04 - lawsonite zone - CMP 1980.pdf

Embed Size (px)

Citation preview

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    1/8

    C o n t r i b M i n e ra l Pe t ro l 7 5 , 1 7 9 -1 8 6 (1 9 8 0 )

    ontributions to

    M i n e r a lo g y a n d

    P e t r o l o g y

    9 b y Sp r i n g e r -V e r l a g 19 8 0

    Lawsonite Zone Blueschists and a Sodic Amphibole Producing Reaction

    in the Tav~anll Region Nor thwe st Turk ey

    A I

    Okay*

    D e p a r t m e n t o f E a r t h S c ie nc es , D o w n i n g P l a c e, C a m b r i d g e C B 2 3 E W , E n g l a n d

    A bst rac t

    The petrology and mineralogy of lawsonite

    zone metabasites have been studied northeast of town

    of Tav~anh, NW Turkey. In the field the metabasites

    are characteristically green and lack folia tion; the es-

    sential mineral assemblage being sodic pyroxene+

    lawsonite + chlorite + quartz_+ sodic amphibole. Sodic

    pyroxene of aegirine-jadeite composition occurs as

    pseudomorphs after magmatic augite. Lawsonite and

    chlorite are the other two dominant minerals. Sodic

    amphibole forms progressively from a reaction be-

    tween sodic pyroxene, chlorite and quartz, and an

    isograd representing the first abundant occurrence of

    sodic amphibole in basic rocks has been mapped.

    The widespread occurrence of sodic pyroxene pseudo-

    morphs in other blueschist terrains indicates that the

    inferred sodic amphibole producing reaction is of gen-

    eral significance for blueschist metabasites.

    The conversion of greenstones with the assem-

    blage albite + chlorite + actinolite directly into glauco-

    phane-lawsonite blueschists without any intervening

    lawsonite zone illustrates the influence of the initial

    mineral assemblage on the reaction path.

    Int roduct i on

    The Northwest Turkish blueschist belt extends

    250 km in an east-west direction flanking the northern

    margins of the ultrabasic massifs in the Izmir-Ankara

    Zone (Okay 1980a, Fig. 1). The dominant rock types

    throughout the belt are basic volcanic rocks, pyroclas-

    tics, cherts and shales. The volcanics and tufts are

    repeatedly intercalated with pelagic sediments indi-

    cating that volcanism was contemporaneous with sed-

    imentation. The metamorphic grade shows a general

    increase northwards away from the peridotite massifs

    from incipient high pressure metamorphism to glau-

    Present address: T e m e l A r a ~ t l r m a l a r , M i n e r a l R e s e a r c h a n d

    E x p l o r a t i o n I n s t i tu t e (M T A ) , A n k a r a , T u r k e y

    cophane-lawsonite or glaucophane-epidote zone

    blueschists. The increase in metamorphic grade takes

    place over a distance of I0-20 kin. A section across

    this peridotite/blueschist belt has been mapped north-

    east of the district of Tav~anh (Okay 1980a, Fig. 1).

    Here an imbricate tectonic zone of spilite-chert-serpen-

    tinite association with occasional slices of green-

    schists, forms a 2 3 km wide rim arou nd the large harz-

    burgite massifs. The spilites of this zone show effects

    of an incipient high-pressure metamorphi sm and me-

    tasomatism (Okay, in preparation). This schuppen

    zone is succeeded along major thrust faults by the

    lawsonite zone blueschists, which pass with the devel-

    opment of sodic amphibole to fully recrystallised and

    often schistose glaucophane-lawsonite zone blue-

    schists (Okay 1980a). This paper deals with the law-

    sonite zone blueschists around the village of Ketenlik,

    south of the area shown in Fig. 1 of Okay (1980a).

    R o c k T y p e s a n d P e t r o g r a p h y

    Th e ro c k t y p e s i n t h e a re a i n c l u d e b a s i c v o l c a n i c s , c h e r t s , sh a l e s ,

    se rp e n t i n i t e , g a b b ro a n d g re y w a c k e . M e t a b a s i t e s , w h i c h a re t h e

    mo s t c o mmo n l i t h o l o g y , fo rm ma ss i v e g re e n d o l e r i t e s , p y ro c l a s t i c s

    a n d l a v a f l o w s . In t h e f i e l d t h e b a s i c v o l c a n i c ro c k s a re g re e n ,

    a p p e a r u n m e t a m o r p h o s e d a n d s h o w n o p e n e t r a t i v e d e f o r m a t i o n .

    Th e o n l y s i g n o f b l u e sc h i s t me t a mo rp h i sm i s r a re b l u e s t r i n g e rs

    o f so d i c a mp h i b o l e a l o n g sh e a r p l a n e s . H o w e v e r , u n d e r t h e mi c ro -

    sc o p e t h e i g n e o u s mi n e ra l o g y i s s e e n t o b e c o m p l e t e Iy re c o n s t i t u t e d

    w h i l e t h e i g n e o u s t e x t u re i s p re se rv e d . A u g i t e i s p se u d o m o rp h e d

    b y so d i c p y ro x e n e (c f . , C a rp e n t e r a n d O k a y 1 9 7 8 ) , w h i l e t h e re s t

    o f t h e ro c k c o n s i s t s o f a n a s se mb l a g e o f l a w so n i t e -q u a r t z -c h l o r i t e -

    l e u c o x e n e (F i g . I ) . In so me ro c k s l a rg e p l a g i o c l a se c ry s t a l s h a v e

    b e e n p s e u d o m o r p h e d b y a n a s s e m b l a g e o f l a w s o n i t e - q u a r tz - c h l o -

    r i t e (c f. , C o ~ u l u 1 9 6 7 , Ph o t o 2 0 ). Ex c e p t fo r t h e g e n e ra l a b se n c e

    o f p u mp e l l y i te , t h e l a w so n i t e z o n e me t a b a s i t e s o f t h e Ta v s~ an h

    a re a c l o se ly re se mb l e t h e Ty p e I i m e t a b a s i t e s o f t h e Fra n c i sc a n

    ( C o l e m a n a n d L e e 1 9 6 3 ) . T h e c o m m o n m i n e r a l a s s e m b l a g e s in

    t h e l a w so n i t e z o n e me t a b a s i t e s a re :

    l a w so n i t e + so d i c p y ro x e n e + c h l o r i t e + q u a r t z + l e u c o x e n e

    + p h e n g i t e + so d i c a m p h i b o l e .

    0010/7999/80/0075/0179/ 01.60

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    2/8

    180 A. I . Oka y : A Sodi c Am phi b o l e P rodu c i ng R e a c t i on

    F i g. l a a n d b . P h o t o m i c r o g r a p h s o f l a w s o n it e z o n e m e t a b a s i te s f r o m t h e T a v ~ a n ll r e g io n : a S o d ic p y r o x e n e p s e u d o m o r p h s ( p x ) a f t er

    augi te se t on a chlori te chl)+lawsonite lw)+quartz qtz)+matrix; l e uc oxe ne is a f t e r t i t a noma gne t i t e , b C o a rse g ra i ne d m e t a dol e r i t e

    ( K 5 4 ) w i th s o d i c p y r o x e n e p s e u d o m o r p h s ( p x ) r i m m e d a n d p a r t i a ll y r e p l a c ed b y s o d i c a m p h i b o l e amp). T h e g r o u n d m a s s c o n s i s t s

    of la wsoni t e a nd qua r t z . Sodi c pyroxe ne ha s i r r e gu l a r qua r t z i nc l us i ons

    Sodi x pyroxe ne , l a wsoni t e a nd c h l or i t e oc c ur i n roughl y e qua l

    p r o p o r t i o n s , a n d t o g e t h e r c o n s t i t u te a p p r o x i m a t e l y 8 0 m o d a l p e r

    c e n t o f t he roc k (Ta b l e 1 ). Le uc oxe n e a nd qua r t z usua l l y ma k e

    up l e s s t ha n 10% . Sodi c a mphi b o l e oc c urs e i t he r a s t h i n r i ms

    a rou nd sod i c pyroxe ne pse udo mo rph s (F ig . l b ) o r a s i d i ob l a s t ic

    c rys t a l s g row i ng ove r a f i ne -gra i ne d sod i c pyroxe ne -c h l or i t e ma t r i x .

    Sodi c a mphi bo l e , whe n pre se n t , ge ne ra l l y doe s no t c ons t i t u t e more

    t ha n 10% of t he me t a ba s i t e i n t he l a wsoni t e z one . A fe w gra i ns

    o f p y ri t e o r m a g n e t i t e w er e n o t e d f r o m a b o u t o n e q u a r t e r o f t h e

    spe c i me ns . In ge ne ra l c a rbona t e m i ne ra l s a re r a re, b u t sma l l

    a m oun t s o f a ra goni t e , pa r t i a l l y i nve r t e d t o c a l ci t e, oc c u r i n t he

    g r o u n d m a s s o f f iv e s p ec i m e n s. A l b i t e is a b s en t . M e a s u r e d m o d e s

    of s ix a na l yse d me t a b a s i t e s ba se d on ove r 1 ,000 po i n t c oun t s a re

    given in Table 1.

    V e i n s ar e n o t v e r y a b u n d a n t i n t h e l a w s o n i t e z o n e m e t a b a s i t e s ;

    t he ve i n mi ne ra l s i nc l ude qua r t z ( i n 17 sa mpl e s o u t o f 40) , c a l ci t e

    ( in 4) , a ragoni te ( in 2) , chlori te ( in 2) , l awsoni te ( in 2) , and sodic

    pyroxe ne ( i n I ) .

    R e d c he r t s , whi c h a re i n t e rc a l a t e d wi t h t he me t a ba s i t e s , a re

    poor l y r e c rys t a l l i s e d a nd re t a i n t he i r s e d i me nt a ry fe a t ure s . U l t r a -

    ba s i c roc ks oc c ur a s sma l l l e nse s wi t h i n t he l a wsoni t e z one se -

    que nc e . Th e y a re c ompl e t e l y s e rpe n t i n i s e d a nd c o ns i s t o f a n t igor i t e

    ( a s d e t e r m i n e d b y i ts X R D p a t t e r n s cf . W h i t t a k e r a n d Z u s s m a n

    1956) wi t h mi n or c h l or i t e , b ruc it e , t r e mol i t e , d i s se mi na t e d ma g ne -

    t i te a nd re l i c t sp i ne l. I r r e gu l a r ve i ns a nd gra nul e s o f a ndra d i t e

    garnet (Ca2.gsMn0.ozFel .84Alo. l lTlo.ogS13012)3+ are commonly

    pre se n t i n t he se s e rpe n t i n i t e s .

    R a re vo l c a noge ni c g re ywa c ke s re t a i n t he i r s e d i me nt a ry t e x-

    t u re s . Howe ve r , a l b i t e c l a s t s ha ve be e n re p l a c e d by pr i sm a t i c bun-

    d l e s o f j a de i t e a nd q ua r t z ; t he qua r t z g ra i ns sho w i nc i p i e n t r e c rys -

    ta l l i sa t ion.

    M e t h o d

    M i ne ra l c omp os i t i on s we re de t e rmi ne d for t we l ve e l e me nt s (Na ,

    C a , K , Fe , M g, M n, V, Ni , C r , T i , A1, S i) us i ng a n e ne rgy d i spe r s i ve

    e l e c t ronprobe w i t h a Ha rwe l l S i (L i) de t e c t or a nd pu l se p roc e s sor .

    T h e c o r r e c t io n p r o c e d u r e s a r e g i ve n b y S w e a t m a n a n d L o n g ( 1 96 9 ).

    The me t h od for e s t i ma t i ng fe rr i c i on i n sod ic pyroxe ne a n d sod i c

    a mph i bo l e i s g i ve n i n e a r li e r pa pe rs (Oka y 1978, 1980 b

    respect ive ly) .

    Table 1 M e a s u r e d m o d e s o f a n a l y s ed l a w s o n i te z o n e m e t a b a s i t e s

    K 5 4 K 6 2 5 K 6 2 7 K 7 6 1 K 7 6 9 K 7 8 2 K 8 5 6

    Law son i te 32.1 20.2 44.6 23.8 29.7 15.0 x

    Chlo ri te 8.9 27.5 1.1 18.6 25.6 26.7 x

    Sodic pyr oxe ne 26.1 33.3 26.2 42.0 22.1 45 .2 x

    Sodic am ph ibo le 13.7 - 20.4 - - 0.9 -

    Qu ar tz 13.6 14.1 0.2 4.1 4.0 0.1 -

    Le uc ox en e 3.1 4.4 5.4 11.2 11.1 10.1 x

    Ph eng ite 2.5 - 1.7 - 7.5 1.0 -

    Pyr ite - - - 0.3 - tr x

    M a g n e t i t e - 0 .5 . . . . .

    Relic t aug ite - - 0.4 - - 1.0 x

    100.0 100.0 100,0 100.0 100.0 100.0

    * T o o f in e - g r a in e d f o r m o d a l co u n t i n g

    Ja de i t i c pyroxe ne

    M ine r a logy

    Sodic Pyroxene

    A l l s o d ic p y r o x e n e s i n t h e m e t a b a s i t es a r e p s e u d o m o r p h s a f te r

    a ug i t e. In t he 40 sa mpl e s t ha t we re e xa mi ne d , sod i c pyrox e ne wa s

    ne ve r found t o ha ve nuc l e a t e d i nde pe nde nt l y . In t he g re a t ma j or i t y

    of t he spe c i me ns sod i c pyrox e ne fo rm s a pp l e -gre e n c rys t a l s , whi c h

    a re o f t e n t u rb i d a s a r e su l t o f sm a l l l e uc oxe ne i nc l us i ons (F i g . 1 ).

    Suc h sod i c pyroxe ne s a re a e g i r i ne -j a de i t e s wi t h h i gh a c m i t e c ompo -

    ne n t s (> 40% , F i g . 2 , Ta b l e 2) . In four spe c i m e ns a ug i t e s a re pa r -

    t i al l y o r c ompl e t e l y r e p l a c e d by j ade i t i c pyroxe ne . In t wo of t he se

    c a se s j a de i t e a nd a c mi t i c pyrox e ne ha ve re p l a c e d d i f fe re n t g ra i ns

    i n t he s a me se c t i on , o r e ve n d i f fe re n t pa r t s o f t he s a me gra i n .

    T h e c o m p o s i t i o n s o f t h e j a d e it i c p y r o x e n e s f r o m o n e o f t h e s e m e t a -

    ba s i t e s a re p l o t t e d i n F i g . 2 . Ompha c i t e , w hi c h oc c urs i n some

    T y p e II m e t a b a s i t e s f r o m t h e F r a n c i s c a n ( E s s e n e a n d F y f e I 9 6 7,

    F i gs . 12 a nd 13 ; B rown a nd B ra dsh a w 1980, F i g . 3 ) i s no t foun d

    i n t he Ta v~ a nh a re a .

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    3/8

    A.I. Okay: A Sodic Amphibo le Producing Reaction 181

    ,C

    Au Jd

    F ig . 2 . So d ic p y ro xe n e co mp o s i t i o n s f ro m th e ] a wso n i t e zo n e me ta

    basites plotted on the acmite-jadeite-augite diagram

    X s i

    0.7

    0 . 6

    0 . 5

    O . t +

    ) A t 0 .3

    0 . 2

    0.0

    o

    ~ = o ,~, , e

    i 0 3 .

    0 . 1 0 . 2 0 . ~ 0 . 5 0 . 6

    F e / F e + M g

    Fig. 3. Chlorite compositions from the lawsonite zone metabasites

    plotted in terms of their Fe/Fe+Mg, Si/Si+A1 and AI/AI+Fe+

    Mg ratios. Symbols as in Fig. 2

    Chlori te

    In contras t to the glaucophane-lawsonite zone, chlorite is abund ant

    in the lawson ite zone metabasffes. However, it is less well recrystall-

    ised and often has appreciable K20 and CaO contents (Table 2).

    Chlorite compositions frmn six metabasites are plotted in Fig. 3

    and four chlorite analyses are shown in Table 2. Chlorites show

    a wide range of ferromagn esian ratios (Xre = 0.2-0.5) and a restrict-

    ed A1/A1+ Fe + Mg ratio (0.30 0.34). There is no appreciable com-

    positional difference between the glaucophane-lawsonite and law-

    sonite zone chlorites.

    La w so n i t e

    Lawsonite invariably forms small tabular crystals with prominent

    (101) faces. Compositionally it is very uniform and closely approxi-

    mates the ideal s tructural formula CaAIzSi2OvH20(OH)2.

    S o d i c m p h i b o l e

    Sodic amphiboles, which are texturally replacing sodic pyroxenes

    (cf., Fig. 1 b) tend to be compositionally inhom ogeneo us with Ca-

    rich patches. This apparently has arisen from the difficulty of

    diffusing calcium atoms away from the sodic pyroxene through

    the mantling sodic amphiboIe. Idiobtastic sodic amphiboles grow-

    ing over the chlorite-sodic pyroxene matrix are unifo rmly homoge-

    neous and sodium-rich (Na /Na +C a>9 0 ). Sodic amphibole

    composi tions from three metabasites are plotted on the Miy ashiro

    diagram in Fig. 4 an d two of the analyses are given in Table 2.

    Ph e n g i t e

    Phengite is much rarer in the lawsonite zone metabasites than

    in the correspondin g higher grade glaucophane-l awsonite zone me-

    tabasites. It fo rms feathery elongate crystals closely as sociated and

    often intergrown with chlorite. Its forma tion is related to the recrys-

    tallisation of relatively potassium-rich microgranu lar chlorite to

    potassium-poor coarser chlorite. The few analysed phengites do

    F G R

    V

    O

    v

    f i d R

    Fig. 4. Sodic amphibole compositi ons from the lawsonite zone me-

    tabasites plotted on the Miyashiro diagram. Symbols as in Fig. 2.

    G gtaucophane;

    F G

    ferroglaucophane; R riebeckite;

    M R

    magne-

    sioriebeckite

    not have any measurable paragonite or margarite components (Ta-

    ble 2).

    Le u c o x e n e

    Leucoxene is a constant accessory mineral in the metabasites. It

    forms diffuse semiopaque pseudomorphous after titanomagnetite

    or ilmenite. It has a nonstoich iometric and variable comp osition

    with sphene as the dominant mineral (Table 2).

    Sodic mphibole Isograd

    The passage from green massive lawsonite-chlorite-

    sodic pyroxene rocks to blue often schistose glauco-

    phane-lawsonite metabasites is gradual. The more

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    4/8

    182

    Table 2. Re presentative mineral analyses

    A.I. Okay: A Sodic Amphibole Producing Reaction

    Sodic pyroxene Chlorite Sodic amphibol e Phengite Leucoxene

    K625 K761 K627 K782 K856 K625 K769 K54 K627 K782 K761 K54

    SiO2 53.92 53.67 55.67 54.26 58.40 29.55 29.19 28.68 29.05 59,48 56.75 52.43 30.00 29.78

    TiO2 0.25 0.40 1.05 0.14 0.14 0.00 0.00 0.00 0.00 0.43 0.17 0.00 25.95 39.05

    AI203 5.02 5.16 9.66 6.60 18.08 16.70 16 .7 9 17.87 18.05 10.23 5.99 21.73 6.42 2.42

    FeO 21.19 18,47 15.77 13.25 5.94 21.64 22.51 18.77 16.75 9.82 19.47 4.51 7.79 2.23

    MgO 1.41 3.08 1.46 4.82 1.43 13.95 14.60 20.48 17.81 10.80 7.69 4.63 6.12 1.42

    MnO 0.00 0.00 0.00 0.00 0.00 0.49 0.77 0.56 0.54 0.19 0.19 0.00 0.15 0.00

    CaO 2.99 6.05 2.37 9.10 2.67 0.39 0.22 0.13 0.28 0.44 0.69 0.00 19.45 23.60

    NazO 12.99 10 .6 5 12 .73 9.46 13.32 0.00 0.00 0.00 0.00 7,78 7.02 0.00 0,00 0.00

    K2 0 0.00 0.00 0.00 0.00 0.00 1.47 0.49 0.09 0.98 0,00 0.00 10.46 0,00 0.00

    Tota l 97.77 97,48 98.71 97.63 99.98 84.19 84.57 86.58 83.46 99.17 97.97 93.76 95,88 98.50

    Totaliron as FeO

    Number of cations per

    6 oxygens 28 oxyge ns 23 O 22 O 5 oxygens

    Jd 22 23 41 29 74

    Ac 65 54 48 39 I5

    Au 13 23 11 32 11

    Si 1.9 9 2.00 2 . 01 2.00 2.02 6.40 6.29 5.91 6.16 7.97 8.01 7.18 1.0 2 0.98

    A14 0.01 0.00 0,00 0,00 0.00 1.60 1.7 1 2.09 1,84 0.03 0.00 0.82

    A16 0.21 0.23 0 . 41 0.29 0.74 2.66 2.56 2.25 2.68 1.59 1.00 2.6--9 0.26 0.09

    Ti 0.01 0. 01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.00 0.66 0.97

    Fe 3+ 0.65 0.54 0.48 0.39 0.15 0.28 0.91

    3.92 4.06 3.24 2.97 0.52 0.22 0.06

    Fe 2+ 0.00 0.03 0.00 0.02 0.02 0.82 1.39

    Mg 0.08 0.17 0.08 0.26 0.07 4.50 4.69 6.29 5.63 2.16 1.62 0.95 0. 31 0.07

    M n 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 0 . 1 4 0 . 1 0 0 . 1 0 0 . 0 2 0 . 0 2 0 .0 0 0 . 01 0 . 01

    0.95 0. 9 8 1. 00 0. 96 0.98 4.91 4.96 4.1--~

    Ca 0 .12 0 . 24 0 . 09 0 .3 6 0 .10 0 .09 0 .0 5 0 . 03 0 .06 0 .06 0 .10 0.0---0 0 .71 0 .83

    Na 0 .93 0 . 77 0 . 89 0 . 68 0 .89 0 .00 0 . 00 0 . 00 0 .00 2 .02 1 .92 0 .00 0 .00 0 .00

    K 0 . 00 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 .4 1 0 . 1 3 0 . 0 2 0 . 2 7 0 . 0 0 0 . 0 0 1.83 0 . 0 0 0 . 0 0

    1.05 t.0 1 0. 98 1.04 0. 99 2.0 8 2. 02 1.8---3 3.19 3.01

    9.67 19. 63 19. 93 19,71

    f is s il e v o l c a n i c s h a l e s a n d t u f t s o b t a i n a b l u e c o l o u r

    b e f o r e t h e c o a r s e r d o l e ri t e s a n d b a s a l t s w h i c h s t a n d

    o u t a s g r e e n m a s s i v e b o u n d i n a g e d b l o c k s a m i d s t t h e

    s t r o n g l y s c h i s to s e b l u e m e t a s h a l e s . T h e s o d i c a m p h i -

    b o l e i s o g r a d i s m a p p e d i n th e s e m a s s i v e b a s a l t s a n d

    d o l e r it e s . ( I s o g r a d i s u s e d h e r e p u r e l y in t h e d e -

    s c r ip t i v e s e n s e - e . g ., t h e f ir s t a b u n d a n t a p p e a r a n c e

    o f so d i c a m p h i b o l e i n m a s s i v e m e t a b a s i t e s ) .

    T h e p a s s a g e f r o m l a w s o n it e z o n e t o g l a u c o p h a n e -

    l a w s o n i t e z o n e o c c u r s w i t h i n 5 0 m i n th e v i l l a g e o f

    K e t e n l i k . T h e c h a n g e i n m i n e r a l a s s e m b l a g e w a s o b -

    s e rv e d in t w o b a n d e d t u f f s p e c im e n s c o l l ec t e d f r o m

    w i t h i n 5 0 m o f e a c h o t h e r . K 5 0 7 / 2 i s g r e e n a n d s h o w s

    a w e l l - m a r k e d b a n d i n g , a n d c o n s i s t s o f e l o n g a t e d ,

    y e l lo w i s h - g re e n s o d ic p y r o x e n e , a n d c h l o r i t e + l a w -

    s o n i te b a n d s w i t h m i n o r q u a r t z b u t n o s o d i c a m p h i -

    b o l e . K 5 0 7 / 1 c o l l e c t e d 5 0 m t o t h e s o u t h i s b l u e a n d

    s c h i st o s e , a n d c o n s i s t s o f o v e r 4 0 m o d a l p e r c e n t s o d i c

    a m p h i b o l e a n d a b u n d a n t l a w s o n it e . S o d ic p y r o x e n e

    h a s la r g e l y r e s o r b e d o r c o n c e n t r a t e d a l o n g c e r t a i n

    b a n d s .

    F i g u r e 5 is a g e o l o g i c a l m a p o f t h e K e t e n l i k a r e a ,

    N W T u r k e y s h o w i n g th e s a m p l e l o c a t i o n s o f t h e b a s ic

    i g n e o u s r o c k s . L o c a t i o n s o f m e t a b a s i t e s w i t h t h e e s -

    s e n t ia l m i n e r a l a s s e m b l a g e l a w s o n i t e + c h l o r it e + s o d -

    i c p y r o x e n e ( a f t e r a u g i t e ) a r e s h o w n b y f i l l ed c i r c le s .

    H a l f - f i ll e d c ir c le s i n d i c a te s p e c i m e n s w h i c h a l s o c o n -

    t a in m i n o r a m o u n t s o f s o d ic a m p h i b o l e . M e t a b a s i t e

    l o c a t i o n s w i t h t h e e s s e n t i a l m i n e r a l a s s e m b l a g e o f

    s o d ic a m p h i b o l e + t a w s o n i t e a r e sh o w n b y o p e n c i r-

    c l e s . T h e i s o g r a d c l o s e l y f o l l o w s t h e t e c t o n i c b o u n d -

    a r i e s o f t h e i n c ip i e n t l y m e t a m o r p h o s e d s p i l it e - c h e r t-

    s e r p e n t i n i t e c o m p l e x ( Y e n i k 6 y G r o u p ) .

    T h e f o r m a t i o n o f s o d ic a m p h i b o l e i s g e n e ra l ly

    c o n t e m p o r a n e o u s w i t h t h e p e n e t r a t i v e d e f o r m a t i o n

    i n t h e b l u e s c h is t s . I n t h e l a w s o n i t e z o n e , s o d i c a m p h i -

    b o l e o c c u r s o n l y a l o n g t h e s h e a r p l a n e s i n t h e g r e e n

    m a s s i v e m e t a b a s i t e s , w h e r e i t f o r m s t h i n b l u e s c a l es .

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    5/8

    A . I . O k a y : A S o d ic A m p h i b o l e P r o d u c i n g R e a c t i o n 1 83

    [ [ ~ B l u e s c h is f I U l f r a b a s i t

    p_~==:~6r eenschis ~ Ma rble

    F~7 ~ Y e n i ko yQroup

    f Dip and strike of schistosity

    / Faul t ~

    Landslide

    / - '" Sadie

    amphibolesograd

    9 No-Px + Laws.+ChL

    No-Px * Laws.+Chl.Na-Amph.(30~ -*Na-Px.

    Ikm

    o

    i

    0

    1S2

    0 _ _ _

    . . . . . . - 6 2 7 . . . . . . . . . . . . . . . .

    9

    .,_. (I,

    e s6 9 9 9

    < ~ v ~ , \

    ZEZ

    : : ~ : 7

    - i e . > ; ? .

    70 ,, .~: .::

    , , , , , : :

    o o

    Ketenl

    Fi g . 5 . Ge o l o g i c a l ma p o f t h e

    Ke t e n l i k a re a sh o wi n g t h e

    sa mp l e l o c a t i o n s a n d t h e so d i c

    a m p h i b o l e i s o g r a d . Y e n i k 6 y

    Gro u p c o n s i s t s o f a n i n c i p i e n t l y

    m e t a m o r p h o s e d a n d

    me t a so ma t i se d sp i l i t e -c h e r t -

    se rp e n t i n i t e c o mp l e x 9 Th e inset

    sh o ws t h e ma j o r p e r i d o t i t e

    o c c u r r en c e s i n W e s t e r n T u r k e y

    With increasing deformation sodic amphibole grows

    parallel to the schistosity wrapping around rotated

    sodic pyroxene and lawsonite crystals. The typical

    mineral assemblage in the glaucophane-lawsonite

    zone metabasites is "sodic amphibole+lawsonite_+

    sodic pyroxene + chlorite + sphene +phe ngi te" . The

    ghost igneous texture, which is so well preserved in

    the lawsonite zone metabasites, is completely obliter-

    ated with the development of a schistose metamorphic

    fabric. Cherts which are clearly recognizable as such

    in the lawsonite zone, lose their distinct red colour,

    and form banded, schistose metaquartzites. These

    rocks are described in detail in the previous paper

    (Okay 1980a).

    Sod ic mph ibo le Producing React ion

    in the Metabas i tes

    The reaction textures between sodic pyroxene and

    sodic amphibole, as well as the drastic decrease in

    the modal amounts of chlorite and sodic pyroxene

    in the glaucophane-lawsonite zone metabasites, indi-

    cate that the formation o f sodic amphibole is related

    to a reaction involving chlorite and sodic pyroxene.

    In quartz-bearing rocks, the minerals sodic pyrox-

    ene, sodic amphibole, chlorite and lawsonite can be

    described in the six component system Na20 - Ca O-

    Fe O- Mg O- A1 20 3- Fe 20 > The relationship be-

    tween sodic pyroxene and sodic amphibole in this

    system .can be shown in a t ernary phase projection

    with Na, A1 and Fe 3 + at its apices (NAF3), involving

    A(

    /~ +L f lwsomfe

    / \ *Chtor l te

    / ~

    Fi g . 6 . NA F3 p ro j e c t i o n o f so d i c p y ro x e n e a n d so d i c a mp h i b o l e

    c o m p o s i t i o n s f ro m l a wso n i t e , c h l o r it e , q u a r tz , a n d H 2 0 . Th e j a -

    d e i te a n d a u g i te c o n t e n t s o f s o d ic p y r o x e n es , a n d t h e N a / N a + C a

    ra t i o s o f so d i c a mp h i b o l e s thkk dashed l ines) a re i n d i c a t e d . Th e

    o b se rv e d so d i c p y ro x e n e c o mp o s i t i o n a l f i e l d f ro m t h e l a wso n i t e

    z o n e m e t a b a s i t e s i s s t i p p l e d

    projections from lawsonite for Ca and from chlorite

    for Fe 2+, Mg (Fig. 6). Both lawsonite and chlorite

    are stable and ubiquitous on both sides of the isograd.

    The composition of chlorite used in the projection

    is (Fe 2+, Mg)4.8oAl>2oSi2.95Olo(OH)8, typical of

    blueschist chlorites9 The variation of A1/Fe2 + + Mg

    of chlorites in different rocks is slight (Fig. 3) and

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    6/8

    1 8 4 A . I . O k a y : A S o d i c A m p h i b o l e P r o d u c i n g R e a c t i o n

    t h e r e i s n o a p p re c i a b l e d i f f e r e n c e in t h e A 1 / A I+ F e +

    M g r a t i o s o f c hl o r it e s f ro m l a w s o n i t e a n d g l a u c o -

    p h a n e - l a w s o n i t e z o n e s . Th e a l g e b ra i c p ro c e d u re u s e d

    fo r p ro j e c t i n g p h a s e s i s t h a t g i v e n b y G re e n w o o d

    (1975).

    O n l y C a -p o o r s o d i c p y ro x e n e s c a n b e r e p re s e n t e d

    (a p p ro x . < A u 3 5 ) i n t h e N A F 3 d i a g ra m a s th e m o re

    c a l ci c m e m b e r s h a v e n e g a t iv e p ro j e c t i o n p o i n t s . H o w -

    ever , th i s is no t a p rob le m as a l l ana lysed sod ic py rox-

    e n e s f ro m m e t a b a s i t e s h a v e l o w a u g i t e c o n t e n t s

    (< A u 3 o ) . Th e c o m p o s i t i o n a l ra n g e o f so d i c p y ro x e -

    n e s f ro m m e t a b a s i t e s i s s h o w n s t i p p l e d i n t h e N A F 3

    d i a g ra m i n F i g . 6 . S o d i c a m p h i b o l e c o m p o s i t i o n s

    d o w n t o N a / N a + C a = 0 .8 ( a s o b s e rv e d i n m e t a b a s i t es )

    a re ind ica ted by dashed l ines .

    Th e m o s t i m p o r t a n t f e a t u r e r e v e a l e d b y t h e N A F 3

    diag ram in F ig . 6 i s the su perpos i t ion o f the sod ic

    a m p h i b o l e a n d s o d i c p y ro x e n e f i e l d s . Th i s i n d i c a t e s

    t h a t s o d i c p y ro x e n e s , w i t h c o m p o s i t i o n s c o r r e s p o n d -

    i n g to t h e s o d i c a m p h i b o l e f i e l d i n th e N A F 3 d i a g ra m ,

    a r e n o t s t a b l e w i t h s o d i c a m p h i b o l e i n t h e p r e s e n c e

    o f q u a r t z , l a w s o n i t e a n d c h l o r i t e u n d e r d i v a r i a n t c o n -

    d i ti o n s. F o r s o d i c p y ro x e n e s w i th c o m p o s i t i o n s l y in g

    o u t s i d e t h e s o d i c a m p h i b o l e f i e l d i n t h e N A F 3 d i a -

    g r a m (A u < 0 .2 o r A u > 0.3) , t h e s o d i c a m p h i b o l e p ro -

    d u c i n g r e a c t i o n w o u l d b e a c o n t i n u o u s o n e , p ro d u c -

    i ng s o d ic p y ro x e n e s fu r t h e r e n r i c h e d (> A u o .3 ) , o r

    dep le ted (< Au0 .2) in aug i te com pon en t th an the in i-

    t ia l c o m p o s i t i o n (d e p e n d i n g o n w h i c h s id e o f t h e s o d i c

    a m p h i b o l e f i el d t h e y li e) . A s p o i n t e d o u t b y B ro w n

    and Bradshaw (1980) , th i s wi l l resu l t in the po lar iza-

    t i o n o f so d i c p y ro x e n e c o m p o s i t i o n s a n d m a y e x p l ai n

    the app aren t so lvus in the sod ic py ro xene f i e ld . Such

    a g ro u p i n g i s h o w e v e r n o t h p p a re n t i n s o d i c p y ro x e n e

    c o m p o s i t i o n s f ro m t h e g l a u c o p h a n e - l a w s o n i t e z o n e

    (cf. , Okay 1980a, Fig . 4).

    Th e s o d i c a m p h i b o l e p ro d u c i n g r e a c t i o n i n t h e

    Ta v ~ a n h a r e a c a n b e b a l a n c e d fo r t h e o b s e rv e d c o m -

    pos i t ions o f the par t i c ipa t ing minera l s :

    2 . 5 N a o . s o C a o , 2 0 A l o . s o F e 3 + o ,s o M g o . 1 6 F e 2

    o . o 4 8 i 2 0 6

    s o d i c p y r o x e n e

    + 0 . 5 M g a F e 2 + 2 A 1 2 S i 3 O s O H 8 + 2 . 5 S i O 2 =

    c h l o r i t e q u a r t z

    0 . 5 C a A 1 2 S i 2 0 6 O H ) 4

    l a w s o n i t e

    + 1 N a a M g l . 9 0 F e 2 + x . lo A l o . 75 F e a+ 1 . 2 5S i s O 2 a O H ) z .

    s o d i c a m p h i b o l e

    I t i s i m p o r t a n t t o n o t e t h a t t h is r e a c t i o n d o e s

    no t invo lve

    H 2 0 ,

    a n d i s t h u s i n d e p e n d e n t o f c h a n g e s

    in f lu id p ressu re .

    The ch lo r i t e compos i t ion in the reac t ion i s s l igh t ly

    idea l i sed [ (Mg, F e)sAl2 . . . . in s tead o f (M g, Fe)4 .s -

    A12 .z . . . ] and the smal l Ca-componen t in sod ic am-

    p h i b o l e i s n e g l e c t e d i n o rd e r t o u s e t h e t a b u l a t e d

    t h e rm o d y n a m i c v a l u e s . En t ro p i e s a n d m o l a l v o l u m e s

    o f s o d i c p y ro x e n e , c h l o r i t e a n d s o d i c a m p h i b o l e a r e

    o b t a i n e d f ro m t h e i r r e s p e c t i v e e n d -m e m b e r s (H e l g e -

    son et al . 1978) by ass um ing ideal m ixing o n s i tes.

    O rd e r i n g o f i o n s in t h e M 1 a n d M 2 s it es h a s b e e n

    d e m o n s t r a t e d fo r P l a t ti c e o m p h a c i t e s (C l a rk a n d P a -

    p ike 1968) . Aeg i r ine- jade i tes and c h lo romelan i tes , o n

    t h e o t h e r h a n d , s h o w n o o rd e r i n g a n d h a v e t h e h ig h e r

    s y m m e t ry s p a c e g ro u p C 2 / c w i t h e q u i v al e n t M 2 s i t es

    (C a rp e n t e r 1 9 8 0 ). Th e re fo re e n t ro p i e s o f m i x i n g fo r

    s o d i c p y ro x e n e s a n d s o d i c a m p h i b o l e s h a v e b e e n c a l -

    cu la ted assuming no coup l ing on s i t es . The en t ropy

    data fe r rog laucophane i s no t ava i lab le . I t i s as sumed

    t h a t i n c r e a s e i n e n t ro p y f ro m m a g n e s i o r i e b e c k i t e t o

    r i e b e c ki t e ( d u e t o M g < - - = > F e z + s u b s t i tu t i o n ) is

    t h e s a m e (1 8 .6 c a l / m o l .K ) a s f ro m g l a u c o p h a n e t o

    f e r ro g l a u c o p h a n e , a n d a c o r r e s p o n d i n g v a l u e fo r f er -

    rog lau coph ane has been ob ta ined (148 .6 ca l /mol . K) .

    There i s a very smal l decrease in vo lum e (A V =

    -1 .4 5 c ra B ; a d e c re as e o f 0 . 5 % i n v o l u m e c o m p a re d

    w i t h 1 7% f o r t h e r e a c ti o n a l b i t e - > j a d e i t e + q u a r t z )

    a n d i n e n t ro p y (A S = ~ - 9 c a l / d e g re e ; a d e c r e a s e o f

    4 .7% ) to the r igh t s ide o f the reac t ion . Such sm al l

    c h a n g e s i n v o l u m e a n d e n t ro p y , w e l l w i th i n t h e u n c e r -

    t a i n t y o f t a b u l a t e d t h e rm o d y n a m i c v a l u e s a n d t h e

    a s s u m p t i o n s i n v o l v e d , m a k e t h e c a l c u l a t e d s l o p e o f

    t h e r e a c t i o n dP/dT) mean ing less .

    Importance of Topotaxy in Low-Grade Metamorphism

    Such smal l d i f fe rences in A V and

    AS

    i n l o w -g ra d e

    m e t a m o rp h i s m a r e u n l i k e l y t o h a v e b e e n t h e d e t e r -

    m i n i n g f a c t o r s in t h e fo rm a t i o n o f a n y n e w m i n e ra l

    assemblages . In low-gra de (200~ ~ C) s ta t i c meta-

    morph ism, where there i s no d i f fe ren t ia l s t res s , nu -

    c lea t ion o f new m inera l s i s d i f f icu l t . One way o f over-

    c o m i n g t h i s p ro b l e m o f n u c l e a t i o n i s b y t o p o t a c t i c

    rep lacem en t o f a p reex i s t ing minera l s t ruc tu re . In

    s u c h c i rc u m s t a n c e s a m i n e ra l a s s e m b l a g e c o u l d fo rm ,

    which , a l though no t rep resen t ing the lowes t poss ib le

    f ree energy o f the sys tem a t the par t i cu la r p ressu re

    and tempera tu re , i s k ine t i ca l ly favoured . Equ i l ib r ium

    ma y on ly be s lowly a t t a ined ( i f a t a ll ) by a se ries

    o f me tas tab le m inera l as sem blages invo lv ing a se -

    q u e n c e o f O s w a l d s te p s .

    Th e i m p o r t a n t t o p o t a c t i c r e a c t i o n i n t h e Ta v ~ a n h

    a re a i s s o d i c p y ro x e n e p s e u d o m o rp h i n g a u g i t e . I t

    i s c lear tha t a l l sod ic py roxene in metabas i t es , bo th

    i n t h e l a w s o n i t e a n d g l a u c o p h a n e - l a w s o n i t e z o n e s ,

    has fo rmed in i t i a l ly as pseudomorphs a f te r aug i te .

    R o c k s w i t h a n a l r e a d y e x i s ti n g c a lc i c a m p h i b o l e ( fo r

    e x a m p l e s o m e r a r e b a s i c a lk a l i r o c k s w i t h m a g m a t i c

    kaersu t i t e ) have deve lo ped a b lue amph ibo le in a re -

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    7/8

    A.I. Okay: A Sodic Amphibole Producing Reaction 185

    placement texture. In such rocks a sodic pyroxene-

    chlorite assemblage was never formed.

    In the formation of sodic amphibole, penetrative

    deformation has played an importan t role in facilitat-

    ing the nucleation of new minerals. In fact the sodic

    amphibole isograd in Fig. 5 corresponds roughly to

    the limits of penetrative deforma tion in the metabasic

    rocks. In the more massive metadolerites of the glau-

    cophane-lawsonite zone, sodic pyroxene pseudo-

    morphs are clearly discernable, whereas in the sur-

    rounding more fissile tufts they have been completely

    obliterated. This, and the common presence of the

    reaction mineral assemblage sodic amphibole +so dic

    pyroxe ne+chlor ite +lawsonite + quartz in many

    glaucophane-lawsonite metabas ites cf., Okay 1980a

    Tables 1 and 2), indicates that all metabasites in the

    glaucophane-lawsonite zone have passed through a

    lawsonite zone stage.

    The Type II and III metabasites of the Franc iscan

    Coleman and Lee 1963) are closely analogous both

    in mineralogy and texture to the lawsonite and glau-

    cophane-lawsonite zone blueschists of Northwest

    Turkey. The presence of minor amounts of sodic am-

    phibole in many Franciscan Type II metabasites Cole-

    man and Lee 1963; Brown and Bradshaw 1980, Ta-

    ble 2) indicates that most of the mineral assemblages

    are in fact reaction assemblages. The completion of

    the sodic amphibole producing reaction would be

    greatly facilitated by de formation and the characteris-

    tic feature of Type III metabasites is a strong penetra-

    tive fabric. The gradational contacts betweeen Type II

    and III metabasites in the Ward Creek area Coleman

    and Lee 1963) may represent, like those in the Tav~an-

    11 area, the limits o f penetrative deformation.

    The extensive presence of sodic pyroxene pseudo-

    morphs after augite in many blueschist terrains of

    the world [in Franciscan Type II metabasites Cole-

    manandLee 1963,p. 270 ;Ernst 1965, p. 888 ; Esseneand

    Fyfe 1967, p. 3; Ernst et al. 1970, p. 49) ; in the lawson-

    ite zone metabasites of New Caledonia Black 1974,

    p. 282); in the Celebes, Indonesia de Roever 1950,

    p. 1457); in the lawsonite-albite facies rocks of the

    Fuscaldo area in Italy de Roever 1972, p. 63); in

    the Western Alps Bearth 1965, p. 181) and in Corsi-

    can blueschist terrain Brouwer and Egeler 1952,

    p. 32)] indicates that the reaction between sodic pyr-

    oxene and chlorite is an important sodic amphibole

    producing reaction in such rocks.

    Several other reactions have been proposed for

    the forma tion of sodic amphibole in low-grade rocks.

    The often quoted sodic amphibole producing reaction

    Miyashiro and Banno 1958, p. 101; de Roever and

    Beunk 1976, p. 224) of

    albite+a ntigori te mol. in chlorite

    = glaucophane + H 20

    is not realistic as there is no appreciable composition-

    al difference between the lawsonite and glaucophane-

    lawsonite zone chlorites, and furthermore the actual

    sodic amphibole produced is generally a crossite

    rather than glaucophane. Sodic amphibole forming

    reactions involving calcite Ernst 1963, p. 23) imply

    regional decarbonat ion for which there is no evidence

    at these low temperatures o f metamorphism. As para-

    gonite and stilpnomelane are both rare minerals in

    low-grade blueschists, sodic amphibo le producing re-

    actions involving these minerals Ernst 1963, p. 23;

    Brown 1974, p. 339) would at the very best be o f

    localised importance.

    However, in the case of greenstones with the initial

    mineral assemblage of chlorite+albite+actinolite,

    sodic amphibole production can involve a one step

    reaction such as:

    actinolite + chlorite + albite

    = sodic amphibole + lawsonite,

    This reaction de Roever 1955, p. 241) is observed

    in the metabasites of the Panoche Pass, California

    Ernst 1965, Fig. 2) and also in uralitised metagabbros

    in the Tav~anll area Okay 1980c).

    It is not clear what niche in the P-T-X space the

    assemblage sodic pyroxene+chlorite+lawsonite+

    quartz occupies. It is quite plausible that in the Tav-

    ~anh metabasites this assemblage may have formed

    metastably within the sodic amphibole+lawsonite

    stability field through the seeding effect of a preexist-

    ing pyroxene structure. If the initial spilitisation pro-

    cess had produced an assemblage of actinolite+al-

    bite+chlorite, this intermediate sodic pyroxene stage

    probably would not have been observed. This strong

    influence of the initial mineral assemblage on the reac-

    tion path suggests that reaction kinetics rather than

    the drive of the system towards the lowest free energy

    may be the dominant factor in the formation of new

    mineral assemblages in such low-grade metamorphic

    rocks.

    Acknowledgements

    I thank T.J.B. Holland, R. Muir Wood, and

    I. RossoI for reviewing the manuscript. This work was carried

    out while in receipt of a grant from the Mineral Research and

    Exploration Institute of Turkey M.T.A.), which is gratefullyac-

    knowledged.

    e f e r e n c e s

    Bearth P 1965) Zur Entstehung alpinotyper Eklogite. Schweiz

    Mineral Petrogr Mitt 45:179-188

    Black PM 1974) Mineralogy of New Caledonian metamorphic

    rocks III. Pyroxenes. Contrib Mineral Petrol 45:281-288

    Brouwer HA, Egeler CG 1952) The glaucophane facies metamor-

    phism in the Schistes Lustres Nappe of Corsica. Verh K Ned

    Akad Wet 48:1 71

  • 8/11/2019 04 - lawsonite zone - CMP 1980.pdf

    8/8