03 Quality

Embed Size (px)

DESCRIPTION

03 Quality

Citation preview

  • CEMENT PROCESS ENGINEERINGVADE-MECUM

    Rev. 2002

    3. QUALITY

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    Index - iRev. 2002

    Table of Contents

    1. Chemical Characterization..................................................................... 3.11.1 Ignition Loss ................................................................................... 3.11.2 Silica Ratio...................................................................................... 3.11.3 Alumina-Iron Ratio ......................................................................... 3.11.4 Lime Saturation............................................................................... 3.11.5 Total Alkalies as Na2O .................................................................... 3.11.6 Percent Liquid ................................................................................. 3.21.7 Bogue Formulas .............................................................................. 3.21.8 Lafarge K 1450 Burnability Index.................................................... 3.21.9 Other Indicators............................................................................... 3.41.10 57 Clinker Average.......................................................................... 3.4

    2. Particles Size Distribution....................................................................... 3.52.1 Rosin-Rammler Number.................................................................. 3.52.2 Specific Surface Area ...................................................................... 3.52.3 Blaine Surface Area......................................................................... 3.6

    3. Grindability............................................................................................. 3.63.1 BB10 Test ....................................................................................... 3.63.2 Bond Formula ................................................................................. 3.73.3 Parameters Affecting the Clinker Grindability.................................. 3.7

    4. Sulfate...................................................................................................... 3.84.1 Clinker Sulfates ............................................................................... 3.84.2 Sulfate Addition .............................................................................. 3.84.3 Water Spray .................................................................................. 3.10

    5. Others Quality Issues............................................................................ 3.105.1 Cement Strength............................................................................ 3.105.2 Color ............................................................................................. 3.105.3 Microscopy ................................................................................... 3.11

    6. 10 Basic Facts on Clinker...................................................................... 3.127. Raw Mix & Clinker Uniformity ........................................................... 3.13

    7.1 TYTP Indicators............................................................................ 3.137.2 Lafarge Corp Results ..................................................................... 3.13

    8. ASTM Standards .................................................................................. 3.14

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.1Rev. 2002

    1. Chemical Characterization In the following formulas:

    S = SiO2, M =MgO, A =Al2O3, K = K2O,F = Fe2O3, N = Na2O3, C = CaOwhen not specified: % is in weight in the rawmix.

    Raw feed density: 2700g/l.

    1.1 Ignition Loss Ignition loss = 0.786 * C + 1.092M + combined

    H2O+ organic matter. 23 COCaOCaCO +

    - CaO%5644CO% 2 =

    1.2 Silica Ratio ( )1.3to3.2

    FASSR+

    =

    - If SR high, hard to burn, low coating (walllosses), poor clinker reactivity, higher SHC.

    1.3 Alumina-Iron Ratio ( )0.2to3.1

    FAAR =

    - If AR high with low F then lower liquidphase, poor viscosity.

    1.4 Lime Saturation(On Raw Mix analyses, except C3S)

    ( )F43.1A72.6Ssol6.7C07.4SC3 ++=- It is the potential C3S content of clinker

    when the free lime is zero and calculationLOI=0.

    - It is the only lime saturation criterionconsidered in the TYTP.

    F65.0A18.1S8.2

    C100LSF++

    =

    CFAS

    )CF3.0A65.1S8.2(*100bc

    +++

    ++=

    - It should range between 4 and +4depending on ashes and quality target.

    F7.0A1.1S8.2

    C100)Kuhl(KStI ++=where:- A includes )OPTiO( 522 +

    F65.0A18.1S8.2)M75.0C(*100

    KStIII +++

    =

    - It takes MgO into account (when MgO 63

    K1450 change

    Rules of thumb 42SOK improves the burnability; +1% 3SO lower the combination temperature

    by 60C; +1% OK2 increases the combination

    temperature bu 35C; increase from 2 to 3% of silica reject at 63

    microns lower the K1450 by 30 points (cfgraph);

    + 0.3% CaF2 addition in the raw mix (or 0.23Fin the clinker) improves the K1450 by 10 to 60points, lowering the burning temp by 30 to130C. Unfortunately, it lengers the setting timeby 40min +/-20min (for+0.1%F in the clinker).

    Impact of fineness Free Lime = [ ] ( ) ++ 100LSF48.089.1C

    ( ) 4512545 Aq12.0C12.0Q27.08.1SR84.2 +++where:- 45Q = % quartz >45 m- 125C = % calcite >125 m- 45Aq = % non quartz, acid insoluble >45

    m (excluding dolomite)Rule of thumb: %(quartz>63m)45m)

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.4Rev. 2002

    0

    1

    2

    3

    4

    5

    6

    1350 1400 1450 1500 1550

    Effects of % 100 m rejectsMarl type raw mix

    % free CaO

    temperature C

    25 %

    10 %0

    1

    2

    3

    4

    5

    6

    1350 1400 1450 1500 1550

    Effects of % 100 m rejectsQuartz type raw mix

    % free CaO

    temperature C

    25 %

    10 %

    5 %

    1.9 Other IndicatorsBurnability Factor

    ACAFC

    SCBF

    343+

    =

    - Higher BF, harder to burn- Generally BF increases with SR

    Hydraulic Module

    MCFASHM

    +

    ++=

    Cementation Index

    M4.1C

    F7.0A1.1S8.2Cl+

    ++=

    1.10 57 Clinker Average The results obtained from 57 production clinkers including 2 white cements and 4 Oil-Well cements are

    reported below:Raw Mix S/(A+F) S/(A+F) A/F A/F Liq. phase nc Free CaOK 1450 Exc. HTS, SB Exc. OW, SB At 1450 % %

    Minimum 21 2.1 2.1 0.6 0.7 10.5 -0.8 0.05Average 75 2.9 2.7 2.0 1.7 24.0 5.3 0.68Maximum 324 7.8 3.6 11.6 2.9 29.4 10.2 2.2

    C3S Alite Alite/C3S C2S Belite Belite/C2S C3A Alum.% % % % % %

    Minimum 43.0 45.6 0.9 1.9 0.7 0.15 0.0 0.7Average 61.9 66.0 1.07 15.7 15.0 0.93 7.6 5.2Maximum 75.9 81.1 1.4 31.5 35.0 1.91 12.6 11.0

    C4AF Ferrit. MgO Fluor TiO2 P2O5 Mn2O3 kk SO3% % % % % % % %

    Minimum 0.8 0.0 0.39 0.02 0.10 0.01 0.01 0.2Average 9.3 8.9 1.80S 0.08 0.23 0.12 0.06 0.84Maximum 16.8 15.0 4.53 0.19 0.39 0.39 0.19 2.5

    Total Na2O Sol. Na2O Total K2O Sol. K2O Tot.Na2O eqSol.Na2O eq Exc.SO3 Exc.SO3% % % % % % /t. alk. % /s. alk. %

    Minimum 0.06 0.01 0.25 0.11 0.27 0.08 -0.63 -0.16Average 0.17 0.07 0.74 0.54 0.66 0.43 -0.01 0.29Maximum 0.40 0.19 1.40 1.19 1.00 0.87 1.73 1.86

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.5Rev. 2002

    2. Particles Size Distribution2.1 Rosin-Rammler Number The Rosin-Rammler curve mathematically approximates most powder particle size distributions:

    n

    odd

    e100R

    = or n

    R100ln = n ( ))d(In)d(In o

    - d = particle size (m)- R = % retained at d- do = particle size (m) @ R = 100/e, approx. 36.8%- n = Rosin-Rammler number

    The formula allows PSD data to be represented as a straight line by plotting:(In (In

    R100 )) vs. In (d)

    - n can be calculated by the slope of the least squares line.- The higher the RR#, the steeper the PSD as more particles are found into a narrow size range.

    Rules of thumb RR# for high efficiency separator cement: 1.1 - 1.2

    - RR# for Sturtevant circuit (raw or cement): 0.9 - 1.0- RR# for open circuit cement: 0.8 - 0.9,

    dO = 12-36 m + 0.15 point #RR increases the water demand by 2-3% (ref. Les Cahiers Techniques)

    2.2 Specific Surface Area The following can calculate the Specific Surface Area (SSA). For particles assumed to be spheres:

    2ii r4S pi= pr3

    4M 3ii pi=

    - iS = the particle surface area- iM = the particle weight- ir = the particle radius- = the specific density of particles

    For a granulometry with n number of particles

    Str = ni * Si = ni * 4piri2 Mtr = ni * pi 3ir3

    4

    =

    i

    trtr

    r

    M3S

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.6Rev. 2002

    = +

    +

    +

    =

    16

    0 1

    16j jj

    jj

    ddRRfSSA

    - f = Form factor (close to 1)- = Specific density of cement (g/cm3)-

    Ri = % retained at di- di = Particle size (m)

    do = 0.1 m d6 = 4 m d12= 48 md1 = 0.3 m d7 = 6 m d13 = 64 md2 = 1 m d8 = 8 m d14 = 96 md3 = 1.5 m d9 = 12 m d15 = 128 md4 = 2 m d10 = 16 m d16 = 196 md5 = 3 m d11 = 24 m

    The 0-3 m fraction of normal Portland cement accounts for 60% of total surface.

    2.3 Blaine Surface Area SSB = Blaine Surface Area (in cm2/g). Its a permeability test. SSB is inversely proportional to the ability to

    pass air through a bed of particles. The correlation between calculated SSA and SSB is:SSA = 807 + 1.2 * SSB

    For cements with n=1 Anselm found:

    *n*do*8.36

    SSA10 4

    =

    where:- do, n Rosin-Rammler distribution- = specific density = 3.2 x103 kg/m3

    Rules of thumb (Les Cahiers Techniques) The Blaine specific surface correlates well (r2 = 0.92) with the % passing 10 m (same for 8 m):

    + 1 % passing 10 m = + 10.8 m2/kg + 100 m2/kg SSB +4 to + 15 MPa (pure cements).Warning: Cement sulphate addition must be increased with SSB: +100 m2/kg + 0.5 to +0.6% SO3. 2% gypsum results in +10m2/kg at 370m2/kg SSB.

    3. Grindability3.1 BB10 TestIdea: Correlate the number of revolutions of a lab mill for a given fineness with the industrial energy to obtain the

    same fineness. The material is crushed to everything passing 3.15 mm. The number of mill revolutions ismeasured to obtain a given fineness. Revolutions are converted to industrial power consumption.

    Lab Mill Characteristics:Diameter: 40 cmLength: 12 cmSpeed: 55 rpmBall volume load: 14 %Ball weight: 10 kg

    Material load: 1kgBalls: 20-25 mm : 2.5 kg20-35 mm : 3 kg50 mm : 4.5 kg

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.7Rev. 2002

    Lafarge Data 25 Canadian clinkers @ 3500 Blaine averaged 55.7 kWh/t and 35 French averaged 50.7 kWh/t. Typical

    results are 48-60 kWh/t.

    BB10kWh/t

    for 250 m2/kgkWh/t

    for 300 m2/kgkWh/t

    for 350 m2/kgkWh/t

    for 400 m2/kgkWh/t

    Minimum 21 30 39 49Average 29.2 39.8 51.8 65.3Maximum 43 56 68 83

    3.2 Bond FormulaLab Mill CharacteristicsDiameter: 30.5 cmLength: 30.5 cmBall weight: 20 kgMaterial quantity: 700 cm3Speed: 70 rpmFormula

    =

    80f80p0.8223.0

    100p d10

    d10

    *Pd

    5.44Widp100 is the sieve with 100% passing feed materialdp80 80% feed materialdf80 80% finish materialP is the production (g/rev of mill) of product at the levelthe circulating load is requested.Wi is the Bond work index.

    Developed to predict energy requirements of 2.44m diameter, wet, closed circuit, ball mill at a fineness ofeither 65 mesh (220 m) or 100 mesh(150 m).

    Pre-crush feed to #6 (3.35 mm). Maintain 700g sample in test mill. Turn mill 100-150 rev. Remove undersize (dp100 65 or 100 mesh) and replace with fresh feed (300 400 g). 1st cycle is now

    completed. Repeat procedure until steady state is reached. Typically 6-8 cycles so that 200 g are removed ateach cycle, which equals 250% circulating load or 30% of P.

    3.3 Parameters Affecting the Clinker Grindability In the statistical study of the 57 clinkers, grinding energy was correlated with different parameters.

    1 point increase of producesa variation of C3S Exc SO3 /tot.alk. (%)

    CaOl(%)

    D75 alite(m)

    Alite C3Sx100

    W250 (kWh/t) -0.3 4 -0.9 0.1W300 -0.5 4 0.1 -0.1W350 -0.6 5 0.2 -0.2W400 -0.7 5 0.2 -0.3

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.8Rev. 2002

    4. Sulfate4.1 Clinker Sulfates Possible forms of sulfates and alkalies:

    - as alkali sulfates (small crystals of a few m) inserted between the clinker phases- as S and alkalies inserted in the crystal structures of silicate and aluminate phases

    Clinker rich in alkalies and poor in sulfates rich in sulfates

    Little alkali sulfates Uncombined alkalies:

    - N and K in orthorhombic C3A- K in C2S

    Inversed monoclinic C3S

    Much alkali sulfates Little uncombined alkalies:

    - Little K and N in cubic C3A- Little K in C2S

    Rhomboedric C3S Some sulfur in the uncombined alkalies

    alkali sulfatesalkali

    sulfates

    S in silicatesand

    aluminates

    Workabilityproblems,plastic

    shrinkage

    Increase of early-agestrengths

    Clinker harderto grind

    N and K in

    C3Aorthorhombic

    C3Aorthorhombic

    Clinker sulfate content

    Cubic C3A

    Cubic C3A Cubic C3A

    alkalisulfates

    On the basis of the content of sulfur with respect to alkalies, and the relative proportions ofsodium and potassium, alkali sulfates may be found under different forms:

    - Thenardite : 42SONa . This sodium sulfate is rarely seen in clinker.- Aphthitalite : 4242 SOK3SONa . Its composition may vary to ( )4242 SOKSONa3 .- Arcanite : 42SOK . It is observed when the OK/SO 23 molar ratio ranges between 1 and 2.- Calcium langbeinite: 424 SOKCaSO2 . This phase is encountered when the 3SO / sodium equivalent*

    molar ratio is greater than 2 and the sodium percentage low vis--vis potassium.- Anhydrite: 4CaSO . It shows up only when the 3SO / sodium equivalent* molar ratio is greater than 3.

    4.2 Sulfate Addition Gypsum and/or anhydrite - sulfates are added to control the setting process of the cement, primarily the rapid

    setting of the C3A component.a) False set: Early development of stiffness without the evolution of much heat. It can be dispelled and plasticity

    regained by further mixing without the addition of water [also called "grap set", "premature stiffening","hesitation set", "rubber set"].

    b) Flash set: Early development of stiffness usually with considerable evolution of heat. It cannot be dispelled nor

    plasticity regained by further mixing without adding water [also called "quick set"]. Reaction is:( )nOHACCOnHAC 2423 ++ .

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.9Rev. 2002

    c) The Chemistry of False and Flash SetComponents Hemihydrate and the anhydrites are the dehydrated forms of gypsum.

    - Gypsum OH2.CaSO 24- -hemihydrate (plaster of Paris) OH5.0.CaSO 24- Soluble anhydrite ( 4CaSO .III) OH)5.0_001.0(.CaSO 24- Insoluble (natural) anhydrite 4CaSO

    They react differently than gypsum when added to cement.Reactions

    SO3so

    lutio

    n(g/l)

    00.

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    1 2. 6 1 2 3

    GypsumHemihydrateSoluble AnhydriteNatural Anhydrite

    Sulfate solubility

    Time - Minutes

    18016014012010080600

    20

    40

    60

    80

    100

    Temp. C

    %Deh

    ydr.

    Dehydration in the milling process can be thought as beginning at about 80 C. However, gypsumdehydration is also a function of the time and % humidity of the surrounding atmosphere. Hemihydratereacts differently than gypsum or anhydrite when water is added to cement, due to the differences insolubility. In the case of too much hemihydrate, which dissolves very quickly and in substantial quantities inthe mix water, false set will occur. While too much hemihydrate will cause false set, not having enough SO3available in solution will cause much more serious flash set.

    The following table gives schematic diagrams ofthe structure development of cement. The latticework represents the ettringite crystallization, theplatelets - tabular monosulphate and the rectangles- secondary gypsum.

    Availablesulphate insolution

    Hydration time

    10 min 1 hour 3 hours

    Typeofset

    LowC3A

    LowSO3

    workable workable set

    HighC3A

    HighSO3

    workable set set

    LowC3A

    HighC3A

    LowSO3

    HighSO3

    Flashset

    Falseset

    set set set

    set set set

    Acceleratedset

    Normalset

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.10Rev. 2002

    Optimum sulfate ( ) ( ) ( ) 7.0BSS102.6OAl%2.0.equivONasol%2.1S 3322 ++= . The sulfate content roughly corresponds to the optimum for 3-day strengths.

    4.3 Water Spray One method to control the mill temperature and thus gypsum dehydration is through the use of water spray.

    For reasons of cement quality (C3S hydration), the water vapor dew-point temperature in the mill air mustnot exceed about 70 C. The decomposition enthalpy of crystalline water in gypsum is much less (628kJ/kg) than the evaporation enthalpy of water (2257 kJ/kg).

    Thus theoretically one can:- Reduce Preliminary Hydration - use anhydrite (no crystalline water) instead of gypsum and keep the

    water spray constant. This will decrease the water content of the air. The mill outlet temperature willincrease in this case.

    - Reduce The Mill Outlet Temperature - use anhydrite and increase the water spray, keeping the dew-pointconstant. The preliminary hydration will remain the same because the water content of the air remainsconstant.

    - Reduce Temperature and Preliminary Hydration - use anhydrite and substitute some, but not all, of thecrystalline water for more water spray.

    5. Others Quality Issues5.1 Cement Strength Theoretical water required to totally hydrate the cement: 35% weight of cement.Warning: Here, MPa are French standard (1.45 French MPa= 1 US/Can MPa)

    Parameters influencing the cement strengthA variation of? MpaStrength is produced byan increase of 1 point of:

    Sol Na2Eq (%)Tot Na2Eq (%)C3S (%)C2S(%)C3A (%)C4AF (%)MgO (%)SO3/totAlk ExcessFcaO (%)D75Belite (m)

    1-d fc(MPa)

    10

    0.1

    0.5

    -1.11.11.1-0.2

    2-dfc(MPa)

    10

    0.3

    0.3

    -1.01.3

    -0.2

    7-d fc(MPa)

    0.4

    0.7

    -0.8

    -0.3

    28-d fc(MPa)

    -100.60.5

    -0.5-0.61.5

    -0.30

    10

    20

    30

    40

    50

    60

    70

    80Compressive strength (MPa)

    days287 180 36090

    C3S

    C2S

    C3AC4AF

    C12A7

    Hydration of pure phasesaccording to Boque and Lerch

    5.2 Color If % 32OFe is combined with Blaine specific surface (m2/kg), it is possible to explain 97% of the observed

    color variations.

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.11Rev. 2002

    5.3 Microscopya) Interpretation

    Case Observations1) RawMixRaw mix fineness Siliceous rejects Belite ring around empty pores

    Shaly rejects Belite ring around pores filled with celiteCalcareous rejects Tight-grain free lime patches

    Raw Mix Heterogenous Wide patches of belite that can exceed 500 mHomogeneity Homogenous Alite and belite side by side, without belite patchesLime saturation Overdosage High free lime content with no or little beliteOf raw mix Underdosage Little or no free lime, high belite contentRaw mix chemistry Alkalies Orthorhombic AC3 in needles if alkalies in crystal structure.

    Cubic AC3 if alkalies in alkalie sulfate form.2) BurningUnder burning Low Temperature High porosity (homogenous), much free lime dispensed, poorly

    shaped minute alite crystals.Rapid Zone Passage Heterogeneous porosity, belite separated from lime by a thin alite

    streak.Over burning High Temperature Low porosity, large alite and small pointe alite crystals,

    ferroaluminate needles, amoeboid beliteSlow zone passage athigh To

    Large fused alite crystals (cannibalism)

    Atmosphere Reduced Ferroaluminate inclusions in alite, and lime on pore edges.3) CoolingCooling rate Very high (quenching) Aluminates and ferroaluminates highly intermingles, fissured

    belite, and periclase in small crystals.Slow Good separation between aluminates and ferroaluminates, belite

    borders around alite.Very slow Belite shredded, spongy and mono striated, belite and periclase

    linkage even in clinker having less than 2% MgO.

    b) Parameters Having an Impact on the Crystal Size

    1 1 1 1 11 1 1 1 1

    Diameter reduction (m) alite : belite :

    +0,4%

    Equiv.

    -1%Exc SO3./Tot. alk.

    Normalhardburning

    +4%C3A

    +1%Free CaOSol.Na 2O

    0

    2

    4

    6

    8

    10

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.12Rev. 2002

    6. 10 Basic Facts on ClinkerWarning: Here, MPa are French standard (1.45 French MPa= 1 US/Can MPa)1) Raw mix rejects The reduction of raw mix rejects reduces the burning temperature and the cement

    grinding energy:100 m R in raw mix: 20% 10% - 4 kWh/t on both raw mix & cementgrinding.

    This is particularly the case for siliceous rejects. This action is also rather favorableto strengths.

    2) Heat profile A short profile helps grindability and strength development. Slow cooling adverselyaffects strengths and workability.Clinkering level: 30 min. 60 min. - 3 to - 10 MPa in the laboratory.

    3) Burningatmosphere

    Production uniformity requires an oxidizing atmosphere because a reducingatmosphere promotes volatilization "cyclic" operation, sulfate and alkalifluctuations, thus a non uniform clinker:SO3 variation in clinker from 1 to 4 % variation in % alkali sulfates

    possibility of large strength variations at 1 day.4) Free lime content An increase in clinker free lime content reduces both initial and final setting times

    + 1 % free CaO - 50 min on average (- 10 - 100 min depending onclinker).

    Similarly, the addition of lime shortens both initial and final setting time.5) Clinker SC3

    contentAn increase in clinker SC3 content (to the detriment of SC2 ) improves strengths at

    1, 2, 3 and 7 days:SC%10 3+ MPa5to2 ++

    At 28 days, the increase is less noticeable since there is also a contribution fromSC2 .

    6) Clinker SC2content

    At constant Blaine specific surface, grinding energy increases with SC2 content.Inversely it reduces with an increase in SC3 :+ 10 % C2S + 5 kWh/t for 350 m2/kg SSB

    7) Clinker alkalicontent

    Alkalies always work against 28-day strengths no matter what form they are:+ 0.1 % Na2O equiv. - 1 MPa

    8) Clinker alkaliesand sulfates

    At optimum sulfate content for early ages, soluble alkalies, in particular in the formof sulfates, improve early strengths:+ 0.1 % Na2O equiv. + 0.5 1.5MPa

    Strengths improve with an increase in the AC3 content.9) Alkali saturation Alkali molar saturation by clinker 3SO facilitates control over workability:

    Alkali saturation water demand and fluidity and early-age fc.10) Excess Sulfate /

    alkaliesIf clinker 3SO is increased beyond alkali molar saturation, a clinker fineness and

    grinding energy increase can be observed.+ 1 % excess 3SO + 4 to 5 kWh/t.

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.13Rev. 2002

    7. Raw Mix & Clinker Uniformity7.1 TYTP Indicators

    ( )

    =

    =

    N

    1i

    2T3i3 SCSCN

    1KFUI Target: Lafarge Corp < 10, Group < 14

    ( ) ( )

    =

    =

    N

    1i

    2average3i3 SCSCN

    1S3clkC.CUI Target < 16

    100SOx1

    SOKSUI

    33

    +=

    Target < 10

    32.01.0fCaO

    . fCaOxUIfCaO +=

    Target < 1

    - KFUI measures the ability to follow a raw mix C3S target. Clinker uniformity indicators measure thevariation from an average.

    - Use first scheduled grab sample per day, with no calculation if there is less than 10 days production.Exception: Lafarge Corp. recommends KFUI calculation based on all samples.

    - Indicators are calculated on a monthly and annual (12-month rolling average) basis for kiln main productonly. The 12MRA KFUI is an average of the monthly results weighted by clinker tonnage, while clinker12MRAs use 12-month variances and averages (C3S, SO3, f-CaO).

    - Combining indices for an aggregate plant index is done by weighting clinker tonnage.

    7.2 Lafarge Corp ResultsKiln Pf >98% SUI

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.14

    8. ASTM StandardsComparison of Portland Cement Specifications

    Updated - Nov. 21, 2000 NORMAL(I/10)

    MODERATE (II/20) HIGH EARLY (III/30) LOW HEAT(IV/40)

    SULFATE RESISTAT(V/50)

    CHEMICAL REQUIREMENTS ASTM AASHTO CSA ASTM AASHTO CSA ASTM AASHTO CSA (a) ASTM AASHTO CSA ASTM AASHTO CSA

    Si02, min., % 20.0 20.0Al203, max., % 6.0 6.0Fe203, max., % 6.0 6.0 6.5 6.5Mg0, max., % 6.0 6.0 5.0 6.0 6.0 5.0 6.0 6.0 5.0 6.0 6.0 5.0 6.0 6.0 5.0S03, max. % when:C3A is 8% (7.5% for CSA) or less 3.0 3.0 3.0 3.0 3.0 3.0 3.5 3.5 3.5 2.3 2.3 2.5 2.3 2.3 2.5C3A is more than 8% (7.5% for CSA) 3.5 3.5 3.5 (g) (g) (g) 4.5 4.5 4.5 (g) (g) (g) (g) (g) (g)

    Loss On Ignition, max., % 3.0 3.0 3.0 (e) 3.0 3.0 3.0 3.0 3.0 3.0 (e) 3.0 3.0 3.0 3.0 3.0 3.0Insoluble Residue, max., % 0.75 0.75 1.5 0.75 0.75 0.7 0.75 0.75 1.5 0.75 0.75 0.7 0.75 0.75 0.7C3S, max., % 55 35 (h) 35 (h)C2S, min., % 40 (h) 40 (h)C3A, max., % (d) 8 8 7.5 15 15 7 (h) 7 (h) 5.5 5 (k) 5 (k) 3.5(C4AF+2(C3A), or(C4AF+C2F) as applicable, max., % 25 (k) 25 (k)Na20+0.658 K20, max. % 0.60 (b) 0.60 (b) 0.60 (b) 0.60 (b) 0.60 (b) 0.60 (b) 0.60 (b) 0.60 (b) 0.60 (b) 0.60 (b)Limestone, max., % 5 (a) 5 (a)

    Comparison of Portland Cement SpecificationsUpdated - Nov. 21, 2000 NORMAL

    (I/10)MODERATE

    (II/20)HIGH EARLY

    (III/30)LOW HEAT

    (IV/40)SULFATE RESISTAT

    (V/50)PHYSICAL REQUIREMENTS ASTM AASHTO CSA ASTM AASHTO CSA ASTM AASHTO CSA (a) ASTM AASHTO CSA ASTM AASHTO CSA

    Wagner Turbidimeter (n):Min. value, any one sample,

    m2/kg160 150 160 150 160 150 160 150

    Max. value, any one sample,m2/kg

    230 230 230 230

    Air Permeability Test (n):Min. value, any one sample,

    m2/kg280 260 280 260 280 260 280 260

    Max. value, any one sample,m2/kg

    420 420 420 420

    Average value, min., m2kg 280 280 280 280

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.15

    Average value max., m2/kg 400 400 400 400Minimum Passing 45um Sieve, % 72 72 72Soundness (autoclave expansion),max.,%

    0.80 0.80 1.0 0.80 0.80 1.0 0.80 0.80 1.0 0.80 0.80 1.0 0.80 0.80 1.0

    Time of Setting (o):Vicat Test -Minimum not less than, min. 45 45 45 45 45 60 45 45 45 45 45 90 45 45 60Maximum not more than, min. 375 375 360 375 375 360 375 375 250 375 375 360 375 375 360

    Gillmore Test -Int. set, not less than, min. 60 60 60 60 60 60 60 60 60 60Fin. set, not more than, min. 600 600 600 600 600 600 600 600 600 600

    Air Content of Mortar (i), max.,volume %

    12 12 12 12 12 12 12 12 12 12

    Comressive Strength, psi (MPa):1-day minimum 1740

    (12.0)1800 (12.4) 13.5 MPa

    1-day maximum 36 MPa (v)3-day minimum 1740(12.0 1800 (12.4) 14.5

    MPa1450(10.0) 1500(10.3) 14.5

    MPa3480(20.0) 3500 (24.1) 24.0 MPa 8.5 MPa 1160(8.0) 1200 (12.3) 14.5 MPa

    3-day maximum 32.5MPa

    32.5MPa

    43.0 MPa(v)

    32.5 MPa(v)

    7-day minimum 2760(19.0 2800 (19.3) 20.0MPa

    2470(12.0) 2500 (17.2) 20.0MPa

    1020(7.0) 1000 (6.9) 2180(15.0) 2200 (15.1) 20.0 MPa

    7-day maximum 40.0MPa

    40.0MPa

    40.0 MPa(v)

    28-day minimum 26.5MPa

    26.5MPa

    38.0 MPa 2470(17.0) 2500 (17.2) 25.0MPa

    3050(21.0)

    3000 (20.7) 26.5 MPa

    28-day maximum 51.0MPa

    51.0MPa

    60.0 MPa(v)

    51.0 MPa(v)

    28-day, C.V., max., % 8 8 8 891-day minimum 33.0

    MPaHeat of Hydration:

    7-day, max., kJ/kg(cal/g)

    290 (70)(p)

    290(70) (p) 300 (s) 250 (60)(q)

    250 (60) 275

    28-day, max., kJ/kg(cal/g)

    290 (70)(q)

    290 (70)

    Paste False Set (early stiffening),min., %

    50 (x) 50 (x) 50 (x) 50 (x) 50 (x) 50 (v) 50 (v) 50 (v) 50 (v) 50 (v)

    Sulfate Expansion, (j):14-day, max. % 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

    Sulfate Resistance:14-day, max., % 0.050 (s) 0.040 (t) 0.040 (t) 0.035

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.16

    Foot notes on Comparison of Portland Cement Specifications

    (a) CSA A5 recognizes the existence of an optimum carbonate addition for some Portland cements. Therefore, a maximum of 5% addition oflimestone is permitted for Type 10 and Type 30 cement.

    (b) This optional limit may be specified when the cement is to be used in concrete with aggregates that may be deleteriously reactive.

    (d) For C3A calculation, ASTM, AASHTO and CSA use Al2O3 only without TiO2 and P2O5.(e) A loss on ignition of 3.5% is allowed for Type 10 and Type 30 Portland cements provided that such cements when tested in accordance with

    the CSA Standard, but at a furnace temperature of 550oC, show a loss in mass of no more than 3.0%.

    (f) The optional limit for heat of hydration shall not be requested when this optional limit is specified.(g) Not applicable.(h) Does not apply when the heat of hydration limit is specified.(i) ASTM & AASHTO allow 16-22% air in Types IA, IIA, IIIA.(j) Required if SO3 exceeds the table limits.(k) Does not apply when the sulfate resistance limit is specified.(n) Either of the two alternative fineness methods may be used at the option of the testing laboratory. However, in the case of ASTM, the

    turbidimeter is the referee method; average value shall be determined on the last consecutive five samples from a source.

    (o) The purchaser should specify the type of setting time test required. In case he does not so specify, the requirements of the Vicat test onlyshall govern; CSA only specifies Vicat test.

    (p) The optional limit for the sum of the C3S and C3A shall not be requested when this optional limit is requested. These strength requirementsapply when either heat of hydration or the sum of C3S and C3A requirements are requested.

    (q) When heat of hydration limit is specified, it shall be instead of the limits of C3S, C2S and C3A.(s) The requirement of either heat of hydration or sulfate resistance may be specified at the option of the purchaser.(t) Optional, it shall be instead of the limits of C3A and C4AF+2C3A.(v) This value indicates requirement to be specified at the option of the purchaser.CTS - Products and Quality,Nov. 21, 2000

  • CEMENT PROCESS ENGINEERINGVADE-MECUM

    3.17

    ASTM Optional Physical Requirements

    Cement Type I Ia II IIa III IIIa IV VFineness Max for AASHTO **

    WagnerBlaine

    40002200

    40002200

    40002200

    40002200

    False set final penetration min (%) 50 50 50 50 50 50 50 50Heat of hydration

    7 days max (Ical/g)28 days max (cal/g)

    -

    -

    -

    -

    70-

    70-

    -

    -

    -

    -

    6070

    -

    -

    Compressive strength min (psi)28 days 4000 3200 4000

    3200*32002560*

    - - - -

    Sulphate expansion 14 days max (%) - - - - - - - 0.045* Apply when either the heat of hydration or C3S + C3A are specified.** American Association of State Highway and Transportation Officials.

    ASTM Standard Physical Requirements

    Cement Type I Ia II IIa III IIIa IV VAir content of motar Max %

    Min %12-

    2216

    12-

    2216

    12-

    2216

    12-

    12-

    Fineness minTurbidimeter (m2/kg)Air permeab (m2/kg)

    160280

    160280

    160280

    160280

    -

    -

    -

    -

    160280

    160280

    Compressive strength min (psi)1 day3 day

    7 days

    28 days

    -

    1800

    2800-

    -

    -

    1450

    2250-

    -

    -

    15001000*25001700-

    -

    1200800*20001350-

    18003500

    -

    -

    14502800

    -

    -

    -

    -

    1000

    2500

    -

    1200

    2200

    3000Setting timeGilmoreInitial set min (min)Final set max (h)VicatInitial set min (min)Final set max (h)

    6010458

    6010458

    6010458

    6010458

    6010458

    6010458

    6010458

    6010458

    * When optional heat of hydration or chemical limit on C3S + C3A is specified.ASTM Optional Chemical Requirements

    Cement Type IIaIIIia

    IIIIIIa

    IVIva

    VVa Remarks

    AC3 - - 8 - - Moderate sulphate resistance

    SC3 - - 5 - - High sulphate resistance

    SCAC 33 + - 58 - - - Moderate heat of hydration

    OK658.0ONa 22 + 0.60 0.60 0.60 0.60 0.60 Low-alkali cement

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.18

    Comparison of Blended Hydraulic Cement SpecificationsASTM C-1157-94a and C-595-94a, AASHTO M240-92, and CSA-A362-93

    10/27/94 ASTM C-1157-94a ASTM C-595-94a AASHTO M240-92 CSA-A362-93CEMENT TYPE GU HE MS HS MH LH L(SM) IS S L(PM) IP P I(SM) IS S L(PM) IP P 10SM 10S 10FM 10F 10SF

    Slag content, % 70 70

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.19

    Comparison of Blended Hydraulic Cement Specifications (continued)ASTM C-1157-94a and C-595-94a, AASHTO M240-92, and CSA-A362-93

    10/27/94 ASTM C-1157-94a ASTM C-595-94a AASHTO M240-92 CSA-A362-93CEMENT TYPE GU HE MS HS MH LH L(SM) IS S L(PM) IP P I(SM) IS S L(PM) IP P 10SM 10S 10FM 10F 10SF

    PHYSICAL REQUIREMENTSAir permeability test: b b b b b b b b b b b b b b b b b b 24.0 24.0 24.0 24.0 24.0Max. retained on 45m Sieve, % b b b b b b b b b b b b b b b b b bAutoclave contraction, max., % 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.50 0.50 0.50 0.50 0.50 0.50 0.8 0.8 0.8 0.8 0.8Autoclave contraction, max., % 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20Time of Setting:

    Vicat test -Minimum not less than, min. 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45Maximum not more than, h. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 8 6 8 6

    Air content of mortar, max., volume%

    b b b b b b 12 12 12 12 12 12 12 12 12 12 12 12

    Compressive Strength, min., MPa(psia):

    1-day 12(1740)

    3-day 12(1740)

    24(3480)

    10(1450)

    8(1160)

    7(1015)

    12.4(1800)

    12.4(1800)

    12.4(1800)

    12.4(1800)

    12.4(1800)

    12.4(1800)

    12.4(1800)

    12.4(1800)

    12.0 9.0 12.0 9.0 12.0

    7-day 20(2900)

    17(2465)

    15(2175)

    12(1740)

    7(1015)

    19.3(2800)

    19.3(2800)

    4.1(600)

    19.3(2800)

    19.3(2800)

    10.3(1500)

    19.3(2800)

    19.3(2800)

    4.1(600)

    19.3(2800)

    19.3(2800)

    10.3(1500)

    18.0 15.0 18.0 15.0 13.0

    28-day 28(4060)(m)

    28(4060)(m)

    20(2900)

    22(3190)(m)

    17(2465)

    24.1(3500)

    24.1(3500)

    10.3(1500)

    24.1(3500)

    24.1(3500)

    20.7(3000)

    24.1(3500)

    24.1(3500)

    10.3(1500)

    24.1(3500)

    24.1(3500)

    20.7(3000)

    26.0 26.0(j)

    26.0 26.0(j)

    26.0

    Heat of hydration:7-day, max., kJ/kg (cal/g) 290

    (70)250(60)

    293(70)(f)

    293(70)(f)

    293(70)(f)

    293(70)(f)

    251(60)(f)

    293(70)(f)

    293(70)(f)

    293(70)(f)

    293(70)(f)

    251(60)(f)

    287-day, max., kJ/kg (cal/g) 290(70)

    335(80)(f)

    335(80)(f)

    335(80)(f)

    335(80)(f)

    293(70)(f)

    335(80)(f)

    335(80)(f)

    335(80)(f)

    335(80)(f)

    293(70)(f)

    300(g)

    300(g)

    Paste false set (early stiffening),min, %Water requirement, max, wt.% ofcement

    64 64

    Drying shrinkage, max., % 0.15 0.15

  • CEMENT PROCESS ENGINEERING SECTION 3 QUALITYVADE-MECUM

    3.20

    Comparison of Blended Hydraulic Cement Specifications (continued)ASTM C-1157-94a and C-595-94a, AASHTO M240-92, and CSA-A362-93

    10/27/94 ASTM C-1157-94a ASTM C-595-94a AASHTO M240-92 CSA-A362-93CEMENT TYPE GU HE MS HS MH LH L(SM) IS S L(PM) IP P I(SM) IS S L(PM) IP P 10SM 10S 10FM 10F 10SF

    PHYSICAL REQUIREMENTSMortar expansion(I):

    14-day, max. % 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.0208-week, max. % 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060

    Sulfate resistance at 6 months:Moderate resistance, max., % 0.10 0.10(k

    )0.10(k

    )0.10(k

    )0.10(k

    )0.10(k

    )High resistance, max., % 0.05 0.05(k

    )0.05(k

    )0.05(k

    )0.05(k

    )0.05(k

    )Sulfate resistance at 1 year:

    Moderate resistance, max., %High resistance, max., % 0.10

    (a) Any amount of SO3 up to the maximum amount that causes an expansion of 0.020% at 14 days of water immersion when tested by C 1038.(b) No limit, but test results shall be reported on all certificates requested from the manufacturer.(c) If the purchaser has requested the manufacturer to state in writing the composition of the blended cement purchased, the composition of the cement furnished shall conform to that shown in the statement within the

    tolerances of +/-3% for SiO2 and CaO, and +/-2% for Al2O3.(d) When optimum SO3 tested by C563 exceeds a value 0.5% less than the specified limit, and additional amount of SO3 is permissible provided that, when the cement with the additional calcium sulfate is tested by

    C265, the calcium sulfate in the hydrated mortar at 24+/-0.25 h, expressed as SO3, does not exceed 0.50g/L. When the manufacturer supplies cement under this provision, he will, upon request, supply supporting datato the purchaser.

    (e) This limit may be exceeded provided that the cement exhibits expansion not in excess of 0.020% at 14 days when tested in accordance with Clause 7.5.5 of CSA-A5.(f) Applicable only when moderate (MH) or low (LH) heat of hydration is specified, in which case the strength requirements shall be 80% of the values shown in the table.(g) Applicable at the purchasers option, when moderate heat of hydration is required, the heat of hydration shall be determined in accordance with ASTM C186. Errors in C186 test can occur when testing blended

    hydraulic cements, due to the effect of oxidation of sulfides in slags or loss on ignition or due to incomplete solubility of fly ash or silica fume in nitric acid. The magnitude of these errors is unknown at this time.(i) To be applied only at the purchasers request and should not be requested unless the cement will be used with alkali-reactive aggregate.(j) When moderate heat of hydration is required, the minimum 28-day strength requirements shall be 80% of the value shown and the 91-day strength shall be a minimum of 26.0 MPa.(k) Applicable at purchasers option. The sulfate resistance shall be determined in accordance with ASTM C1012. If expansion is greater than 0.05% at 6 months but less than 0.10% at one year, then the cement will

    be considered to be high sulfate resistance.(l) Applicable only when the cement is specified to be nonstaining to limestone.(m) Optional.

    CTS Products and Quality, October 27, 1994