32
National Mathematics Survey Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction For several decades now, the gender gap in mathematics degree attainment has remained static while the gender gap in college degree conferment has disappeared. According to the National Center for Education Statistics (U.S. Department of Education), women earned 57%, 60% and 52% of all Bachelor's, Master's and Doctoral degrees respectively in the U.S. in 2013-14. However, women earned only 43%, 41% and 29% of the Bachelor's, Master's and Doctoral degrees respectively in mathematics and statistics in the U.S. in the same year. Further, according to the National Science Foundation, women earned 42% of the Doctoral degrees in Life, Physical, Earth, Math, Computer and Social Sciences, Engineering, and Psychology, but women earned only 25% of the Doctoral Degrees in Mathematics and Computer Sciences in 2015 (National Science Foundation). Additionally, while women constitute 46.8% of the work force, they comprise 25.5% of “Computer and Mathematical Occupations” (U.S. Department of Labor). Prestigious, private universities are of particular interest, because the gender gap in mathematics appears to be worse at these universities. Table 1 Gender Breakdown of Mathematics Departments at Five Group I Private Institutions Number Bachelor’s PhD Senior Faculty Percentage Women Bachelor’s PhD Senior Faculty

€¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

  • Upload
    lyhuong

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

National Mathematics SurveyAmanda Glazer

“You’re a girl, you overthink the problem too much.”

IntroductionFor several decades now, the gender gap in mathematics degree attainment has remained static while the

gender gap in college degree conferment has disappeared. According to the National Center for Education

Statistics (U.S. Department of Education), women earned 57%, 60% and 52% of all Bachelor's, Master's and

Doctoral degrees respectively in the U.S. in 2013-14. However, women earned only 43%, 41% and 29% of the

Bachelor's, Master's and Doctoral degrees respectively in mathematics and statistics in the U.S. in the same

year. Further, according to the National Science Foundation, women earned 42% of the Doctoral degrees in

Life, Physical, Earth, Math, Computer and Social Sciences, Engineering, and Psychology, but women earned

only 25% of the Doctoral Degrees in Mathematics and Computer Sciences in 2015 (National Science

Foundation). Additionally, while women constitute 46.8% of the work force, they comprise 25.5% of

“Computer and Mathematical Occupations” (U.S. Department of Labor). Prestigious, private universities are of

particular interest, because the gender gap in mathematics appears to be worse at these universities.

Table 1

Gender Breakdown of Mathematics Departments at Five Group I Private Institutions

Number

Bachelor’s PhD Senior Faculty

Percentage Women

Bachelor’s PhD Senior Faculty

Harvard 245 58 25 20% 12% 4%

MIT 663 139 51 28% 20% 8%

Yale 176 31 17 26% 16% 6%

Princeton 209 85 41 15% 13% 7%

Brown 113 42 24 27% 21% 8%

The above table reports the number of bachelor’s and doctoral degrees conferred in mathematics between AY09-10 and AY14-15 and

the number of senior faculty members at institutions surveyed in the National Mathematics Survey. It also reports the percentage of

these degree recipients and faculty members that are women. Degree data comes from the Integrated Postsecondary Education Data

System (IPEDS); a collection of annual surveys administered by the U.S. Department of Education’s National Center for Education

Statistics. Faculty data comes from each institution’s mathematics department website as of November 2016. Senior faculty members

include Full Professors, Professors Emeriti and anyone listed under Senior Faculty on the department website (note: at Harvard this

also includes Professors of the Practice).

Page 2: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Available data from five Group I Private universities gives further evidence of the gender gap in

mathematics at the undergraduate, graduate and faculty level. As Table 1 shows, over a recent 6-year period,

none of the above elite mathematics schools matched the national average percentage of mathematics

Bachelor’s degrees awarded to women (44% in 2013-14 for "mathematics, general"). Low proportions of

women graduates persist in the faculty at Group I Private universities; each of the five selected institutions have

less than 10% female senior faculty members. This is unsurprising given that senior faculty composition both

reflects the BA and PhD pipeline of prior years, and also influences the gender composition of new graduates.

Gender-based differences in mathematics achievement may reflect a number of factors. One major

factor is a country’s level of gender equality and the prevalent societal gender stereotypes. In general, countries

that are considered to be more gender equal (as measured by political opportunities and empowerment,

education, etc.), have a smaller gender gap in mathematics at the secondary school level. In fact, the gender gap

in mathematics amongst adolescents disappears in countries that are judged as completely gender equal (Nosek,

2009; Guiso, 2008; Marks, 2008; Hyde and Martz, 2009).

Within countries with greater gender inequality, one of the potential causes of the gender gap in

mathematics is “stereotype threat.” Stereotype threat is when an individual feels at risk of confirming the

negative stereotypes about their group. Stereotype threat can lead women to conform to gender stereotypes and

perform worse on assessments of performance. In the U.S., stereotype threat has been linked among women at

large public universities to worse performance on mathematics tasks (Spencer, Steele and Quinn, 1999).

Stereotype threat has also been linked to decreased interest and persistence in Science, Technology, Engineering

and Mathematics (STEM) fields (Woodcock, 2012; Shapiro and Williams, 2012).

Furthermore, negative stereotypes may lead to unconscious bias in faculty members. Studies have found

that faculty – both men and women - tend to favor men in STEM fields by, for example, being more likely to

select them for research positions (Moss-Racusin, 2012). Science faculty have also been found to use different

language to describe female versus male students in letters of recommendation, focusing more on ability and

using more effective language for male than for female students (Schmader, Whitehead and Wysocki, 2007). A

number of other manifestations of unconscious bias in academia have been well documented, such as a

tendency to hold women to higher standards and judge them more harshly for opportunities for advancement

(Easterly and Ricard, 2011).

Although faculty of all genders can exhibit bias, professor gender can have an important offsetting

effect. Female professors and role models in STEM fields can have a positive effect on female students’ success

(Carrell, Page, and West, 2010; Bettinger and Long, 2005). Furthermore, the success of peers, both close friends

and classmates, often leads to more advanced course taking in adolescence. This influence is particularly

evident amongst female students in regards to female peers (Riegle-Crumb, Farkas and Muller; 2006). This

suggests the importance of female instructors, role models and successful female peers in order to provide an

opposition to gender stereotypes. The current makeup of most mathematics departments in Group I Private

Page 3: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

schools, therefore, has the potential to exaggerate these stereotypes, as they are predominately composed of

male faculty.

Despite the abundance of research on the gender gap in STEM fields and its potential causes, much of

the research focuses on students in secondary and elementary school. The research I have come across that does

focus on undergraduates tends to focus broadly on STEM fields and does not always focus on mathematics in

particular. Although the gender gap in mathematics begins at a very young age, it persists and worsens

throughout college (Griffith, 2010; Brainard and Carlin, 1997). Therefore, it is imperative to conduct studies to

understand the gender gap at the undergraduate level. Furthermore, there is evidence that the prestige of the

school correlates with a larger gender gap in mathematics (Weeden, Thébaud and Gelbgiser, 2017; Espinosa,

2011). This indication serves as motivation to further study elite universities to understand the larger gender gap

at these institutions.

This study focuses on mathematics undergraduate students at Group I Private mathematics universities

in order to understand in particular the gender gap in mathematics at prestigious universities. In order to

investigate the climate in these departments, I conducted a survey of undergraduate mathematics students at the

five elite universities identified in Table 1 in Spring 2016. The primary goal of the survey was to assess the

climate of various prominent mathematics departments nationwide, in particular with regards to gender. The

study also included the collection of in-depth information about Harvard, which will form the basis for a case

study. This paper will be a mixed methods paper presenting some of the key results of this survey using both

quantitative and qualitative data. My analysis presents additional evidence of the gender gap in mathematics and

bias within the field at the undergraduate level at Group I Private universities.

MethodsData for the National Mathematics Survey was collected in February and March of 2016 at five

prestigious, private schools (Harvard, MIT, Princeton, Yale, and Brown). While any student at any university

could fill out the survey, these five schools were primarily targeted for responses. Each of these five schools has

an acceptance rate of less than 10% and is one of the top 15 mathematics schools in the U.S. based on their

graduate program in mathematics (US News & World Report). There were 2,668 total respondents. The survey

was sent out through the help of undergraduate contacts at the targeted universities and the Mathematics and

Statistics department at many of these schools. For example, at Harvard, the math, statistics, applied

mathematics and computer science departments sent out the survey to all concentrators. All mathematics

concentrators at Harvard were also sent a personal email with the survey link.

In order to understand the climate of mathematics departments and make-up of mathematics students at

Group I Private, mathematics universities, I analyze the data from these five, targeted universities. I focus on

mathematics majors/concentrators as well as students who have taken mathematics at the given university. The

Page 4: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

mathematics major/concentrator respondent breakdown for the five, targeted elite universities by gender is as

follows:

Table 2

Total Number of Respondents and Estimated Response Rate

Math Respondents

Total Male Female

Estimated Overall

Response Rate

Estimated Female

Response Rate

Harvard 89 27 58 54% 83%

MIT 84 50 33 19% 27%

Yale 44 34 10 38% 33%

Princeton 44 29 14 32% 67%

Brown 33 20 10 44% 49%

The above table gives the number of undergraduate mathematics majors/concentrators that filled out the National Mathematics Survey

to some degree of completion, the estimated response rate and female response rate at the listed universities.

The estimated response rate was calculated by averaging the total number of mathematics Bachelor’s

degrees conferred (2010-2015) at a given university each year to estimate mathematics degrees conferred in an

average year at that university and then multiplied by four to get the approximate number of mathematics

undergraduates over four years (freshmen through seniors). The total number of survey respondents, over all

four years, from a given university that were mathematics majors/concentrators was divided by this number to

estimate the response rate. Female mathematics major/concentrator response rate was estimated in a similar

way.

The 10-minute survey was delivered via Qualtrics, an online platform. Questions covered a wide range

of topics including college academics, advising/research, study habits, student mathematics organizations,

mathematics department community, family background, mentorship, high school academics and other

demographics. Respondents could opt to not answer any question.

Quantitative Data

BackgroundIn general mathematics majors/concentrators at the various universities were very well prepared upon

entering college. Respondents were asked to report the courses they had taken prior to enrolling in their current

undergraduate institution. Almost all surveyed mathematics majors/concentrators at the five universities had

completed calculus and often more likely than not multivariable calculus before enrolling in college. Many

mathematics students had also completed several other advanced mathematics courses. For example, at

Page 5: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Harvard, 47% of mathematics concentrators had taken Linear Algebra and 27% Differential Equations prior to

enrolling at Harvard. In general, a larger proportion of men than women have a background in advanced

mathematics upon entering college.

Table 3

Advanced Courses Taken Before Entering University

Calculus

Male Female

Multivariable Calculus

Male Female

Linear Algebra

Male Female

Harvard 97% 96% 72% 44% 52% 41%

MIT 96% 94% 66% 64% 60% 24%

Yale 91% 100% 79% 60% 50% 50%

Princeton 90% 93% 66% 71% 52% 43%

Brown 100% 100% 50% 30% 30% 60%

The above table gives the percentage of undergraduate mathematics majors/concentrators that took calculus, multivariable and linear

algebra before attending the given university.

Mathematics majors/concentrators also seemed to come from a rather supportive background in terms of

parental support. Mathematics majors/concentrators were asked: “On a scale of 1 to 5, how much would you

say your parents/guardians emphasized STEM education in your upbringing? 1 corresponds to did not

emphasize STEM and 5 to highly emphasized STEM.” At the five institutions, female mathematics respondents

had an average above 3.5 indicating parental STEM emphasis of moderate to high degree. This level of

emphasis indicates that female mathematics majors/concentrators had at least a medium amount of parental

STEM emphasis in their upbringing. At each of these universities except Princeton, female mathematics

majors/concentrators had a higher degree of parental encouragement (and lower standard deviation in

responses) than their male counterparts.

Table 4

Parental STEM Encouragement

Male Female

Harvard 3.72 (1.22) 4.63 (.86)

MIT 3.77 (1.22) 4.12 (1.09)

Yale 3.48 (1.19) 3.8 (.98)

Princeton 3.73 (.94) 3.64 (.81)

Brown 2.94 (1.2) 4 (.89)

Page 6: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

The above table gives the mean and standard deviation (in parentheses) of response to the question “On a scale of 1 to 5, how much

would you say your parents/guardians emphasized STEM education in your upbringing? 1 corresponds to did not emphasize STEM

and 5 to highly emphasized STEM.” Responses are broken down by female mathematics majors/concentrators and male mathematics

majors/concentrators at each university.

Furthermore, at each of these five institutions, the majority of female mathematics majors/concentrators

and over 45% of male mathematics majors/concentrators has at least one parent with a STEM degree. At all of

these schools, female mathematics majors/concentrators are as or more likely to have a parent with a STEM

degree than male mathematics students. At each of these universities, except Princeton, female math students

are more likely to have a parent with a math degree then their male counterparts. At least 10% of surveyed

female math students at each of these universities have a parent with a math degree.

Table 5

Parent with STEM/Mathematics Degree

Parent with STEM Degree

Male Female

Parent with Mathematics Degree

Male Female

Harvard 74% 74% 14% 15%

MIT 46% 76% 4% 12%

Yale 47% 50% 9% 30%

Princeton 57% 64% 24% 14%

Brown 60% 80% 0% 40%

The above table gives the percentage of undergraduate mathematics majors/concentrators at a given university that have at least one

parent with a STEM degree or, in particular a mathematics degree.

In terms of mentorship, a mentor being defined in the questionnaire as a parent, relative, family friend,

teacher or other adult who especially encouraged the respondent to study math, the majority of mathematics

undergraduates had at least one mathematics mentor. Very few mathematics undergraduates never had a

mathematics mentor, although it was far more common amongst men than women. At most of the five

universities, female mathematics undergraduates were more likely to have 4 or more mentors and less likely to

have never had a mathematics mentor. There is more variation in the number of mentors male math students

had, although it is more likely that men had four or more mentors than no mentor, except at Brown.

Chart 1

Number of Mathematics Mentors

Page 7: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Additionally, mathematics undergraduates generally found mathematics mentors at a young age.

Women mathematics majors/concentrators tend to find their first mathematics mentor at a younger age then

men. Mathematics majors/concentrators, in general, tend to find their first mathematics mentor at a young age,

but there is more variance in this age amongst men. With the exception of male math students at Brown, it is

more likely that math students found their first math mentor when they were younger than 10 than when they

were older than 18.

Chart 2

Age First Mentor Found

Page 8: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Math 55 (Harvard)When studying the gender gap in mathematics undergraduates, it is interesting to investigate the

experience in first year college mathematics courses. This experience can be influential in determining whether

or not a student pursues a mathematics degree. Of particular interest in the Harvard mathematics department is

the course Math 55. Math 25 (Honors Linear Algebra and Real Analysis) and Math 55 (Honors Abstract

Algebra/Real and Complex Analysis) are the most advanced first year course offerings at Harvard. Math 55

prides itself in being regarded as one of the most difficult undergraduate mathematics courses in the world. 63%

of surveyed Harvard mathematics concentrators' first mathematics course at Harvard was Math 25 or Math 55.

Only 5% of surveyed mathematics concentrators began in a single variable calculus course (Math M or 1).

A large percentage of female mathematics concentrators, 26%, reported feeling dissuaded from taking a

mathematics course due to the gender imbalance in a mathematics course. Math 55 exemplifies this gender

imbalance. Five of the last ten semesters (50%) have seen no women enrolled in Math 55. Over the past 5 years,

less than 7% (11/163) of the students enrolled in Math 55 have been women.

Table 6

Page 9: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Math 55 Enrollment

Year Semester Total Enrollment Percent Female

2012-2013 Fall 14 0%

Spring 13 0%

2013-2014 Fall 17 12%

Spring 15 13%

2014-2015 Fall 17 0%

Spring 15 7%

2015-2016 Fall 11 0%

Spring 12 0%

2016-2017 Fall 25 19%

Spring 24 9%

The above table gives the total enrollment and the percentage of those enrolled that are women for the past ten semesters in Harvard’s

Math 55.

The Harvard Mathematics department website advertises this course as “probably the most difficult

undergraduate math class in the country” and that “problem sets can take anywhere from 24 to 60 hours to

complete.” The department says that “a thorough knowledge of multivariable calculus and linear algebra is

almost absolutely required” and that “Students who benefit the most from this class have taken substantial

amounts of advanced mathematics and are fairly fluent in the writing of proofs.” They describe the

demographics of this class as “often contains former members of the International Math Olympiad teams, and in

any event, it is designed for people with some years of university level mathematical experience.”

As shown in the “Background” section of this paper, there is a substantial proportion of sampled female

concentrators that have taken calculus, multivariable calculus and linear algebra, however none of them opted to

take Math 55.

Department and Faculty InvolvementInvolvement in the mathematics department community is important, because it illuminates how

welcome and comfortable students feel in the department. Interaction and comfort with faculty similarly

indicate these aspects of the department. In general, faculty involvement with students at the five universities

was reported to be low. Most mathematics undergraduates reported asking mathematics faculty members for

advice rather infrequently (once a semester or less). Female mathematics students tend to ask for advice less

frequently than male mathematics students.

Chart 3

Page 10: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Frequency of Faculty Advice

Not only do mathematics undergraduates ask for advice from faculty rather infrequently, but high

proportions (over a third at Princeton and Brown and over half at Harvard, MIT and Yale) of mathematics

undergraduates also felt that they had at most one mathematics faculty member they could ask to write them a

letter of recommendation. With the exception of Brown, surveyed women feel they have fewer mathematics

faculty members they can ask for letters of recommendation then men.

Chart 4

Letters of Recommendation

Page 11: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Beyond faculty advice and letters of recommendation, feelings of involvement in the mathematics

department were not ranked very high for most mathematics undergraduates. The mean was under 3.5 for every

school indicating a moderate to low degree of perceived involvement. The mean for female mathematics

students was lower than for male mathematics students at each of the five universities.

Table 7

Perceived Department Involvement

Dept. Involvement: Male Female

Harvard 2.64 (.87) 2.3 (1.27)

MIT 2.49 (.77) 2.38 (.72)

Yale 2.88 (.96) 1.9 (.7)

Princeton 3.36 (.93) 3.17 (.99)

Brown 3.19 (1.01) 3.13 (1.05)

The above table gives the mean and standard deviation (in parentheses) of response to the question “On a scale of 1 to 5, how involved

would you say you are in the mathematics department? 1 corresponds to not involved at all and 5 to very involved.” Responses are

broken down by female mathematics majors/concentrators and male mathematics majors/concentrators at each university.

Page 12: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

While involvement in the mathematics department was not particularly high for either gender, a non-

trivial proportion of both male and female mathematics undergraduates expressed a desire to be more involved

in the mathematics department. With the exception of female mathematics concentrators at Brown, over 40% of

mathematics concentrators/majors expressed a desire to be more involved in their mathematics department than

they are currently.

Table 8

Want More Involvement

Dept. Involvement: Male Female

Harvard 48% 59%

MIT 48% 45%

Yale 41% 60%

Princeton 41% 43%

Brown 47% 30%

The above table gives the percentage of female and male mathematics majors/concentrators at each university that reported wanting to

be more involved in the mathematics department than they currently are.

In sum, mathematics undergraduates do not frequently ask for advice from mathematics faculty nor do

they feel like they have many mathematics faculty members they can ask for a letter of recommendation.

Mathematics undergraduates also feel a low level of involvement in their mathematics department, but a desire

to increase their level of involvement.

Gender Related QuestionsLarge proportions of female mathematics undergraduates at the surveyed universities have felt dissuaded

from taking a mathematics course due to the gender imbalance in the mathematics course:

Table 9

Dissuaded from Mathematics Class Due to Gender Imbalance

Dissuaded Math Class: Female Students Female Concentrators/Majors

Harvard 28% 26%

MIT 23% 39%

Yale 36% 60%

Princeton 18% 14%

Page 13: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Brown 31% 22%

The above table gives the percentage of surveyed female students who have taken a mathematics class and female mathematics

concentrators/majors at each university that have felt dissuaded from taking a mathematics course due to the gender imbalance.

Not only are sizable proportions of women mathematics concentrators feeling dissuaded from taking

mathematics courses due to the gender imbalance, they are also facing comments in regards to their gender and

mathematics ability. For example, at Harvard, 66% of surveyed female mathematics concentrators have faced

gendered comments from other students. These comments and examples of such comments are discussed in the

next section.

Qualitative DataThe survey provided opportunities for respondents to give examples of comments that they had faced or

elaborate on their experiences in mathematics. The relevant questions from the survey questionnaire are:

"In the environment(s) in which you practice mathematics (e.g. mathematics class, office hours, the

mathematics lounge), has another student ever made a comment concerning your gender in regards to

your mathematics skills?"

"In the environment(s) in which you practice mathematics (e.g. mathematics class, office hours, the

mathematics lounge), has a mathematics faculty member ever made a comment concerning your gender

in regards to your mathematics skills?"

Respondents were also asked to rate how negatively or positively these comments affected them and

elaborate on these comments (if applicable). In order to further preserve anonymity all school names have been

eliminated.

Comments from Other StudentsAmongst the 5 schools reported in the previous sections, 50% of female students (from all majors, have

taken at least one college mathematics course) reported comments from other students in regards to their gender

and mathematics ability of which 91% were reported to have had a neutral or negative effect. Respondents were

asked to give examples or elaborate on the types of comments that they had received from other students in

regards to their gender and mathematics ability. The following are some the most frequent categories of

comments with representative examples and explanations from surveyed female students for each category.

Gender Stereotypes

Page 14: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

These comments reinforced negative stereotypes about women and women in mathematics. Typically

they reinforce the negative stereotype that women are not good at mathematics.

"You don't count as a girl because you're good at math"

"You're the only girl I know who is good at math"

""She does math AND is hot, it's crazy" perpetuates the stereotype that to do maths (as a girl) you can't

take care of your appearance (otherwise you must be dumb)."

"Assertions that women are not capable of the same brilliance as men."

"You're a girl, you overthink the problem too much."

"There has been a lot of surprise that I am good at math, and recently, someone even asked me if I had

the right room for a class."

"Girls shouldn't be able to do math"

Disrespect and Disregard for Intelligence

These comments illuminate a lack of respect for female intelligence in mathematics. Women’s ideas and

intelligence are often disregarded. If regarded, their success is attributed solely to their gender and not their

intelligence in this type of comment.

"Sometimes people don't want to work with me because I'm a girl - the most common experience I have

is explaining something to a male classmate, only to have him ask another male classmate to validate

what I've said. UGH."

"being a female in math is difficult. I will never be as respected as my male peers. Many an occasion

occurs when collaborating where my ideas are completely disregarded as the only female in the room

until they have exhausted all their ideas and then finally consider it (maybe)"

"one of my problem set partners mentioned that I should have an easy time finding a summer internship

because I'm a girl."

Page 15: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

"Expressions of surprise at my capability to do certain things"

"If you are a woman and you struggle with math, inevitably someone who thinks he's too clever to be

sexist will say something about men's superior spatial reasoning or complain that professors and

departments cut female students extra slack to improve their gender ratio... It's bitter and annoying, but

at this point in my education it makes me more determined than discouraged to hear that sort of thing."

"It's not like girls will ever need to use math, the only stem they can do is regurgitating biology"

"You only got this opportunity because you're a girl"

“For a girl”

The “for a girl” comments measure a mathematician’s ability against their gender. Women are not

deemed as being good at mathematics generally but rather out of the pool of other women.

"You're good at math for a girl"

"These comments, over time, have had a negative effect-- because other people encouraged me to

compete in the arena of "women in math" and imply that it's good enough-- I need not compare myself

to "people in math" because I'm "good at math for a girl"."

Pressure to Represent

These elaborations discuss a pressure some female mathematics students feel to represent their gender

well, since there are very few women in the mathematics program. They also touch on a sense of competition

felt amongst female math students to do well.

"A mathematics course professor was once discussing the exam results and was showing the results via

demographics. The professor went out of his way to mention that "for some reason, women tended to

much worse than men." Although the data showed this was a true statement, stating it out loud for the

90% male and 10% female class to hear really put a weird shame and pressure on female students, who

already struggle socially and stigmatically in the department."

"I feel alone, increasing the pressure to do well to represent my gender"

Page 16: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

"if a female student asked a stupid question my friend used to say to me "that's one less girl we have to

compete with""

Comments from Mathematics FacultyRespondents were asked to give examples or elaborate on the types of comments that they had received

from faculty in regards to their gender and mathematics ability. Among the 5 schools previously discussed, 15%

of surveyed female students have received a comment from a mathematics faculty member in regards to their

gender and mathematics ability, of which 63% of such comments were reported to have a neutral or negative

effect. Examples and elaborations of such comments are as follows:

"Grad student indicated that he felt that there was no need to be concerned about the number of women

in math or to try to encourage more women to take math. He also stated that he would not mentor a

female student in the same way he would mentor a male student because she might falsely charge him

with sexual harassment. When I confided to a professor that I was having difficulty in his class because I

didn't have a study group to work with in an almost exclusively male environment, his response was to

tell me that if I wasn't able to keep up with the class, perhaps I should request a tutor or drop the course

in favor of an easier one. Professor stated that women simply came in with less math preparation in high

school, and that there was nothing the university could do to fix that. Professor insinuated that I might

not be good enough at math to do a senior thesis, and that I should instead opt for a senior seminar.

Interestingly, the only other people I have found who heard this from him seem to be women."

“There are a couple professors who will actively encourage female undergraduates to try to fight the

gender imbalance in the department, which tends to have slightly positive effect. Every once in a while

other professors will slip and say something that’s a little bit misogynistic, but this is mostly much older

professors, so I tend to just ignore it.”

“A math faculty member with whom I’d been interacting with for several months confusing me on

several occasions for one of the only other women of my ethnicity in the department. On another

occasion, hearing secondhand about a fellow student who was dissuaded from doing research by a male

faculty member specifically on account of her gender.”

""I didn't finish that pset last week." "Of course, look who you were working with" (a group of girls)"

Page 17: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

"A visiting professor walked through at office hours for my math class and commented how much more

attractive girls in math were now than in his day."

"I've had a Math professor looking me up and down with surprise before talking to me and asking me if

I'm sure I can handle maths research."

"They said that they were glad to see a girl who was interested in math, which was reassuring in my

math skills, yet made me concerned as to the assumption that most girls aren't interested"

"Not explicitly referencing my gender as the rationale, but having me and another girl my age work with

a younger and/or less experienced group of students.”

DiscussionFrom the quantitative data, it is apparent that an extremely mathematically well-prepared group of

students go on to concentrate in mathematics. Mathematics concentrators typically come into their

undergraduate university with strong backgrounds in regards to course work and parental support. More often

than not, they have already completed a course in calculus and multivariable calculus and have at least one

parent with a STEM degree. At Harvard, mathematics concentrators typically begin with the most challenging

courses, i.e. most concentrators begin in Math 25 or 55. Female mathematics concentrators tend to come from

even stronger family backgrounds (e.g. more parental STEM emphasis). At first thought, this all seems very

positive: top schools are attracting an extremely talented group of mathematics students. The flip side to this,

however, is that there are very few people concentrating in mathematics that do not come from this particular

background. This enforces the stereotypes of what a mathematician looks like and potentially closes off the

field to a wide group of people by making the barrier to entry too high. Female mathematics students came from

equally strong and well-supported backgrounds, if not more so than males, in regards to family background and

mentorship. This indicates that the barrier to entry is even higher for women.

At the five Group I Private, surveyed universities, there is a consistent trend in substantial proportions of

female mathematics undergraduates feeling dissuaded from taking mathematics courses due to the gender

imbalance and facing comments in regards to their gender and mathematics ability. The qualitative data further

illustrates this problem. There are numerous examples of comments from both other students and faculty that

enforce mathematics stereotypes and insinuate that women are less capable at mathematics. One of the most

frequently cited type of comment was the "for a girl" comment, where students or faculty expressed surprised at

a female mathematics students capability due to her gender or always complemented the student not amongst all

Page 18: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

students but amongst female students specifically. This further highlights that students and faculty members

believe in the stereotype of who can be a mathematician (i.e. men).

While there is variation amongst surveyed universities, the basic trends remain the same. Universities

attract well-prepared and supported mathematics students, but large proportions of female students face a

negative mathematics climate. The national statistics on the proportion of women receiving degrees in

mathematics is already an alarming indicator of the gender gap. The National Mathematics Survey goes further

in showing the negative consequences at elite universities. Female mathematics students feel dissuaded from

taking mathematics courses, often feel more disrespected in mathematics environments and face subtly and

overtly sexist comments. In order to create a diverse and inclusive environment that allows everyone the equal

opportunity to thrive as a mathematician, serious changes must be made.

RecommendationsNational statistics and results from the National Mathematics Survey indicate a clear gender gap in

mathematics and a variety of issues resulting from this gender gap. The natural question then is: what can be

done to improve the climate of university mathematics departments and work to eliminate the gender gap in

mathematics? I conclude with a list of recommendations. These are concrete suggestions of actions that I

believe mathematics departments can take to improve the gender gap and overall climate.

Hire more female faculty members

This is the most important item as the faculty members are how the department presents itself. There is a

clear lack of female faculty members at the surveyed universities. A number of studies (Carrell, Page, and West,

2010; Bettinger and Long, 2005) have found that female professors have a positive effect on the performance of

female undergraduates. The extremely low proportion of female faculty members perpetuates the gender gap in

mathematics. Female faculty members can serve as role models and mentor figures to women in mathematics.

Mathematics departments should be extending several offers to female mathematicians and be actively working

to recruit them. Enough offers should be extended to result in an increase in female mathematics faculty

members.

Note: this also extends to all positions that the department has control over. The department should actively

work to recruit female mathematicians as junior faculty as well. The department should also think about this in

terms of graduate students and postgraduate students, as, for example, the most recent class of mathematics

graduate students at Harvard includes no women.

Mandatory Unconscious Bias Training

Page 19: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Require all faculty members and mathematics course assistants (CAs) to complete an unconscious bias

training. A variety of literature exists on unconscious bias and its harmful effects on women in STEM fields

(Hill, Corbett and St Rose, 2010; Easterly and Ricard, 2011). In order to mitigate its effects, require all faculty

members and CAs to participate in an unconscious bias training. This will also help in reducing comments in

regards to gender and mathematics ability by making people more aware of the effects of their actions and

comments.

Invite female mathematicians to speak

Invite prominent female mathematicians, at least once a semester, to speak. This highlights the

accomplishments of female mathematicians and provides female role models to mathematics students. This also

helps to negate the stereotypes surrounding who can be a mathematician. It will counter the "for a girl"

comments that were prevalent in the comments section of the survey, by enforcing that women can be and are

successful at mathematics not just "for a girl".

Mentorship Program

Create a mentorship program to provide undergraduates with a diverse set of mentors - perhaps pairing

graduate students, postdocs or other faculty members with undergraduates. This allows a diverse set of

undergraduates to receive a diverse set of advice and mentorship. This will bring more concentrators in by

providing more support and a more welcoming environment, as they will have someone to turn to for advice.

Encourage a collaborative environment

Make sure the structure is in place for the mathematics department to be as inclusive and collaborative

as possible. For example, at Harvard, a mathematics night was created once a week in a house dining hall. At

mathematics night, students can meet other students in their classes, work together and get help from their

teachers.

Restructure introductory courses

If necessary, restructure introductory courses to be more welcoming of students from a diverse set of

mathematical backgrounds. Make sure all classes (e.g. Calculus I) count for concentration/major credit so

students coming in with less course background are not at a disadvantage in completing the concentration.

Make sure there are tutors available for students in first year mathematics courses and that students know how

to utilize the support resources available to them.

Provide funding to organizations working to create diversity in the department

Page 20: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

At Harvard, Gender Inclusivity in Mathematics is an organization that works to reduce the gender gap in

mathematics and create a more inclusive environment in the mathematics department. Providing funding for

events sponsored by groups of this nature, including community dinners, speaker series and discussion groups,

supports these goals. If a group of this sort does not exist, start one. Create an Association for Women in

Mathematics (AWM) student chapter in order to create a more inclusive community.

ReferencesBrainard, Suzanne G., and Linda Carlin. "A longitudinal study of undergraduate women in engineering and

science." Frontiers in Education Conference, 1997. 27th Annual Conference. Teaching and Learning in

an Era of Change. Proceedings.. Vol. 1. IEEE, 1997.

“Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2016-17 Edition,

“Labor Force Statistics from the Current Population Survey,” on https://www.bls.gov/cps/cpsaat11.htm

Carrell, Scott E., Marianne E. Page, and James E. West. "Sex and science: How professor gender perpetuates

the gender gap." The Quarterly Journal of Economics 125.3 (2010): 1101-1144.

Easterly, Debra M., and Cynthia S. Ricard. "Conscious Efforts to End Unconscious Bias: Why Women Leave

Academic Research." Journal of Research Administration 42.1 (2011): 61-73.

Espinosa, Lorelle. "Pipelines and pathways: Women of color in undergraduate STEM majors and the college

experiences that contribute to persistence." Harvard Educational Review 81.2 (2011): 209-241.

Griffith, Amanda L. "Persistence of women and minorities in STEM field majors: Is it the school that

matters?." Economics of Education Review 29.6 (2010): 911-922.

Guiso, Luigi, et al. "Culture, gender, and math." SCIENCE-NEW YORK THEN WASHINGTON- 320.5880

(2008): 1164.

Hill, Catherine, Christianne Corbett, and Andresse St Rose. Why so few? Women in science, technology,

engineering, and mathematics. American Association of University Women. 1111 Sixteenth Street NW,

Washington, DC 20036, 2010.

Page 21: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Hyde, Janet S., and Janet E. Mertz. "Gender, culture, and mathematics performance." Proceedings of the

National Academy of Sciences 106.22 (2009): 8801-8807.

Marks, Gary N. "Accounting for the gender gaps in student performance in reading and mathematics: evidence

from 31 countries." Oxford Review of Education 34.1 (2008): 89-109.

Moss-Racusin, Corinne A., et al. "Science faculty’s subtle gender biases favor male students." Proceedings of

the National Academy of Sciences 109.41 (2012): 16474-16479.

National Science Foundation, National Center for Science and Engineering Statistics. 2016. Doctorate

Recipients from U.S. Universities: 2015. Special Report NSF 17-306. Arlington, VA.

Nosek, Brian A., et al. "National differences in gender–science stereotypes predict national sex differences in

science and mathematics achievement." Proceedings of the National Academy of Sciences 106.26

(2009): 10593-10597.

Riegle-Crumb, Catherine, George Farkas, and Chandra Muller. "The role of gender and friendship in advanced

course taking." Sociology of Education 79.3 (2006): 206-228.

Schmader, Toni, Jessica Whitehead, and Vicki H. Wysocki. "A linguistic comparison of letters of

recommendation for male and female chemistry and biochemistry job applicants." Sex Roles 57.7-8

(2007): 509-514.

Shapiro, Jenessa R., and Amy M. Williams. "The role of stereotype threats in undermining girls’ and women’s

performance and interest in STEM fields." Sex Roles 66.3-4 (2012): 175-183.

Spencer, Steven J., Claude M. Steele, and Diane M. Quinn. "Stereotype threat and women's mathematics

performance." Journal of experimental social psychology 35.1 (1999): 4-28.

U.S. Department of Education. Institute of Education Sciences, National Center for Education Statistics.

Bettinger, Eric P., and Bridget Terry Long. "Do faculty serve as role models? The impact of instructor gender

on female students." The American Economic Review 95.2 (2005): 152-157.

Weeden, Kim A., Sarah Thébaud, and Dafna Gelbgiser. "Degrees of Difference: Gender Segregation of US

Doctorates by Field and Program Prestige." Sociological Science 4 (2017): 123-150.

Page 22: €¦ · Web viewNational Mathematics Survey. Amanda Glazer “You’re a girl, you overthink the problem too much.” Introduction. For several decades now, the gender gap in

Woodcock, Anna, et al. "The consequences of chronic stereotype threat: domain disidentification and

abandonment." Journal of personality and social psychology 103.4 (2012): 635.