03 Inverter

Embed Size (px)

Citation preview

  • 7/30/2019 03 Inverter

    1/93

    CMOS INVERTER

    12/03/22 1TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    2/93

    The CMOS Inver t er St a t ic Mode l

    Outline First Glance Digital Gate Characterization Static Behavior (Robustness)

    VTC Switching Threshold Noise Margins

    12/03/22 2 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    3/93

    The CMOS Inver t er :

    A Fi rs t Glanc e

    VDD

    Vinout

    CL

    12/03/22 3 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    4/93

    CMOS Invert ers (1)

    VDD

    PMOS

    InOut

    1.2m= 2

    Polysilicon

    Metal1

    GND

    NMOS

    12/03/22 4 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    5/93

    CMOS Inver t er Opera t ion Pr inc ip le

    1 0

    VOH = VDD VOL = 0 5.2

    12/03/22 5 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    6/93

    Dig i t a l Gat e Fundam ent a l

    Parameters Functionality

    Reliabilit Robustness

    Area Performance

    Power Consumption

    Energy

    12/03/22 6 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    7/93

    The Ideal Invert er

    V

    Ri =

    R =

    g =-

    12/03/22 7 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    in

  • 7/30/2019 03 Inverter

    8/93

    St at ic CMOS Propert ies

    Basic inverter belongs to class of staticcircuits: output always connected to either

    DD SS.

    Rail to rail voltage swing

    Ratio less design

    Low output impedanceV

    Extremely high input impedance

    No static power dissipation

    Good noise properties/margins

    V

    g =-

    12/03/22 8 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    {TPS}: prioritize the list above

  • 7/30/2019 03 Inverter

    9/93

    Voltage Transfer Characteristic (VTC)

    5.2

    12/03/22 9 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    10/93

    Load L ine (Ck t Theory)

    2.5ID

    [10-4 A]

    2.5V

    B2.0=

    VGS = 2.5V

    VGS

    A1.0

    1.5

    VGS = 1.5V

    .

    0.5 VGS = 1.0VVinVout

    0V

    Exercise:

    0 0.5 1.0 1.5 2.0 2.5DS

    The blue load line A corresponds to R =The orange load line B corresponds to R =

    With load line A and V = 1V V =

    12.5k25k

    a rox 1.6 V

    12/03/22 10 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Draw a graph Vout(Vin) for load line A and B

  • 7/30/2019 03 Inverter

    11/93

    PMOS Load Lines VDD-

    Goal: Combine IDn and IDp in one graph ++

    -VDSp

    IDp

    rc o :

    Vin = VDD + VGSp

    Vin out

    IDnDn DpVout = VDD + VDSp

    Dp DnV =0

    in

    in

    V =3

    DnVin=0

    Vin=3

    VDSp

    VGSp=-5

    VGSp=-2VoutVDSp

    12/03/22 11TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Vout = VDD + VDSpin DD GSp

    IDn = - IDp

    Example: VDD=5V

  • 7/30/2019 03 Inverter

    12/93

    CMOS Inver t er Load Charac t er is t ic s

    I ,Vin

    = 5Vin= 0

    NMOSPMOS

    Vin= 4V = 1

    Vin= 3Vin= 2 V = 2V = 3

    Vin= 1

    Vin= 4

    Vin= 4

    Vin= 5

    Vin= 2Vin= 3

    Vin= 0Vin= 1

    12/03/22 12 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 InverterVout

  • 7/30/2019 03 Inverter

    13/93

    CMOS Invert er VTC

    Vout

    4

    In,p

    Vin = 5Vin = 0

    NMOSPMOS

    2

    3Vin = 4

    Vin = 3

    Vin = 1

    Vin = 2 V = 2V = 3

    Vin = 4

    1Vin = 0

    Vin = 1

    Vin = 4

    Vin = 5

    Vin = 2Vin = 3

    Vin1 2 3 4 5

    12/03/22 13 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    14/93

    Operat ing

    Condi t ions

    Need to know for proper dimensioning,analysis of noise margin, etc.

    Vout = Vin - VTp

    Vout

    Vdd

    NMOS

    1 Vin = VGS < VTn off

    Vout = Vin - VTn2 Vout > Vin - VTn

    VDS > VGS - VTnVdd - |VTp|

    V VV

    - VTp

    V

    VGD < VTn saturation

    3 Vout < Vin - VTn resistive

    1 2 3PMOS

    4 in DD Tp55 Vout < Vin - VTp saturation

    6

    Exercise: check

    12/03/22 14 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    6 Vout > Vin - VTp resistiveresults for PMOS

  • 7/30/2019 03 Inverter

    15/93

    Operat ing Condi t ions

    Vout = Vin - VTp

    Vout

    Vdd

    2 saturation3 resistive

    Vout = Vin - VTn

    5 saturation6 resistive

    Vdd - |VTp|

    V VV

    - VTp

    V

    Vout

    5

    NMOS off

    PMOS lin

    1 2 33

    4

    NMOS sat

    saPMOS lin

    456

    1

    2

    NMOS lin

    sat

    NMOS linPMOS sat

    12/03/22 15 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Vin1 2 3 4 5

    o

  • 7/30/2019 03 Inverter

    16/93

    Inverter Static Behavior egenera onNoise margins e ay me r cs

    5.3

    12/03/22 16 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    17/93

    The Rea l is t i c Inver t er

    Vout 2.5Vout [V]

    Ri =

    Ro= 0 1.5

    2.0

    g =-

    0.5

    1.0

    V0 0.5 1.0 1.5 2.0 2.5

    VIN [V]

    Ideal InverterRealistic Inverter

    12/03/22 17 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    18/93

    The Regenerat ive Proper t y

    A chain of inverters

    RegenerativeProperty: ability to

    a weak signal in achain of gates

    12/03/22 18 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    The regenerative property. .

  • 7/30/2019 03 Inverter

    19/93

    The Regenerat ive Proper t y (2)

    v0 v1 v2 v3 v4 v5 v6...

    .

    v1, v3, ... v1, v3, ...

    f(v) finv(v)

    finv(v) f(v)

    v0, v2, ... v0, v2, ...

    b Re enerative ate c Non-re enerative ate

    12/03/22 19 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    20/93

    The regenerat ive Proper t y (3)

    Exercise: what is the output voltage of a chain of 4nver ers w a p ece-w se near pass ng roug ,

    10), (3,7), (7,1) and (10,0) [Volt], as the result of an input

    voltage of 6 [Volt].

    Exercise: discuss the behavior for an input of 5 [Volt]

    12/03/22 20 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    21/93

  • 7/30/2019 03 Inverter

    22/93

  • 7/30/2019 03 Inverter

    23/93

    Inver t er Sw i t c h ing Thresho ldAnaly t ic a l Der ivat ion

    VM is Vin such that Vin = Vout

    VDS = VGS VGD = 0 saturation

    Assume VDSAT < VM - VT

    (velocity saturation)

    Ignore channel length modulation

    VM follows from

    = -n p

    5.3.1

    12/03/22 23 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    24/93

    Inver t er Sw i t c h ing Threshold

    A nal t i c al Der i vat i on c d

    2/VVVkVI DSATTGSDSATD IDSATn(VM) = - IDSATp(VM)

    2/VVVV DSATnTnMDSATn n2/VVVVVk

    2/VVVVk DSATnTnMDSATp n

    kL

    W

    k'

    P

    2/VVVVk)L/W('

    DSATnTnMDSAT'np n

    ppnP

    See Example 5.1:

    12/03/22 24 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    p . n DD Usually: Ln = Lp

  • 7/30/2019 03 Inverter

    25/93

    Gat e Sw i t c h ing Thresho ld

    w /o Veloc i t y Sat ura t ion

    Long channel approximation

    Also applicable with low VDD

    4.0

    Exercise (Problem 5.1):-

    3.0

    VM

    channel approximation

    as shown below

    1.0

    2.0

    . . . . .

    kp/kn

    pTnTpDD krwith

    r

    )VVV(rVM 1

    12/03/22 25 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    26/93

    Noise in Dig i t a l In t egrat ed Ci rc u i t s

    VDDv(t)

    i t

    (a) Inductive coupling (b) Capacitive coupling c ower an groun

    noise

    Study behavior of static CMOS Gates with noisysignals

    12/03/22 26 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    27/93

  • 7/30/2019 03 Inverter

    28/93

    Noise Margins

    VOH

    DD

    VOL

    VIL VIHVDD0

    1.3.2 5.3.2

    VOL = Output Low Voltage

    V = In ut Low Volta e

    12/03/22 28 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    VOH, VIH =

  • 7/30/2019 03 Inverter

    29/93

    Noise Margins

    VOL = Output Low Voltage

    VIL = Input Low Voltage

    12/03/22 29 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    VOH, VIH =

  • 7/30/2019 03 Inverter

    30/93

    Noise Margins

    NMH = VOH - VIH = High Noise Margin

    12/03/22 30 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    L = IL - OL = ow o se arg n

  • 7/30/2019 03 Inverter

    31/93

    Noise Marg in for Real is t ic Gat es

    VOL not well defined

    Conveniently relate to slope s = -1

    12/03/22 31TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    {TPS}: explain significance of slope = -1 for noise margin

  • 7/30/2019 03 Inverter

    32/93

    Noise Marg in Calc u la t ion

    Piece-wise linearapproximation of g = gain factor

    e now owto compute VM

    w

    VVVVV DDOLOHILIH

    compute g

    g

    VVV MMIH

    g

    VVVV MDDMIL

    12/03/22 32 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    IHDDH VVN ILL VN

  • 7/30/2019 03 Inverter

    33/93

    Noise Margin Calc u lat ion (2)

    outnDSATnTninDSATn V/VVVVk n 12

    out . in in

    012 DDpoutpDSATpTpDDinDSATp VV/VVVVVkP

    out rdV 1 DSATVkpnDSATpTMVVin

    /VVVdVMin

    2

    Mostly determined by technologyDSATnnVk

    See example 5.2

    Exercise: verify calculation

    Exercise: explain why we add channel lengthmodulation to the IDexpressions (we did not do

    12/03/22 33 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    this to determine VM)

  • 7/30/2019 03 Inverter

    34/93

    Gain as a func t ion of VDD

    pnDSATpTMVVin

    out

    /VVV

    r

    dV

    dVg

    in2

    1consider

    2

    2.5

    0.15

    0.2

    1.5

    Vout(

    V)

    0.1

    V

    out

    (V)

    Gain=-1

    0.5

    0.05

    0 0.5 1 1.5 2 2.50

    Vin

    (V)

    0 0.05 0.1 0.15 0.20

    Vin

    (V)

    12/03/22 34 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    35/93

    Dynam ic Noise Marg in

    Previous definition was Static Noise Margin

    Dynamic Noise Margin: how does noise energyeterm ne e av or

    A short pulse may have higher amplitude than a

    Short spikes may safely exceed Static Noise

    Margin

    mplitude

    isePulse

    12/03/22 35 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    No

    Noise Pulse Duration

  • 7/30/2019 03 Inverter

    36/93

    CMOS INVERTERdynam ic behav ior (per fo rm anc e)

    Capacitances (Dis)charge timesDelay

    5.4

    12/03/22 36 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    37/93

  • 7/30/2019 03 Inverter

    38/93

  • 7/30/2019 03 Inverter

    39/93

    Delay as a func t ion o f VDD

    5.5

    4.5

    ed)

    52.0'

    DDLHL

    VCt

    3

    3.5

    r

    maliz DSATnTnDDSATnnn

    2

    2.5

    tp

    (N Spice

    0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

    1.5

    Fg.5.17

    12/03/22 39 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    VDD (V)

  • 7/30/2019 03 Inverter

    40/93

    Sizing

    Propagation Delay tp can be reduced by

    Increasing VDD (until VDD >> VT + VDSAT/2)

    Increasing W

    Reducing CL

    WVVVVkLW

    VCt L

    DSATnTnDDDSATnnn

    DDLpHL

    )2/()/(

    52.0

    '

    CL can be reduced by good layout design

    u par o L epen s on

    12/03/22 40 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    41/93

    t p as a func t ion of Wp/Wn

    5x 10-11

    Ipd tpHL

    4.5

    (sec) t

    pHL

    pLH WnCD tpLH

    3.5

    tp

    (tpHL + tpLH)/2

    31 1.5 2 2.5 3 3.5 4 4.5 5

    p

    Wp/Wn

    Min t in general not when t LH = t HL

    12/03/22 41TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Save area, time at expense of robustness

  • 7/30/2019 03 Inverter

    42/93

    TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter 07 inductance 42

  • 7/30/2019 03 Inverter

    43/93

    In t r ins ic vs Ex t r ins ic vs Paras it i c Load Cap

    CGS4

    VDDVDD

    M

    CDB2VoutV

    CGS3

    CDB1

    +

    ou

    M3

    CW1

    Cint = CDB1 + CDB2 + 2(CGD1 + CGD2) Cext = CGS3 + CGS4 + CGD3 + CGD4

    Intrinsic loadExtrinsic / fan-out load

    12/03/22 43 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    par = w

    I l t d I t Si i

  • 7/30/2019 03 Inverter

    44/93

    Iso lat ed Inver t er Sizing

    int

    extinteqextinteqp

    C

    CCRCCRt 169.0)(69.0

    par ignored or its effect canbe absorbed in other C

    R0: resistance of minimum size inverter(assume proper = Wp/ Wnratio)

    C0: intrinsic load (output, drain) cap of min. size inverter

    t =0.6 R C:intrinsic or unloaded delay

    basic time constant for technology

    DDS: sizing factor for Wn, Wpof driving inverter

    Wn= S Wmin, Wp= S Wmin

    Req= R0/S Cint= SC0

    12/03/22 44 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    00 1

    SCtt pp

    I l t d I t Si i

  • 7/30/2019 03 Inverter

    45/93

    Iso lat ed Inver t er Sizing

    00 1

    SC

    Ctt extpp

    Increasing S reduces delay until SC0>> Cext

    tp

    S

    p0

    12/03/22 45 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Cext

    I t Ch i

  • 7/30/2019 03 Inverter

    46/93

    Inver t er Chain

    Assume size of inverter 1 is fixed.

    Increasing S of inverter 2 reduces tpof inverter 2

    InOut

    p

    Expect an optimum!

    CL

    {TPS} If CL is given and knowing properties of input source:

    - How many stages are needed to minimize the delay?- How to size the inverters?

    12/03/22 46 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    47/93

  • 7/30/2019 03 Inverter

    48/93

  • 7/30/2019 03 Inverter

    49/93

  • 7/30/2019 03 Inverter

    50/93

  • 7/30/2019 03 Inverter

    51/93

    Example

  • 7/30/2019 03 Inverter

    52/93

    Example

    In Out

    L 1

    C1 = Cgin,1

    1 f f

    CL/C1 has to be evenly distributed across N= 3 stages:

    283f 19813 03

    0 forttt ppp

    12/03/22 52 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    53/93

    O i Ef f i F f

  • 7/30/2019 03 Inverter

    54/93

    Opt im um Ef fec t ive Fanout f

    Optimum ffor given process defined by

    fN

    ln

    ln

    ff 1exp

    ,up or down to integer value)

    =0 =1

    fopt e=2.72 3.6

    Nopt lnF 0.78lnF

    12/03/22 54 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Normal ized t vs f

  • 7/30/2019 03 Inverter

    55/93

    Normal ized tp vs. f

    With Self-Loadin =1,

    Slight increase of tp forf > fopt

    fopt = 3.6 Choosing too few

    stages (f > fopt) isrelatively harmless for

    Too many stages isexpensive in terms of

    12/03/22 55 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    http://en.wikipedia.org/wiki/FO4

  • 7/30/2019 03 Inverter

    56/93

  • 7/30/2019 03 Inverter

    57/93

  • 7/30/2019 03 Inverter

    58/93

  • 7/30/2019 03 Inverter

    59/93

    Pow er Dens it y

  • 7/30/2019 03 Inverter

    60/93

    y

    Estimate Furnace: 2000 Watt r=10cm P 6Watt/cm2

    Processor chip: 100 Watt, 3cm2 P 33Watt/cm2

    Power-aware desi n desi n for low ower is

    12/03/22 60 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    blossoming subfield of VLSI Design

  • 7/30/2019 03 Inverter

    61/93

  • 7/30/2019 03 Inverter

    62/93

  • 7/30/2019 03 Inverter

    63/93

    Where Does Pow er Go in CMOS

  • 7/30/2019 03 Inverter

    64/93

    Dynamic Power Consumption

    Short Circuit Currentsw

    switching (NMOS and PMOS on together)

    Leakage

    Leaking diodes and transistors

    May be important for battery-operated equipment

    12/03/22 64 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Dynam ic Pow er

  • 7/30/2019 03 Inverter

    65/93

    Dynamic Power Ei= energy of switching event i

    depends on process, layout =

    i

    iE

    T

    P1

    Ei= Power-Delay-Product P-D

    important quality measure

    Energy-Delay-Product E-D

    combines ower s eed erformance

    12/03/22 65 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    66/93

    Low -t o-High Trans i t ion Energy

  • 7/30/2019 03 Inverter

    67/93

    vDD

    i(t)

    C

    v0(t)

    E Ener delivered b su l

    dtVtiE DDVDD

    DDV

    DD dtdt

    dvCV 0

    2DD

    CV

    2221 DDcDDV CVECVE DD

    12/03/22 67 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Where is the rest? Dissipated in transistor

    Low -t o-High Trans i t ion Energyv

    DD

  • 7/30/2019 03 Inverter

    68/93

    vDD

    i(t)

    C

    v0(t)

    dtvViE DDdiss 0

    0 00dtivdtiVDD

    12/03/22 68 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    cV EE D

    High-t o-Low Trans i t ion Energy

  • 7/30/2019 03 Inverter

    69/93

    qu va en c rcuC

    i

    Exercise: Show that the energy that is dissipatedin the transistor upon discharging C from VDD to

    = 2 ss

    12/03/22 69 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Com pare Charg ing St rat egies

  • 7/30/2019 03 Inverter

    70/93

    Ci CdT

    I TConstant voltage Constant current

    +

    -

    V

    CI

    C

    R

    2T

    RE I RI dt I RI dt RI T C

    R R CdV

    E V idt V V C dt

    dt

    2

    0

    1

    2

    V

    c CV V CdV CV 2RCCV

    T

    Reduced dissipation if T > 2RC = t76% Difficult to reap benefits in practice

    12/03/22 70 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    See Adiabatic Logic

    CMOS Dynam ic Pow er Diss ipat ion

  • 7/30/2019 03 Inverter

    71/93

    stransition#EnergyEnergyPower

    merans onme

    fCVD2

    Independent of transistor on-resistances

    Can only reduce C, VDDor fto reduce power

    12/03/22 71TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    72/93

    |VDSp| Short Ci rc u i t Current

  • 7/30/2019 03 Inverter

    73/93

    Input and output waveforms ofinverter loaded with a largecapacitance (top) and with a smallinput

    |VTp|

    .

    Short-circuit current increases with|VDSp|. This is clearly much larger

    waveform

    VTn

    output for

    large CL

    on average for small CL comparedto large CL.

    Similarl short-circuit current canexist for low-to-high transition atoutput.

    Tp|VDSp|

    VTn output forsmall CL

    12/03/22 73 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    NMOSturns on

    PMOSturns off

    Short Ci rc u i t Current

  • 7/30/2019 03 Inverter

    74/93

    Pull-up turns offbefore VDSp becomess gn can

    12/03/22 74 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Best to maintain approximately equal input/output slopes

  • 7/30/2019 03 Inverter

    75/93

    Sub-ThresholdCurrent

  • 7/30/2019 03 Inverter

    76/93

    Rapidly becomesbottleneck with lowering

    threshold voltages Modern technologies offer

    low-Vt and hi-Vt devicesBalance speed and power

    Y. Taur, CMOS design near the limit

    12/03/22 76 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    , , ,Numbers 2/3, 2002

    Sub-Threshold Cur ren t

  • 7/30/2019 03 Inverter

    77/93

    Rapidly becomes bottleneck with lowering thresholdvoltages

    Modern technologies offer low-Vt and hi-Vt devicesBalance speed and power

    -

    10-2

    Linear-

    10-2

    Linear

    10-8

    10-6 Quadratic

    ID(A)

    10-8

    10-6 Quadratic

    ID(A)

    10-120 0.5 1 1.5 2 2.5

    10-10

    VT

    Exponential

    10-120 0.5 1 1.5 2 2.50 0.5 1 1.5 2 2.5

    10-10

    VT

    Exponential

    12/03/22 77 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    VGS (V)VGS (V)

  • 7/30/2019 03 Inverter

    78/93

    Transis t or Sizing for Min im um Energy

  • 7/30/2019 03 Inverter

    79/93

    In Out

    CL= FCG1C

    G1

    1 f

    Goal: Minimize Energy of whole circuit

    Desi n arame ers: fan V52.0DDLVC

    t tp tpref of circuit with f= 1 and VDD= Vref

    )2/()/( DSATnTnDDDSATnnn VVVVkLW

    DD

    pp

    Vf

    tt0

    11

    See E . 5.21

    Ex.5.13

    12/03/22 79 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    TEDD VV

    VTE= VT VDSAT :Effective VT

    Trans ist or Sizing (2)

  • 7/30/2019 03 Inverter

    80/93

    TEDD

    DDppp

    VV

    Vt

    f

    Fftt 00 11

    22F

    fF

    f

    Performance Constraint (with = 1, tpref f=1):

    1330

    0

    F

    f

    VVVF

    f

    tt TEDD

    TEref

    ref

    DD

    refp

    p

    pref

    p

    TE: ec no ogy . , ref: s an ar supp y .

    F: fanout

    VDD, f: design parameters

    VDD is a function of f, given a fixed performance

    Ff 515

    12/03/22 80 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    fFFff 108814

    Trans ist or Sizing (3)

  • 7/30/2019 03 Inverter

    81/93

    DD=

    4

    F=1

    2

    2.53

    .

    )

    Supply voltage neededas a function of ftomaintain reference

    5

    1.5

    2vdd( per ormance

    Lowest supply voltageneeded for f= F0.5

    200.5

    1

    fFFff

    fVDD

    108814

    5152

    1 2 3 4 5 6 7

    f

    12/03/22 81TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    82/93

    Trans ist or Sizing (5)ref

  • 7/30/2019 03 Inverter

    83/93

    1.5

    1den

    ergy

    F

    Ff

    V

    V

    E

    E

    ref

    DD

    ref 4

    222

    F

    Ff

    V

    V

    E

    E

    ref

    DD

    ref 4

    222

    0.5ormalize

    0

    f Device sizing is effective

    12/03/22 83 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Optimal sizing for energy slightly different from sizing for performance

  • 7/30/2019 03 Inverter

    84/93

    Also see: IBM JRD, Vol 46, no 2/3, 2002

    Scaling CMOS to the limit

    http://www.research.ibm.com/journal/rd46-23.html

    5.6

    12/03/22 84 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    85/93

    Why Sc al ing

  • 7/30/2019 03 Inverter

    86/93

    Reduce price per function:

    chip for the same money better products

    Build same roducts chea er, sell the samepart for less money larger market

    Price of a transistor has to be reduced

    ut a so want to e aster, sma er, ower power

    12/03/22 86 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Sc al ing Models

  • 7/30/2019 03 Inverter

    87/93

    Fixed Voltage Scaling

    most common model until 1990s

    only dimensions scale, voltages remain constant

    ideal model dimensions and voltage scale together bythe same factor S

    General Scaling

    most realistic for todays situation

    voltages and dimensions scale with different factors

    12/03/22 87 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Sc al ing for Ve loc i t y Sat ura ted Dev ic es=

  • 7/30/2019 03 Inverter

    88/93

    Parameter Relation General Scaling

    W, L, tox 1/S

    VDD, VT 1/U

    NSUB V / Wdepl2

    S2

    /U2

    Cox 1/tox S

    Cgate CoxW L 1/S

    n, p ox

    Isat CoxW V 1/U

    Current Density I sat / Area S 2/U

    Ron V / Isat 1

    Intrinsic Delay RonCgate 1/S

    2

    12/03/22 88 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    sa

    Power Density P / Area S 2/U2

    IC Tec hnology Sc al ing

    S li i d it d f

  • 7/30/2019 03 Inverter

    89/93

    Scaling improves density and performance

    First order scaling theory

    dimensions, 1/S

    voltages 1/S

    2008 / 1971

    0.007

    0.007

    intrinsic delay 1/S

    power per transistor 1/S20.007

    0.00004

    Scaling trend

    2008 201019821971

    12/03/22 89 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    first proc (65nm)

    Tec hnology Prac t i c e & ITRS

    Scaling Technology Generations

  • 7/30/2019 03 Inverter

    90/93

    Scaling Technology Generations S 1.4 20.5 per generation

    ITRS: International Technology Roadmap for Semiconductors-

    developments and (planning) requirements

    htt ://www.itrs.net/home.html

    12/03/22 90 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    (and a self-fulfilling prophecy at the same time)

  • 7/30/2019 03 Inverter

    91/93

    12/03/22 91TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

  • 7/30/2019 03 Inverter

    92/93

    12/03/22 92 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter

    Summary

  • 7/30/2019 03 Inverter

    93/93

    Digital Gate Characterization ( 1.3).

    VTC

    Switching Thresholdo se arg ns

    Dynamic Behavior (Performance) ( 5.4)CapacitancesDelay

    Power ( 5.5)

    Scaling ( 5.6)

    12/03/22 93 TUD/EE ET4293 - DigIC - 11/12 - NvdM - 03 Inverter