1
Introduction Recentley, the relationships between geophysical parameters and hydraulic properties have been investigated extensively. Geophysical exploration techniques are used extensively to obtain the properties of saturated and unsaturated zones. Electromagnetic Conductivity, Resistivity and Ground Penetrating Radar methods are used widely in order to derive the lithological boundaries in the hydrological studies and develop of hypothetical models of subsurface materials. For example dependence of dielectric constant of saturated soils on the porosity are known very well (Byrchak et al., 1974). The relation between electrical conductivity (σ) and porosity is also known by the law of Archie (Archie, 1942). In this study, we aim to investigate a relationship between permeability of sample plugs (obtained from a reservoir) and electrical, hydraulic parameters (quadrature conductivity, porosity surface area per unit pore volume, grain size distribution and pore throat size etc.). 30 plug samples have been provided by Iranian Offshore Oil Company (a subsidiary of National Iranian Oil Company). These relatively unconsolidated sandstone plugs have been cored from Soroush oil field located in Persian Gulf. As fluids, brine (for SIP) and tap water (for NMR) is used for experiments. Conclusions In this work we studied on 2 samples; one consolidated sample (sandstone) and one unconsolidated sample (sand)(obtained from a petroleum reservoir) by 2 geophysical methods (SIP and NMR). Our aim is finding a relationship between permeability of sample plugs and electrical and hydraulic parameters using a joint model between SIP and NMR measurements. Our results shows there is a good relationship between perdicted permeability by SIP ( ) and NMR ( ) and measured permeability of these sample. References Binley, A., L. Slater, M. Fukes, and G. Cassiani, 2005, The relationship betweenfrequency dependent electrical conductivity and hydraulic properties of saturated and unsaturated sandstone: Water Resources Research, 41, W12417, doi: 10.1029/2005WR004202. Revil, A., A. Binley, L. Mejus, and P. Kessouri, (2015), Predicting permeability from the characteristic relaxation time and intrinsic formationfactor of complex conductivity spectra, Water Resources Research, 51, 1–29, doi: 10.1002/2015WR017074. Revil, A., and N. Florsch (2010), Determination of permeability from spectral induced. polarization in granular media, Geophys. J. Int., 181, 1480–1498, doi:10.1111/j.1365- 246X.2010.04573.x. Weller. A., Nordsiek, S., and Debschütz. W (2011), Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization, GEOPHYSICS,VOL. 75, NO. 6 NOVEMBER-DECEMBER 2010; P. E215–E226, 11 FIGS., 5TABLES.10.1190/1.3507304. Permeability estimation of hydrocarbon reservoirs samples using Spectral Induced Polarization (SIP) and Nuclear Magnetic Resonance (NMR): a laboratory investigation F. Razavi rad 1,2* , A. Ghorbani 1 , M. Schmutz 2 ,S. Galaup 2 , A. Binley 3 , L. Pigot 2 1. Department of Mining and Metallurgy, Yazd University, Yazd, Iran 2. EA4592 University Bordeaux Montaigne - INP, 1 allée Daguin, Pessac,France 3.Department of Environmental Science, Lancaster University, Lancaster,UK * [email protected] Material and Methods First, it is desired to study the effect of water saturation on NMR and SIP responses. it is planned to saturate plugs with water (0 to 100%) and perform NMR and SIP tests at each step. For instance, a plug is saturated with barin (NaCl solution) up to 100% and, then, NMR and SIP responses are measured. The same measurement will be performed at lower water saturations (75%, 50% and 25%). The following measurements were made on the consolidated sample (13-32H) and one unconsolidated sample (12-4H): 1) Weighting the sample (dry sample weight). 2) Leaving the consolidated sample (13-32H) in the desiccator for one day (Fig.1.a). 3) Injecting the NaCl solution (conductivity 100 mS/m) (for SIP) and tap water (for NMR) into the desiccator in order to saturate the sample and left it for one or two days. A water pump was used to saturate the unconsolidated sample (12-4H) (Fig. 2.a). The schematic diagram for this purpose is shown in the Fig. 2.b. 4) Taking out the sample from the water and weighting it (saturated sample weight). 5) Running the SIP and NMR measurements in 4 different saturation degrees (100%, 75%, 50% and 25%) (Fig. 1.b and 2.c). Figure 1. a) One desiccator was used in order to satuare the consolidated sample. b) SIP FUCHS-III instrument and the SIP setup in order to run some measurements on samples. Figure 2. a) Experimental setup for water displacement in order to saturate the unconsolidated sample (12-4H), b) Schematic diagram of experimental setup for water displacement in order to saturate the unconsolidated sample (12-4H), c) NMR instrument (ARTEC System). Results Figure 3.Magnitude Resistivity and Phase angle spectra for consolidated (13-32H) and unconsolidated sample (12-4H) Table 1. Predicted and measured permeability on the consolidated and unconslidated samples by SIP method Figure 4. T2-distributions determined from the data collected during drainage for consolidated (13-32H) and unconsolidated sample (12-4H). Table 2. Predicted and measured permeability on the consolidated and unconslidated samples by NMR method -5 0 5 10 15 20 25 0.01 0.1 1 10 100 1000 10000 Signal Magnitude Relaxation Time (ms) 13-32H_100% 13-32H_75% 13-32H_50% 13-32H_25% -5 0 5 10 15 20 25 0.01 0.1 1 10 100 1000 10000 Signal Magnitude Relaxation Time (ms) 12-4H_100% 12-4H_75% 12-4H_50% 12-4H_25% -20 0 20 40 60 80 100 0.001 0.01 0.1 1 10 100 1000 Magnitude Resistivity (ohmm) Frequency (Hz) Amplitude Resistivity 13-32H_100% 13-32H_75% 13-32H_50% 13-32H_25% -8 -6 -4 -2 0 2 4 6 8 0.001 0.01 0.1 1 10 100 1000 -Phase (mrad) Frequency (Hz) Phase 13-32H_100% 13-32H_75% 13-32H_50% 13-32H_25% -50 -30 -10 10 30 50 70 90 0.001 0.01 0.1 1 10 100 1000 Magnitude Resistivity (ohmm) Frequency (Hz) Amplitude Resistivity 12-4H_100% 12-4H_75% 12-4H_50% -10 -8 -6 -4 -2 0 2 4 6 8 10 0.001 0.01 0.1 1 10 100 1000 -Phase (mrad) Frequency (Hz) Phase 12-4H_100% 12-4H_75% 12-4H_50% Measured Permeability(mD) (12-4H) mD) ( Predicted Permeability (12-4H) ) ܓ܁۷ ۾( ۲ ܕ ሺ۴ሻ ۴ (Revil and Florsch, 2014) Measured Permeability(mD) (13-32H) Predicted Permeability (mD) 13-32H) ( ܓ܁۷ ۾۲ ۴ (Revil and Florsch, 2014) 39377.4956 41010.98839 8606.37171 7809.826762 Measured Permeability(mD) (12-4H) mD) ( Predicted Permeability (12-4H) ܓ ܀ۻۼǤ ൈ ܂ (Weller et. al, 2011) Measured Permeability(mD) (13-32H) Predicted Permeability (mD) 13-32H) ( ܓ ܀ۻۼǤ ൈ ܂ (Weller et. al, 2011) 39377.4956 35939.9763 8606.37171 8876.69701

0.001 0.01 0.1 1 10 100 1000 Permeability estimation of hydrocarbon … · 2016. 6. 16. · Permeability estimation of hydrocarbon reservoirs samples using Spectral Induced Polarization

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 0.001 0.01 0.1 1 10 100 1000 Permeability estimation of hydrocarbon … · 2016. 6. 16. · Permeability estimation of hydrocarbon reservoirs samples using Spectral Induced Polarization

Intr

oduc

tion

Rece

ntle

y, th

e re

latio

nshi

ps b

etw

een

geop

hysic

al p

aram

eter

s an

d hy

drau

lic p

rope

rtie

s ha

ve b

een

inve

stig

ated

ex

tens

ivel

y. G

eoph

ysic

al e

xplo

ratio

n te

chni

ques

are

use

d ex

tens

ivel

y to

obt

ain

the

prop

ertie

s of

sat

urat

ed a

nd

unsa

tura

ted

zone

s. E

lect

rom

agne

tic C

ondu

ctiv

ity, R

esist

ivity

and

Gro

und

Pene

trat

ing

Rada

r met

hods

are

use

d w

idel

y in

or

der

to d

eriv

e th

e lit

holo

gica

l bo

unda

ries

in t

he h

ydro

logi

cal

stud

ies

and

deve

lop

of h

ypot

hetic

al m

odel

s of

su

bsur

face

mat

eria

ls. F

or e

xam

ple

depe

nden

ce o

f die

lect

ric c

onst

ant o

f sa

tura

ted

soils

on

the

poro

sity

are

know

n ve

ry

wel

l (By

rcha

k et

al.,

197

4). T

he r

elat

ion

betw

een

elec

tric

al c

ondu

ctiv

ity (σ

) and

por

osity

is a

lso k

now

n by

the

law

of

Arch

ie (A

rchi

e, 1

942)

.

In

this

stud

y, w

e ai

m to

inve

stig

ate

a re

latio

nshi

p be

twee

n pe

rmea

bilit

y of

sam

ple

plug

s (o

btai

ned

from

a re

serv

oir)

an

d el

ectr

ical

, hyd

raul

ic p

aram

eter

s (q

uadr

atur

e co

nduc

tivity

, por

osity

sur

face

are

a pe

r un

it po

re v

olum

e, g

rain

size

di

strib

utio

n an

d po

re t

hroa

t siz

e et

c.).

30 p

lug

sam

ples

hav

e be

en p

rovi

ded

by I

rani

an O

ffsho

re O

il Co

mpa

ny (

a su

bsid

iary

of

Nat

iona

l Ira

nian

Oil

Com

pany

). Th

ese

rela

tivel

y un

cons

olid

ated

san

dsto

ne p

lugs

hav

e be

en c

ored

fro

m

Soro

ush

oilf

ield

loca

ted

in P

ersia

n Gu

lf. A

s flu

ids,

brin

e (fo

r SIP

) and

tap

wat

er (f

or N

MR)

is u

sed

for e

xper

imen

ts.

Con

clus

ions

In

thi

s w

ork

we

stud

ied

on 2

sam

ples

; on

e co

nsol

idat

ed s

ampl

e (s

ands

tone

) an

d on

e un

cons

olid

ated

sam

ple

(san

d)(o

btai

ned

from

a

petr

oleu

m re

serv

oir)

by

2 ge

ophy

sical

met

hods

(SIP

and

NM

R). O

ur a

im is

find

ing

a re

latio

nshi

p be

twee

n pe

rmea

bilit

y of

sam

ple

plug

s and

el

ectr

ical

and

hyd

raul

ic p

aram

eter

s usin

g a

join

t mod

el b

etw

een

SIP

and

NM

R m

easu

rem

ents

. O

urre

sults

show

sth

ere

isa

good

rela

tions

hip

betw

een

perd

icte

dpe

rmea

bilit

yby

SIP

()a

ndN

MR

()a

ndm

easu

red

perm

eabi

lity

of th

ese

sam

ple.

Ref

eren

ces

Bi

nley

,A.,

L.Sl

ater

,M.F

ukes

,and

G.Ca

ssia

ni,2

005,

The

rela

tions

hip

betw

eenf

requ

ency

depe

nden

tel

ectr

ical

cond

uctiv

ityan

dhy

drau

licpr

oper

ties

ofsa

tura

ted

and

unsa

tura

ted

sand

ston

e: W

ater

Res

ourc

es R

esea

rch,

41,

W12

417,

doi

: 10.

1029

/200

5WR0

0420

2.

Rev

il, A

., A.

Bin

ley,

L. M

ejus

, and

P. K

esso

uri,

(201

5), P

redi

ctin

g pe

rmea

bilit

y fr

om th

e ch

arac

teris

tic re

laxa

tion

time

and

intr

insic

form

atio

nfa

ctor

of c

ompl

ex c

ondu

ctiv

ity s

pect

ra,

Wat

er R

esou

rces

Res

earc

h, 5

1, 1

–29,

doi

: 10.

1002

/201

5WR0

1707

4.

Rev

il, A

., an

d N

. Flo

rsch

(201

0), D

eter

min

atio

n of

per

mea

bilit

y fro

m sp

ectr

al in

duce

d. p

olar

izatio

n in

gra

nula

r med

ia, G

eoph

ys. J

. Int

., 18

1, 1

480–

1498

, doi

:10.

1111

/j.13

65-

246X

.201

0.04

573.

x.

Wel

ler.

A., N

ords

iek,

S.,

and

Debs

chüt

z. W

(201

1), E

stim

atin

g pe

rmea

bilit

y of

sand

ston

e sa

mpl

es b

y nu

clea

r mag

netic

reso

nanc

e an

d sp

ectr

al-in

duce

d po

lariz

atio

n, G

EOPH

YSIC

S,VO

L.

75, N

O. 6

NO

VEM

BER-

DECE

MBE

R 20

10; P

. E21

5–E2

26, 1

1 FI

GS.,

5TAB

LES.

10.1

190/

1.35

0730

4.

Perm

eabi

lity

estim

atio

n of

hyd

roca

rbon

rese

rvoi

rs s

ampl

es u

sing

Spe

ctra

l Ind

uced

Po

lariz

atio

n (S

IP) a

nd N

ucle

ar M

agne

tic R

eson

ance

(NM

R):

a la

bora

tory

inve

stig

atio

n

F. R

azav

i rad

1,2*

, A. G

horb

ani1

, M. S

chm

utz2

,S. G

alau

p2 ,

A. B

inle

y3, L

. Pig

ot2

1. D

epar

tmen

t of

Min

ing

and

Met

allu

rgy,

Yaz

d U

nive

rsity

, Yaz

d, Ir

an

2. E

A45

92 U

nive

rsity

Bor

deau

x M

onta

igne

- IN

P, 1

allé

e D

agui

n, P

essa

c,Fr

ance

3.

Dep

artm

ent o

f Env

ironm

enta

l Sci

ence

, Lan

cast

er U

nive

rsity

, Lan

cast

er,U

K

* Fat

ima.

Rad

@ip

b.fr

Mat

eria

l and

Met

hods

Firs

t, it

is de

sired

to s

tudy

the

effe

ct o

f wat

er s

atur

atio

n on

NM

R an

d SI

P re

spon

ses.

it is

pla

nned

to s

atur

ate

plug

s w

ith w

ater

(0 to

10

0%) a

nd p

erfo

rm N

MR

and

SIP

test

s at

eac

h st

ep. F

or in

stan

ce, a

plu

g is

satu

rate

d w

ith b

arin

(NaC

l sol

utio

n) u

p to

100

% a

nd, t

hen,

N

MR

and

SIP

resp

onse

s are

mea

sure

d. T

he sa

me

mea

sure

men

t will

be

perfo

rmed

at l

ower

wat

er sa

tura

tions

(75%

, 50%

and

25%

).

The

follo

win

g m

easu

rem

ents

wer

e m

ade

onth

e co

nsol

idat

ed sa

mpl

e (1

3-32

H) a

nd o

ne u

ncon

solid

ated

sam

ple

(12-

4H):

1)W

eigh

ting

the

sam

ple

(dry

sam

ple

wei

ght)

. 2)

Leav

ing

the

cons

olid

ated

sam

ple

(13-

32H)

in th

e de

sicca

tor f

or o

ne d

ay (F

ig.1

.a).

3)In

ject

ing

the

NaC

l sol

utio

n (c

ondu

ctiv

ity 1

00 m

S/m

) (fo

r SIP

) and

tap

wat

er (f

or N

MR)

into

the

desic

cato

r in

orde

r to

satu

rate

the

sam

ple

and

left

it f

or o

ne o

r tw

o da

ys. A

wat

erpu

mp

was

use

d to

sat

urat

e th

e un

cons

olid

ated

sam

ple

(12-

4H)

(Fig

. 2.a

). Th

e sc

hem

atic

dia

gram

for t

his p

urpo

se is

show

n in

the

Fig.

2.b

. 4)

Taki

ng o

ut th

e sa

mpl

e fr

om th

e w

ater

and

wei

ghtin

g it

(sat

urat

ed sa

mpl

e w

eigh

t).

5)Ru

nnin

g th

e SI

P an

d N

MR

mea

sure

men

ts in

4 d

iffer

ent s

atur

atio

n de

gree

s (10

0%, 7

5%, 5

0% a

nd 2

5%) (

Fig.

1.b

and

2.c

).

Figu

re 1

. a) O

ne d

esic

cato

r was

use

d in

ord

er to

satu

are

the

cons

olid

ated

sam

ple.

b) S

IP F

UCH

S-III

inst

rum

ent a

nd th

e SI

P se

tup

in o

rder

to ru

n so

me

mea

sure

men

ts o

n sa

mpl

es.

Fi

gure

2. a

) Exp

erim

enta

l set

up fo

r wat

er d

ispla

cem

ent i

n or

der t

o sa

tura

te th

e u

ncon

solid

ated

sam

ple

(12-

4H),

b) S

chem

atic

dia

gram

of e

xper

imen

tal

setu

p fo

r wat

er d

ispla

cem

ent i

n or

der t

o sa

tura

te th

e u

ncon

solid

ated

sam

ple

(12-

4H),

c) N

MR

inst

rum

ent (

ARTE

C Sy

stem

).

Res

ults

Figu

re 3

.Mag

nitu

de R

esist

ivity

and

Pha

se a

ngle

spec

tra

for c

onso

lidat

ed (1

3-32

H) a

nd u

ncon

solid

ated

sam

ple

(12-

4H)

Ta

ble

1. P

redi

cted

and

mea

sure

d pe

rmea

bilit

y on

the

cons

olid

ated

and

unc

onsli

date

d sa

mpl

es b

y SI

P m

etho

d

Figu

re 4

. T2-

dist

ribut

ions

det

erm

ined

from

the

data

col

lect

ed d

urin

g dr

aina

ge fo

r con

solid

ated

(13-

32H)

and

unc

onso

lidat

ed sa

mpl

e (1

2-4H

).

Tabl

e 2.

Pre

dict

ed a

nd m

easu

red

perm

eabi

lity

on th

e co

nsol

idat

ed a

nd u

ncon

slida

ted

sam

ples

by

NM

R m

etho

d

-50510152025

0.01

0.1

110

100

1000

1000

0

Signal Magnitude

Rel

axat

ion

Tim

e (m

s)

13-3

2H_1

00%

13-3

2H_7

5%

13-3

2H_5

0%

13-3

2H_2

5%

-50510152025

0.01

0.1

110

100

1000

1000

0

Signal Magnitude

Rel

axat

ion

Tim

e (m

s)

12-4

H_10

0%

12-4

H_75

%

12-4

H_50

%

12-4

H_25

%

-20020406080100 0.

001

0.01

0.1

110

100

1000

Magnitude Resistivity (ohmm)

Freq

uenc

y (H

z)

Ampl

itude

Res

istiv

ity

13-3

2H_1

00%

13-3

2H_7

5%

13-3

2H_5

0%

13-3

2H_2

5%

-8-6-4-202468 0.00

10.

010.

11

1010

010

00

-Phase (mrad)

Freq

uenc

y (H

z)

Phas

e

13-3

2H_1

00%

13-3

2H_7

5%

13-3

2H_5

0%

13-3

2H_2

5%

-50

-30

-101030507090

0.00

10.

010.

11

1010

010

00

Magnitude Resistivity (ohmm)

Freq

uenc

y (H

z)

Ampl

itude

Res

istiv

ity

12-4

H_10

0%

12-4

H_75

%

12-4

H_50

%

-10-8-6-4-20246810

0.00

10.

010.

11

1010

010

00

-Phase (mrad)

Freq

uenc

y (H

z)

Phas

e

12-4

H_10

0%

12-4

H_75

%

12-4

H_50

%

Mea

sure

d Pe

rmea

bilit

y(m

D)

(12-

4H)

mD)

(Pr

edic

ted

Perm

eabi

lity

(1

2-4H

)

)(

(R

evil

and

Flor

sch,

201

4)

Mea

sure

d Pe

rmea

bilit

y(m

D)

(13-

32H)

Pred

icte

d Pe

rmea

bilit

y (m

D)

13-3

2H)

( (R

evil

and

Flor

sch,

201

4)

3937

7.49

56

4101

0.98

839

86

06.3

7171

78

09.8

2676

2

Mea

sure

d Pe

rmea

bilit

y(m

D)

(12-

4H)

mD)

(Pr

edic

ted

Perm

eabi

lity

(1

2-4H

)

(W

elle

r et.

al, 2

011)

Mea

sure

d Pe

rmea

bilit

y(m

D)

(13-

32H)

Pred

icte

d Pe

rmea

bilit

y (m

D)

13-3

2H)

(

(Wel

ler e

t. al

, 201

1)

3937

7.49

56

3593

9.97

63

8606

.371

71

8876

.697

01