71
Ball mills Michael Müller- Pfeiff er Research Institute of the Cement Industry (Düsseldorf) Seminar Grasim, 28 February 2007

03 Ball Mills

Embed Size (px)

Citation preview

Page 1: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 1/71

Ball mills

Michael Müller-PfeifferResearch Institute of the Cement Industry (Düsseldorf)Seminar Grasim, 28 February 2007

Page 2: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 2/71

Structure

1. Introduction

2. Movement of grinding media in a tube mill

3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation7. Case studies

8. Summary

Page 3: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 3/71

Ball mill for dry grinding (e.g. cement)

Coarse grinding chamber33 % of total grinding path length

Lifter plate lining

100 mm – 60 mm balls

Fine grinding chamber67 % of total grinding path length

Classifying plate lining

50 mm - 15 mm balls

Intermediate diaphragm

Discharge diaphragm

Page 4: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 4/71

Open circuit ball mill grinding plant

Page 5: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 5/71

Open circuit ball mill grinding plant

Advantage: Simple plant layout with minimal cost

Little space requirement

Simple process control

Disadvantage: High energy consumption – only for coarsercements suitable

High fineness cements cannot be produced

Fineness of cement is only adjustable by feedmass flow

At big mills very high mill temperatures

Page 6: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 6/71

Closed-circuit ball mill grinding plant

Page 7: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 7/71

Closed-circuit ball mill grinding plant

Advantage: Lower power consumption than an open circuit ball mill

High cement fineness achievable

Cement fineness can be controlled with separator adjustment

Disadvantage: Closed-circuit mills are more sophisticated and can havemore technical problems

Larger space requirement

Higher investment cost (+ 25 to 30 % incl. housing)

Page 8: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 8/71

Structure

1. Introduction

2. Movement of grinding media in a tube mill

3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation7. Case studies

8. Summary

Page 9: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 9/71

Movement of grinding media in a tube mill

Relative mill speed in %

20 40 60 70 80 90

     B    a     l     l     f     i     l     l     i    n    g

     l    e    v    e     l     i    n     %10

20

30

40

Page 10: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 10/71

Movement of grinding media in a tube mill

Page 11: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 11/71

Movement of grinding media in a tube mill

Page 12: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 12/71

Movement of grinding media in a tube mill

Page 13: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 13/71

• The relative mill speed is the relation of actual mill speed tocritical mill speed

Movement of grinding media in a tube mill

%100=

critical

actualrelative

n

nn

i

critical

i

critical

 Dn

 Dgn

298.42

230

=

=

  

• The critical mill speed is that speed of rotation at which the ballsstick to the mill shell and do not fall, that means the centrifugalpower neutralizes the force of gravity

Page 14: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 14/71

Ball filling level

%100164.1068.1

 

 

 

 =

igballfillin  D

h

Recommended ball filling level:

1. Chamber: 26 – 32 %

2. Chamber: 24 – 28 %

Page 15: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 15/71

Structure

1. Introduction

2. Movement of grinding media in a tube mill

3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation7. Case studies

8. Summary

Page 16: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 16/71

Necessary ball size

Big particle

Page 17: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 17/71

Necessary ball size

Big particle

Page 18: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 18/71

Necessary ball size

Small

particle

Page 19: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 19/71

Necessary ball size

Small

particle

Page 20: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 20/71

Ball charge – Size distribution chamber 1

Example for ball size distribution for ball mills in closed circuit with a high

efficiency separator (without pregrinding)

1590-20253025-%

Average ball-weight

(g/pc)

5060708090100DBall

(mm)

1. Chamber

100 mm-balls are only necessary in case of

• Very coarse clinker or

• Small diameter mills

Page 21: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 21/71

Ball charge – Size distribution chamber 2

Example for ball size distribution for ball mills in closed circuit with a high

efficiency separator (without pregrinding)

4915232420104%

Average ball-weight

(g/pc)

172025304050DBall

(mm)

2. Chamber

Some 50 and 40 mm-balls are necessary to ensure the comminution of

oversized particles passing the intermediate diaphragm

Page 22: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 22/71

Ball charge

• New arrangement of ball charge

• Removal of worn and undersized grindingballs

• Recommended once a year

Page 23: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 23/71

Ball filling level – coarse feed material

0

6

12

18

1,5 2,0 2,5 3,0 3,5 4,0

L/D-Ratio [-]

   s   p   e   c .   p   o   w   e   r   c   o   n   s   u   m   p    t    i   o   n    [    k    W    h    /    t    ]

0,0

0,4

0,8

1,2

1,6

2,0

2,4

    t    h   r   o   u   g    h

   p   u    t    [    t    /    h    ]

15 %

20 %

25 %

throughput

spec. power consumption

Page 24: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 24/71

Ball filling level – fine feed material

0

6

12

18

1,5 2,0 2,5 3,0 3,5 4,0

L/D-Ratio [-]

   s   p   e   c .   p   o   w   e   r   c   o   n   s   u   m   p    t    i   o   n    [    k    W    h    /    t    ]

0,0

0,4

0,8

1,2

1,6

2,0

2,4

    t    h   r   o   u   g

    h   p   u    t    [    t    /    h    ]

15%

20%

25%

throughput

spec. power consumption

Page 25: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 25/71

Structure

1. Introduction

2. Movement of grinding media in a tube mill

3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation7. Case studies

8. Summary

Page 26: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 26/71

Movement of grinding media in ball mills

Coarse grinding chamber: Movement with cataract portion – lifter plate lining

Fine grinding chamber: cascade movement – smoother lining profile

Page 27: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 27/71

Lifter lining

Tasks:

• Protection of the mill shell

• Good ball lifting

• Throughput increase

• Wear resistant

(high chromium cast)

Page 28: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 28/71

Classifying lining

Tasks:

• Protection of the mill shell

• Good ball classification

• Throughput increase

• Wear resistant

(high chromium cast)

8 Kg

Page 29: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 29/71

Classifying lining – new Magotteaux Xclass

Advantage:

• Reduction of lining weight

• Faster and cheaperinstallation

• 1 % energy saving

Page 30: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 30/71

Fixing of liner plates

boltless

bolted

semi-bolted

Page 31: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 31/71

Fixing of liner plates

bolted

Advantage: mechanically stable

insensitive in case ofbreakage of a plate

simple installation

Disadvantage: plates must bemanufactured with theaccurate dimension

boreholes in the mill

shell must be accuratelypositioned

Page 32: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 32/71

Fixing of liner plates

semi-bolted and boltless

Advantage: easier manufacture

boltless lined mills don’tspread

Disadvantage: plates must be

manufactured with theaccurate dimension

sophisticated installation

sensitive in case of

broken plates

Page 33: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 33/71

Intermediate diaphragm

Tasks:

• Prevent passing of grinding balls intothe other grinding chamber

• Prevent passing of oversized particlesinto the fine grinding chamber

• Material transport:

• Separation of air and material

• Material shall enter the ballcharge in 2. chamber directlybehind the diaphragm

• Control of material filling level in thecoarse grinding chamber

Page 34: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 34/71

Intermediate diaphragm

• Consists of several cast segments foreasy installation

• Double wall partition with 2 front wallsand lifter scoops

• Central hole for mill ventilation

• Entrance side: Slot plates with slotwidth of 6 to 10 mm

• Slot 2 times wider at the exit side

• Active surface 5 – 10 %

Page 35: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 35/71

Intermediate diaphragm – Separation of air and material

transport

Old design New design

Page 36: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 36/71

Intermediate diaphragm – Separation of air and material

transport

Page 37: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 37/71

FLS-Combidan diaphragm

Screen plate

Coarse grate

Page 38: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 38/71

Discharge diaphragm

• Design comparable tointermediate diaphragm

• Central hole for millventilation

• Entrance side: Slot plates

with slot width of 6 to 10 mm• Slot 2 times wider at the exit

side

• Active surface 5 – 10 %

Page 39: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 39/71

Lifetime of wear resistant products of ball mills (12 % Cr)

• Mill inlet (liner plates): 12,000 – 17,000 h

• Lifter plates: 35,000 h

• Intermediate wall: slot plates: 13,000 h

back board: 19,000 h

• Classifying liner plates: 60,000 h

• Outlet wall: slot plates: 20,000 h

• Grinding balls: 40 g/t

Page 40: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 40/71

Mill inlet

• Material shall enter the ball chargedirectly behind the mill inlet

• Separation of air and material feeding

Page 41: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 41/71

Mill drive technology

Girth gear and pinion drive

Central driveRing motor

Page 42: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 42/71

Girth gear and pinion drive

Advantage: Low investment costs

Little space requirement

Disadvantage: With single gear and pinion drive

capacity is limited to 5000 kW

(Double gear and pinion drive farhigher capacities transmittable)

Page 43: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 43/71

Central drive

Advantage: Low maintenance

Disadvantage: 50 % more expensive than singlegear and pinion drive

With co-rotating planetary stagetransmittable power is limited to5000 kW

Page 44: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 44/71

Ring motor

Advantage: Unlimited drive capacity

No gear

Low required space

Rotational speed continuously

adjustableLowest maintenance requirementand highest availability

Disadvantage: High investment costs

Page 45: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 45/71

Mill bearings

Slide shoe bearings

Trunnion supports

Page 46: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 46/71

Trunnion supports

Disadvantage:

• High loading of mill front walls (risk of damage by material fatigue)

• Temperature problems of the trunnion bearing in case of the useof hot gas (e.g. raw mills)

• High gas velocities in mill trunnion

• Difficult material feeding

• Higher investment costs

Page 47: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 47/71

Slide shoe bearing

Advantage:

• Easy alignment

• Simple foundation

• Reduced Length

• Less weight of mill shell

Page 48: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 48/71

Structure

1. Introduction

2. Movement of grinding media in a tube mill3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation

7. Case studies

8. Summary

Page 49: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 49/71

Mill ventilation

Tasks of mill ventilation:

• Dedusting

• Cooling• Support of material transport

Air volume flow: 0.2 – 1.0 m³/kgthroughput

Limit values for the air velocity in thefree cross section:

Open circuit mills: < 1.2 m/s

Closed circuit mills: < 1.4 m/s

Page 50: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 50/71

Water injection

• Usually water injection from the discharge sideinto chamber 2 (warmest part of the mill)

• In case of high clinker temperature also waterinjection into chamber 1 possible

• It is better to cool the balls than to cool the air

• Right positioning of the water injection is important

Page 51: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 51/71

Water injection chamber 1

air

water

    w    a     t    e    r

    a     i    r

Page 52: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 52/71

Grinding aids

Specification:

• Reduce adhesive forces between fine particles• Prevent coating of linings and grinding balls in the 2. Chamber

• Improve the flowability of cement

• Improve the separation efficiency in the classifier• Water is the most simple grinding aid

• Surface active organic liquids are more effective(e.g.Triethanolamin 0.02 - 0.06 %, Ethylenglycol 0.02 – 0.08 % )

• By addition of grinding aids energy saving up to 25 % andthroughput increases up to 40 % are possible

Page 53: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 53/71

Structure

1. Introduction

2. Movement of grinding media in a tube mill3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation

7. Case studies

8. Summary

Page 54: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 54/71

Mill investigation

• Control of condition of wearing parts(lining, slot plates, etc.)

• Control of ball filling level• Sampling at each meter of the grinding path

• Recommended once a year

S

Page 55: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 55/71

Structure

1. Introduction

2. Movement of grinding media in a tube mill3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation

7. Case studies

8. Summary

1 Ch b B ll h t

Page 56: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 56/71

1. Chamber - Ball charge too coarse

Cause: Too big ball charge

Effect: Inefficient grinding

Number of ball impacts onmaterial too low

1 Ch b B ll h t

Page 57: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 57/71

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Length of grinding path in m

    R   e   s

    i    d   u   e    i   n    %

2000 µm

1000 µm

400 µm

200 µm

90 mm

40 µm

Chamber 1 Chamber 2

1. Chamber - Ball charge too coarse

1 Chamber Ball charge too fine

Page 58: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 58/71

1. Chamber – Ball charge too fine

Cause: Very big clinker pieces,

Too small ball charge

Effect: Coarse material particles arenot sufficiently comminuted and

accumulated in front of thediaphragm

1 Chamber ball charge too fine

Page 59: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 59/71

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Length of grinding path in m

    R   e   s    i    d   u   e    i   n    %

4000 µm

2000 µm1000 µm

400 µm

200 µm

90 µm

40 µm

Chamber 1 Chamber 2

1. Chamber – ball charge too fine

2 Chamber Ball charge to coarse

Page 60: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 60/71

2. Chamber – Ball charge to coarse

Cause: Too big grinding balls,

Effect: Inefficient grinding

Low throughput

High energy consumption

2 Chamber Ball charge to coarse

Page 61: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 61/71

2. Chamber – Ball charge to coarse

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12

Lenth of grinding path m

    R   e   s    i    d   u   e    i   n    %

4000 µm

2000 µm

1000 µm

400 µm

200 µm

90 µm

40 µm

Chamber 1 Chamber 2

2 Chamber – Ball charge too fine

Page 62: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 62/71

2. Chamber – Ball charge too fine

Cause: Too small grinding balls,worn grinding balls (ball scrap)

Oversized particles passinginto the 2. chamber

Effect: Oversized particles are notcomminuted and accumulated

in the 2. chamber

2 Chamber – Ball charge too fine

Page 63: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 63/71

2. Chamber – Ball charge too fine

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11

Length of grinding path in m

    R   e   s    i    d   u   e    i   n    %

4000 µm

2000 µm

1000 µm

400 µm

200 µm

90 µm

40 µm

Chamber 1 Chamber 2

Too high material filling level

Page 64: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 64/71

Too high material filling level

Cause: blocked slots in the outletdiaphragm

Effect: Ball hits partly are absorbed

high energy consumption

low throughput

Too high material filling level

Page 65: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 65/71

Too high material filling level

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Length of grinding path in m

    R   e   s    i    d

   u   e    i   n    %

4000 µm

2000 µm

1000 µm400 µm

200 µm

90 µm

40 µm

Chamber 1 Chamber 2

Too low material filling level

Page 66: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 66/71

Too low material filling level

Cause: Too high ball filling level

Effect: high energy consumption

high wear

Bad material supply in the mill inlet

Page 67: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 67/71

pp y

Cause: High air velocity in mill inlet

Bad material supply

Effect: Material is sucked into the mill

The first meter of the coarsegrinding chamber get lost

Bad material supply in the mill inlet

Page 68: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 68/71

pp y

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12

Length of grinding path in m

     R    e    s     i     d

    u    e     i    n     %

10000 µm4000 µm

2000 µm

1000 µm

400 µm

200 µm

90 µm

Chamber 1 Chamber 2

Structure

Page 69: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 69/71

1. Introduction

2. Movement of grinding media in a tube mill3. Ball charge and ball filling level

4. Components of ball mills (linings, diaphragms, mill inlet, drive,

bearing)

5. Mill ventilation, water injection and grinding aids

6. Mill investigation

7. Case studies

8. Summary

Ball mills - summary

Page 70: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 70/71

y

• High grinding energy consumption - less than 10 % oftotal grinding energy is used for comminution

• Optimal adjustment of the ball mill (ball charge, ballfilling level, mill ventilation) is very important

• Regularly control of the condition of the wearing parts(lining, diaphragm)

• Possible optimisation potentials:

• Ball charge

• Diaphragm• Lining

• Water spray equipment

Summary

Page 71: 03 Ball Mills

8/8/2019 03 Ball Mills

http://slidepdf.com/reader/full/03-ball-mills 71/71

Thank you for your attention!

Any questions?