8
-81- / 王覺漢 1 、楊政賢 1 、吳佳紋 1 、王誼珍 1,2 、李明宗 1 、張仍奎* 1,2,3 Using Ionic Liquid to Improve Glucose Sensing Performance of PdAu/graphene Nanocomposite Electrodes C. H. Wang 1 , C. H. Yang 1 , J. W. Wu 1 , Y. C. Wang 1,2 , M. T. Lee 1 , J. K. Chang* 1,2,3 Received 30 July 2013; received in revised form 10 January 2014; accepted 16 February 2014 本研究於超臨界二氧化碳環境下合成鈀金/石墨烯(PdAu/graphene)奈米複合材料,並應 用於非酵素型葡萄糖感測器。藉由超臨界流體的低黏滯性及高擴散性等特性,能將鈀金奈 米顆粒均勻地被覆在石墨烯上,所合成的鈀金奈米顆粒約為 5 nm。研究中也使用超臨界流 體技術合成金/石墨烯(Au/graphene)及鈀/石墨烯(Pd/graphene)作為對照組。作為偵測葡萄糖 的電極,鈀金/石墨烯有低於金/石墨烯的氧化電位,高於鈀/石墨烯的氧化電流。為了進一 步提升感測性質,另外設計添加離子液體 1-Butyl-1-Methylpyrrolidinium Bis (trifluoromethylsulfonyl) imide (BMP-NTF 2 )於感測電極中,使其感測靈敏度獲得顯著提升。 關鍵詞:鈀金奈米顆粒;石墨烯;葡萄糖;超臨界二氧化碳;離子液體。 ABSTRACT In this study, we synthesize PdAu/graphene nanocomposites by supercritical carbon dioxide (scCO 2 ) for non-enzymatic glucose detection. With the aid of scCO 2 , which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, the synthesized nano-sized PdAu particles (approximately 5 nm in diameter) are uniformly distributed on graphene. For comparison, Pd/graphene and Au/graphene are both synthesized using the same process. The PdAu/graphene electrode shows higher current density than Pd/graphene and lower oxidation potential than Au/graphene in detecting glucose. With the incorporation of 1-Butyl-1-Methylpyrrolidinium 防蝕工程 第二十八卷第二期 81 ~ 88 2014 6 Journal of Chinese Corrosion Engineering, Vol. 28, No. 6, pp. 81 ~ 88 (2014) ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ 1 國立中央大學材料科學與工程研究所 1 Institute of Materials Science and Engineering, National Central University. 2 國立中央大學化學工程與材料工程學系 2 Department of Chemical and Materials Engineering, National Central University 3 國立中央大學機械工程學系 3 Department of Mechanical Engineering, National Central University * 連絡作者:[email protected]

À á Ó u é ?%Z î * ê Â l È ¤ @ ¸ B A

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Microsoft Word - 280204-1009.doc/
1 1 1 1,2 1*1,2,3
Using Ionic Liquid to Improve Glucose Sensing Performance of PdAu/graphene Nanocomposite
Electrodes C. H. Wang1, C. H. Yang1, J. W. Wu1, Y. C. Wang1,2, M. T. Lee1, J. K. Chang*1,2,3
Received 30 July 2013; received in revised form 10 January 2014; accepted 16 February 2014
/(PdAu/graphene)
/(Au/graphene)/(Pd/graphene)
///
1-Butyl-1-Methylpyrrolidinium Bis (trifluoromethylsulfonyl) imide (BMP-NTF2)

ABSTRACT
In this study, we synthesize PdAu/graphene nanocomposites by supercritical carbon dioxide (scCO2) for non-enzymatic glucose detection. With the aid of scCO2, which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, the synthesized nano-sized PdAu particles (approximately 5 nm in diameter) are uniformly distributed on graphene. For comparison, Pd/graphene and Au/graphene are both synthesized using the same process. The PdAu/graphene electrode shows higher current density than Pd/graphene and lower oxidation potential than Au/graphene in detecting glucose. With the incorporation of 1-Butyl-1-Methylpyrrolidinium
81 ~ 88 2014 6
Journal of Chinese Corrosion Engineering, Vol. 28, No. 6, pp. 81 ~ 88 (2014)

1
1 Institute of Materials Science and Engineering, National Central University. 2
2 Department of Chemical and Materials Engineering, National Central University 3
3 Department of Mechanical Engineering, National Central University * [email protected]
2014 6
-82-
Keywords: PdAu nanoparticle; Graphene; Glucose; Supercritical carbon dioxide; Ionic liquid.
1.

[5-8]




2. 2.1
(graphene nanosheet) modified Staudenmaier [12,13]
5 (Alfa Aesar, with particle size of ~ 70 µm and purity of 99.999%)100
50 50 100 (graphite oxide, GO)
(GO) 5 wt%

2.2 /
Palladium(II)-hexafluoro- acetylacetonate (Pd(hfa)2, Aldrich, 99%)
HAuCl4•3H2O (Aldrich, 98%)
(dimethylamine borane, DMAB, TCI, > 95%)
/
-83-
100 bar 2
/(PdAu/graphene)/
2.3 2.5 mg 650 µl
(isopropyl alcohol, IPA, TEDIA, > 99.5%)90 µl (5 wt% Nafion, Aldrich)
2
15 µl
BMP-NTf2 7 µL
(7 µL + 8 µL)

(cyclic voltammetry)
(chronoamperometry)
(2θ) 40°46.3° 68.1°
Pd (111)Pd (200) Pd (220)(2θ) 38.2°44.5°64.7° 77.6°
Au (111)Au (200)Au (220) Au (331) PdAu 38.8°44.9° 65.7° PdAu/graphene Pd/graphene
Au/graphene
(λ = 0.15418 nm) Scherrer’s equation
(grain size, D)
15.35.4 4.7 nm 1(b) (111)
d 0.23 nm 0.236 nm
0.234 nm
40 wt% 60 wt%
(a) (b) 1 (a) /(Pd/graphene)/(PdAu/graphene)/(Au/graphene) X
(b) d
Figure 1 (a) X-ray diffraction patterns of Pd/graphene, PdAu/graphene, and Au/graphene. (b) Relationship between Au content and d-spacing of deposited particles.
2014 6
-84-

(111)
10 mV/s 3(b)
3(a)/ 0.16 V 0.3 V




(a) (b) (c) (d) 2 (a) /(b) /(c) /(d)

Figure 2 Transmission-electron-microscopy (TEM) bright-field images of (a) Pd/graphene, (b) PdAu/graphene and (c) Au/graphene. (d) High-resolution TEM image of a PdAu nanoparticle.
(a) (b) 3 ///(a) 5 mM 0.1 M NaOH (b)
0.1 M NaOH ( 10 mV/s) Figure 3 Cyclic voltammograms of Pd/graphene, PdAu/graphene, and Au/graphene electrodes recorded in 0.1 M
NaOH solution (a) with 5 mM glucose, and (b) without glucose at a potential scan rate of 10 mV/s.
/
-85-
-0.4 V 0.2 V
0.2 V


(PdOH)



4(b)
z
5
(a) (b) 4 BMPNTf2//BMPNTf2// BMPNTf2// (a) 5 mM
0.1 M NaOH (b) 0.1 M NaOH ( 10 mV/s) Figure 4 Cyclic voltammograms of BMPNTf2/Pd/graphene, BMPNTf2/PdAu/graphene, and BMPNTf2/Au/graphene
electrodes recorded in 0.1 M NaOH solution (a) with 5 mM glucose and (b) without glucose at a potential scan rate of 10 mV/s.
5 ///
BMPNTf2 5 mM
Figure 5 Net response current of Pd/graphene, PdAu/graphene, and Au/graphene electrodes with and without BMPNTf2 incorporation toward sensing of 5 mM glucose.
2014 6
-86-
/

6(b)
6(b) 1 mM 10 mM
(R2 = 0.99)

7
(a) (b) 6 (a) BMPNTf2// 1, 3, 5, 7.5, 10 mM 0.1 M NaOH
(b)
Figure 6 (a) Cyclic voltammograms of BMPNTf2/PdAu/graphene electrode recorded in 0.1 M NaOH solution with glucose concentrations of 1, 3, 5, 7.5, and 10 mM. (b) Net response current density as function of glucose concentration.
7 -0.12 V BMPNTf2//
5 mM 0.05 mM 5 mM

Figure 7 Amperometric responses of BMPNTf2/PdAu/graphene electrode to successive additions of 5 mM glucose, 0.05 mM ascorbic acid (AA), and then 5 mM glucose at -0.12 V.
/
-87-
(-0.12 V) 5 mM 0.05 mM
5 mM


BMP-NTf2//


NSC100-2628-E-008-008-MY3
1. X. H. Kang, Z. B. Mai, X. Y. Zou, P. X. Cai, and J. Y. Mo, Anal. Biochem., 363 (2007) 143.
2. A. Salimi and M. Roushani, Electrochem. Commun., 7 (2005) 879.
3. J. W. Wu, C. H. Wang, Y. C.Wang, and J. K. Chang, Biosens. Bioelectron., 46 (2013) 30.
4. A. K. Geim and K. S. Novoselov, Nat. Mater., 6 (2007) 183.
5. Y. Liu, Y. Dong, C. X. Guo, Z. Cui, L. Zheng, and C. M. Li, Electroanalysis, 24 (2012) 2348.
6. X. Zhong, R. Yuan, and Y. Chai, Chem. Commun., 48 (2012) 597.
7. Y. Y. Song, Z. Gao, K. Lee, and P. Schmuki, Electrochem. Commun., 13 (2011) 1217.
8. H. Nie, Z. Yao, X. Zhou, Z. Yang, and S. Huang, Biosens. Bioelectron., 30 (2011) 28.
9. J. Lu, I. Do, L. T. Drzal, R. M. Worden, and I. Lee, ACS Nano, 2 (2008) 1825.
10. W. Leitner, Acc. Chem. Res., 35 (2002) 746. 11. Electrochemical Aspects of Ionic Liquids, ed. H.
Ohno, John Wiley & Sons, Hoboken, 2005. 12. Staudenmaier, Ber. Dtsch. Chem. Ges. L., 1898, 31,
1481. 13. M. C. Hsiao, S. H. Liao, M. Y. Yen, C. C. Teng, S.
H. Lee, N. W. Pu, C. A. Wang, Y. Sung, M. D. Ger, C. C. M. Ma ,and M.H. Hsiao., J. Mater. Chem., 20 (2010) 8496.
14. L. M. Lu, H. B. Li, F. Qu, X. B. Zhang, G. L. Shen, and R. Q. Yu, Biosens. Bioelectron., 26 (2011) 3500.
15. F. Y. Kong, X. R. Li, W. W. Zhao, J. J. Xu, and H. Y. Chen, Electrochem. Commun., 14 (2012) 59.
2013 7 30
2014 1 10
2014 2 16
2014 6
-88-