith

<=Φ

>==Φ

2

2

16

.16

ε

ε

rateionrecombinatIntPhotocurre Photo

1∝

)/exp( kTrateionrecombinat Φ−∝Fit Fit paramparam.: .: NNDD=6.25x10=6.25x101717cmcm--33

BΦ =0.555eV=0.555eV

Model Model for Thickness dependent Surface Recombinationfor Thickness dependent Surface Recombination

Page 12: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

OUTLINESemiconductor Nanowires

• Growth and Doping, Band Gap•Electronic Transport

-Effect of Space Charge Layers-Quantum Transport in Narrow Gap SC Wires

Graphene Ribbons• General Properties, Doping• Multilayer Stacks with Dirac Cone• Dead Edge Region: Gap and Transport

Coupled Quantum Dots as Q-bit

Theoretical Challenges

Theoretical Challenges

Theoretical Challenges

Page 13: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Resistance of InN Wires

normalized conductance:g G L d β= × ∝

2β =1β =

bulksurface

1.15β =

surface2DEG

Metallic Surface 2DEG

Th. Richter, Ch. Blömers , H. Lüth, R. Calarco, M. Indlekofer, M. Marso, Th. Schäpers: NanoLetters (2008)

grown as Whiskers on Si(111)

Page 14: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Phase Coherence from Univ. Cond. Fluct.: InN WiresDimensions: L=410nm , d=67nm

lΦlΦlΦlΦ

( a )

( b )

L

Φ1

Φ2

Φ3

B ≠ 0

B = 0

Phase Coherence Length:

Bc= Critical Correlation Field

Appl. Phys. Lett. 92, 132101 (2008)Ch. Blömers, Th. Schäpers, T. Richter, R. Calarco, H. Lüth, and M. Marso:

Correlation function

Closed Loops: Aharonov Bohm Interferencies

Page 15: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

InN Whisker (Nanowire): Magnetotransport

wire dimensions: length 420nmdiameter 37nm

flux quantum:

Th. Richter, Ch. Blömers , H. Lüth, R. Calarco, M. Indlekofer, M. Marso, Th. Schäpers: NanoLetters (2008)

-1

0

1

0.0 0.5 1.0 1.5 2.00.0

0.1

0.2

0 2 4 6 8

0

1

0.0

0.1

0.2

0 2 4 6 8 10-2

0

2(e)

(d)

(b)

wire A(a)

Frequency (1/T)

wire B

FFT

Am

plitu

de (a

.u.)

ΔG

/(e2 /h

)

B(T)

st12nd

2

wire A

1st ndndst

1 +2st

2

meas.

1

nd

B (T)

ΔG/(e

2 /h)

wire B

0 periodicityΦ −

0 / 2 periodicityΦ −0 / AΦ

(B // c-axis)

Page 16: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Flux Quantisation: Transport through Angular Momentum States

22 2

22 2

1 12 2 2

z zH L eB rm r m z

∧ ∧

∗ ∗

⎛ ⎞ ∂⎜ ⎟= − −⎜ ⎟ ∂⎝ ⎠

h

( ) ( ) ( ) ( ), ,lH r z E r zψ ϕ χ ψ ϕ χ∧

=

22 2 2

202 2

zl

kE lm m r

ΦΦ∗ ∗

⎛ ⎞= + −⎜ ⎟⎝ ⎠

h h

2zr BΦ π= 0

eh

Φ =

( )2 / 2e m∗−p A

Period 0Φ

( )Re ,rψ ϕ

B

3l =

5F nmλ ≈26l ≈

Typical values:( ) 0.9F c surfE E eV− ≈

0Φ =@

Page 17: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

InAs Columns: Magnetoresistance Oscillations

Column diameter:95 - 115 nm

Offset:0.1kΩ

B c

B

J. Wensorra et al., to be published (IBN, Res. Centre Jülich 2009)

0 / 2Ω

60nm length128nm diameter

125nm length83nm diameter

T=0.9K

T=0.3K

MBE grown Columns (Bottom-up)

105nm diameter

Columns lithographically shaped fromMBE grown Layers in [111] Direction (Top-down)

0 / 2Ω

0 / 2Ω

0 / 2Ω0Ω

1 21 2

( ) exp expie ied d⎛ ⎞ ⎛ ⎞

Ψ = Ψ ⋅ + Ψ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫ ∫r s A s A

h h

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛ΦΦ+=Φ

0

22cos πDCG

Alt`shuler-Aronov-Spivak Interferences

Page 18: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

InAs Nanowires from MOCVD selected area Growth:Stacking Faults

K. Tomioka, J. Motohisa, S. Hara, T. Fukui:Jap. J. Appl. Phys. 46, L1102 (2007)

Spontaneous (pyroelectric) Polarisationalong [0001]

H. Hardtdegen et al.IBN, Res.Centre Jülich (2009)

Effect of Surface States masked by Polarisation Charges at Surface

No Surface Accumulation !?S.A. Dayeh, D. Susac, K.L. Kavanagh, E.T. Yu, D. Wang: Adv.Funct. Mater.,in pressand S.A. Dayeh et al.: Nano Today 4, 347 (2009)

InAs Slab InAs Wire (WZ, ZB segments)

E V, E

C( e

V )

EF

(ZB)

(WZ)

Thickness Axis

ND=5x1016cm-3

Qs/q=1012cm-2

Depletion

Accumul.

Page 19: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Theoretical Challenges

Growth and Doping• Tailoring of Stacking Faults in III-V Nanowires ?

Substrate, Growth Conditions........• Built-in of Dopants, Dopant Deactivation ?

Electronic Band Structure and Band Gap

Surface States and Space Charge Layers ?• Nano Surface Science• Space Charge Layers in the Presence of Defects ?

Electronic Transport• Scattering Mechanisms ?

Surface, Stacking Faults......• Phase Coherence Length, Coherent Transport ?• Spin related Transport and Interferences(Weak Antilocalisation) ?

Page 20: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

OUTLINESemiconductor Nanowires

• Growth and Doping, Band Gap• Electronic Transport

-Effect of Space Charge Layers-Quantum Transport in Narrow Gap SC Wires

Graphene Ribbons• General Properties, Doping• Multilayer Stacks with Dirac Cone• Dead Edge Region: Gap and Transport

Theoretical Challenges

Theoretical Challenges

Coupled Quantum Dots as Q-bitTheoretical Challenges

Page 21: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Graphene: Electronic Structure

//k

K- Doping

1.1x1013 3.7x1013

0

-1

-20 0-0.1 -0.10.1 0.1

ARPES: Photon energy 94eVT=30K

1// (0.1 )k nm−

Bin

ding

ene

rgy

(eV)

A. Bostwick, T. Ohta, Th. Seyller, K. Horn, E. Rotenberg: Nature Physics, 3, 36 (2007)

Dirac point

Young-Woo Son, M.L. Cohen, S.G Louie: Phys. Rev. Lett. 97, 216803 (2006)

Calcul. Band Gap of RibbonsNa=No. of arm chair dimers

Zhihong Chen, J. Appenzeller(IBM, Perdue Univ.)

Top Ti/Au-gate10nm Al2O3 Ribbons

DFT(LSDA)

Edgepassivatedby H Atoms

Removed by atomic H treatment:Graphane

Page 22: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Graphene Ribbons: n-Doping with Ammonia

Xinran Wang et al.: Science 324, 768 (2009) (Stanford, Gainsville, Livermore)

Peel-off Graphene (Monolayer)

Doping: Joule Heating to 3000Cin NH3/Ar, 1Torr

Si

SiO2300nm

Ribbons by e-beam Lithography

0

Ox

EF

Gate GrapheneVgs

Ids Dirac Point

E

300 K

SEM AFM

Unchanged Electron Mobility after Doping:Edge Doping rather than Surface Doping

Stable Doping Conditions, in contrast to physisorbed NHx Species

Ribbon

Page 23: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Multilayer Graphene on 4H-SiCa Dirac Cone like in a Single Sheet

J. Hass, F. Varchon, J.E. Millan-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N. First, L. Magaud, E.H. Conrad:Phys. Rev. Lett. 100, 125504 (2008)

, C-face :

M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer: Phys. Rev. Lett.. 97, 266405 (2006)

1sgn( ) 2 sgn( )nE n c e B n n E n∗= =h

Landau levels for a Dirac cone:

1( ) /2nE n eB m∗= + h )

Electron velocity: c*~108cm/sDirac mass: mD=E/c*~0.0012 m0

bi-layer

R30/R2fault pair

single layer

( for standard 2DEG:

Far IR

(0001)

Interleaved Growth with:300 rotated or+/- 2.20 rotated vs. SiC 1010⎡ ⎤⎣ ⎦

Stacking Faults: Layer Decoupling

3-5 Graphene Monolayers

By Annealing to 1400 0C:

STM

fault pairunit cell

(commensurate)

DFT (VASP code)

Landau Levels

Page 24: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Graphene Nanoribbons:Transport and Gap

M.Y. Han, B. Özyilmaz, Y. Zhang, Ph.Kim: Phys. Rev. Lett. 98, 206805 (2007)

/( )gE W Wα ∗= −

0.2eVnmα 016W nm W∗ ≈

0( ) /G W W Lσ= −

Inactive Widths:

0W W ∗≈

tilted

T=300K

1.6K2e WG

h L from Theory

np

Gap

~16 nm

(lateral confinement)

Graphene Single Sheetson SiO2/Si (gate)

DifferentWidths

DifferentOrientations

Con

duct

ance

0

20

40

60

80

100

Page 25: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Graphene Nanoribbons: Electronic Confinement andCoherence from Magnetotransport

Landau Levelsin confining Ribbon:

SdH Peaks270W nm W∗ = ≠

Fit with

Universal Conduct. Fluctuations :@ 2K:

@ 58K:

1.1l mμΦ ≈430l nmΦ ≈

Claire Berger et al. : Science 312, 1191 (2006)

3 ML graphene on SiC(000-1)Ribbon Width W=500nm

Dead Edge Region

1/ 44 2 20 0( / ) (2 )nE n v W neBvπ⎡ ⎤≈ +⎣ ⎦h h

80 1 10 /v cm s= ×

From Analysis of

Page 26: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Theoretical Challenges

Multilayer Graphene with Dirac Cone (Dispersion)• Why growth of R30/R+/-2 decoupled layers on Si(000-1) ?

Graphene/SiC Interaction or Growth Kinetics• General Conditions for R30/R+/-2 Stacking Fault Growth ?

Surface and Edge Doping of Ribbons,Surface Chemistry in General

• Chemistry and Doping Activity ?• 2D-doping and Dopant Deactivation ?

Edge Structure of Ribbons

• Electronic Edge States and 2D-Space Charge Zones ? • Atomistic Structure and States of Disorder ?

Coherent Transport In Ribbons• Type of Scattering ?• Effect of Substrate ?

Page 27: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

OUTLINESemiconductor Nanowires

• Growth and Doping, Band Gap• Electronic Transport

-Effect of Space Charge Layers-Quantum Transport in Narrow Gap SC Wires

Theoretical Challenges

Graphene Ribbons• General Properties, Doping• Multilayer Stacks with Dirac Cone• Dead Edge Region: Gap and TransportTheoretical Challenges

Coupled Quantum Dots as Q-bitTheoretical Challenges

Page 28: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

V xL xR

+

+

_

_

EE+

E-

R

R

L

L

g

g

e

e

μ

μ

x

x

x

ψ

ψ

( a )

( b )

( c )

( d )electr. Field

E0+

E0-

μ

μ

Realisation of a Q-bit by 2 coupled Q-Dots

Q-bit = 2-level System:

g eα β+Superposition Statefor ~0∈

With increasing electric Field>0∈

Preparation ofR Lor

2 2 20 LRE E t μ= ± + ∈m

LRt is Tunnelling Amplitude between

L RandProbability for Electron in :R

2 2( ) sin ( / )R LRc t t t= h

Page 29: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

µS

µD

µS µD

µS

µD

VSD=VP

VSD=0VSD=VPΔ

Preparation of L Q-bit Realisation Recording

Puls generatorAlGaAs/GaAs 2DEG-Mesa

0 0,5 1 1,5 2Puls duration tP ( ns )

Elec

tron

num

ber

n

0,5

0

T. Hayshi, T. Fujisawa, H.D. Cheong, Y.H. Yeong, Y. Hirayama: Phys. Rev. Lett. 95, 090502-1 (2005)

Q-bit Realization: 2 coupled GaAs Qantum Dots

Dephasing time:1 ns

Measurement contactscoupled electrically

(after pulses tp of variableduration time)

Q-dot within 2DEGSplit-gate Technique:

(by puls tp=80....2000ps)

Osc. Frequ. 2.3Ghz

Page 30: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

J. Gorman, D.G. Hasko, and D.A. Williams : Phys. Rev. Lett. 95, 090502-1 (2005)

Q-bit Realization: 2 coupled Si Qantum Dots in SOI

Dephasing time:200 ns

SET coupled onlyvia electric field!

Manipulation in time domain

For preparation of or L R

Pulse sequence:1) Preparation of R2) Q-bit Realization:

R L±3) Measurement

of L

SET

Sign

al

Puls Duration

Page 31: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

Theoretical ChallengesDecay of Superposition State (Q-bit)

• Coupling of 2-state System to Environment (E) ?• Dephasing time ?

General Description by Density Matrix ρQ-bit: ( )g eα β+Superposition State

Time Development ( U unitary) of Q-bit imbedded in Environment Eleads to Entangled State:

( )g eα β+ E U 0 1g E e Eα β+

2 20 0 1 1g g E E e e E Eρ α β= + 0 1 1 0g e E E e g E Eαβ βα∗ ∗+ +

Only Q-bit is interesting: 2

1 02

0 1

red E

E ETr

E E

α αβρ ρ

βα β

⎛ ⎞⎜ ⎟= =⎜ ⎟⎝ ⎠

Environment develops according to: 1E E = U 0 1 0E E =

Q-bit decays according to /0 1

tE E e τ−∝

τ

Page 32: : Quo - UCSBonline.itp.ucsb.edu/online/excitcm_c09/lueth/pdf/Lueth... · 2009. 11. 4. · : Quo ? Hans Lüth Institute of Bio- and Nanosystems ( IBN 1 ) Research Centre Jülich and

CONCLUSIONS

Preparation, Doping and Electronic Bands

Nano-Surface(Edge) Science

Electronic (Qantum) Transport incl. Spin

Dephasing of Superposition States

The great theoretical Challenges: