53
Peter Kinget (In collaboration with S. Chatterjee and Y. Tsividis) 0.5V Analog Integrated Circuits Department of Electrical Engineering

0.5V Analog Integrated Circuits - Electrical Engineeringkinget/talks/kinget_0p5V_analog...• Why 0.5 V Analog Integrated Circuits? • Design Challenges & Opportunities at 0.5 V

Embed Size (px)

Citation preview

Peter Kinget

(In collaboration with S. Chatterjee and Y. Tsividis)

0.5V AnalogIntegrated Circuits

Department of Electrical Engineering

www.cisl.columbia.edu

Analog, Digital, Mixed-Mode and RF Integrated Circuits

© Kinget 2005 3

Analog, Mixed Signal and RF Integrated Circuit Design Research

Ultra-low voltage circuits: 0.5V

RF integratedoscillators

Ultra-widebandRF circuits

Injection lockedcircuits

Biological Interfaces

Device mismatch & its influence onAnalog & RF ics

© Kinget 2005 4

Sample of Recent Chips

© Kinget 2005 5

Outline

• Why 0.5 V Analog Integrated Circuits?

• Design Challenges & Opportunities at 0.5 V.

• 0.5 V Operational Transconductance Amplifiers.

• 0.5 V Biasing circuits.

• 0.5 V Fully Integrated Active RC filter with on-chip automatic tuning.

• Conclusions.

© Kinget 2005 6

Analog in a Mixed Signal World• Sounds, images, EM waves, …. are ANALOG.• Information processing & storage are DIGITAL.• System-on-chip is powerful economic paradigm.

• Digital drives technology development & choice.

If Analog can be done in a digital technology, it will be done.

Most Digital ICs need some Analog!

D & A A & D A & D

© Kinget 2005 7

CMOS Trends: Supply Voltage

Analog VDD

Digital VDD

Digital VT

Technology node [nm]

[ITRS'04]

–O– High Perf.–∆– Low Standby–V– Low Power

© Kinget 2005 8

CMOS Trends: On chip Clock Speed

[ITRS'04]

Technology node [nm]

© Kinget 2005 9

MOS transistor

• Transconductor or Current SourceVDS > 0.15V (for VGS-VT ≤ 0.2)

• Switch/Resistoronly for very small signal range !?

SwitchResistor:

TransconductorWeak

Inversion

StrongInversion

0.24µm/0.36µm nMOSin 0.18µm CMOS

5φT

© Kinget 2005 10

Common Source Amplifier

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

© Kinget 2005 11

Common Drain Buffer

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 + 0.1 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

© Kinget 2005 12

Common Gate Amplifier / Cascode

0.15 V

0.15 V0.5 + 0.15 + x + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

0.15 V

© Kinget 2005 13

Differential OTA design challenges

0.15 V

0.5 V

0.65 V

0.8 V

-0.15 V

0.15 V

0.15 V

0.3 - 0.35 V

0.5 V

0.1 V

0.4 V0.4 V

0.1 V0.15 - 0.35 V

0.4 V

0.25 V

VT= 0.5 V VDS,sat= 0.15 V

© Kinget 2005 14

CMFB in Folded Cascode OTA

Common Mode Feedback requires ‘fast’ amplifier operating from Vout,CM= VDD/2 !?

© Kinget 2005 15

Challenges at 0.5 V• VDS,sat related challenges:

– Independent of region of operation!– Independent of VT!– Signal swings are limited.– Avoid transistor stacks.

• VGS related challenges:– Depend on region of operation & (VGS-VT).– Depend on VT!– Avoid signal swing on gate.

© Kinget/Chatterjee/Tsividis 16

‘Feedback to the rescue’

CM @ OTA-in > CM @ input and output

[Kar00] [Bul00]

© Kinget/Chatterjee/Tsividis 17

Opportunities at 0.5 V: MOS 4-terminal device

Body

Source

Drain

Gate

G D BS Sub

n+

n+n+n+ n+p+ p+

p

p

nMOS cross section(deep n-well process)

nMOS circuit equivalent(deep n-well process)

© Kinget/Chatterjee/Tsividis 18

Opportunities at 0.5 V• Body terminal

– Signal input: [Guz87]– VTH reduction & control

[Kob94], [Von94]– Bias control

• Latch-up not an issue– Assuming VDD and GND are

‘well behaved’.• Techniques can be ported

to ‘double gate’ devices

VBS 0.5 V

500

0

VTH

mV

300

430360

0.0

VGS 0.5 V0.2

3

0

IDS VBS ↑

µA

0.24µm/0.36µm nMOSin 0.18µm CMOS

0.5 V Body-input OTA

© Kinget/Chatterjee/Tsividis 20

Low-voltage differential-gain stage

0.15 - 0.35 V

0.5 V0.25 V

0.25 V

0.25 V

0.07 V

© Kinget/Chatterjee/Tsividis 21

Single-stage gain, CMRR

Differential mode load: gds

Common mode load: (gm1 + gm3)

© Kinget/Chatterjee/Tsividis 22

Two-stage fully-differential OTA

Pole splitting using Miller capacitor

© Kinget/Chatterjee/Tsividis 23

Setup for open-loop measurements

0.18 µm CMOS

© Kinget/Chatterjee/Tsividis 24

Open loop frequency response

DC gain: 52 dBGBW: 2.5 MHz

Phase Margin: 450

Frequency [Hz]

Simulation

Measurement

© Kinget/Chatterjee/Tsividis 25

Bulk-input OTA performanceC

lose

d lo

opO

pen

loop

0.5 V Gate-input OTA

© Kinget/Chatterjee/Tsividis 27

Setting common-mode voltages

0.5 V

0.4 V

0.4 V

0.5 V

Rb = 2/3 • Ri||Rf

0.25 V 0.25 V

© Kinget/Chatterjee/Tsividis 28

0.5 V OTA gate-input stage

© Kinget/Chatterjee/Tsividis 29

Two stage OTA

• Common-mode output of first stage is 0.4 V

0.25 V

0.4 V

0.4 V

© Kinget/Chatterjee/Tsividis 30

Two-stage fully differential 0.5 V OTA with Miller compensation

© Kinget/Chatterjee/Tsividis 31

Open Loop Performance (meas.)

Frequency [Hz]

Gai

n [d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

© Kinget/Chatterjee/Tsividis 32

66.711.413289.5100 η [1/V]

----Depl.MOS

Lat.BJT

-Lat.BJT

SpecialDevices

0.180.180.50.72.50.50.352Techn. [um]

DDDSSSSSSE/Diff.101014-1220722CL [pF]75110-4600.5-5300Power [uW]102.541.36e-31.30.21.3GBW [MHz]

50/6252598470537049ADC [dB]0.50.50.91.30.90.811VDD [V]

G-IB-I[Pel98]

[Fer96]

[Sto02]

[Leh01]

[Las00]

[Bla98]

On-chip automatic biasing circuits

© Kinget/Chatterjee/Tsividis 34

On-chip biasing circuits

Vbn generating circuit

Level shift biasing circuit

(Simplified OTA)

© Kinget/Chatterjee/Tsividis 35

Error amplifier for biasing

• 20 kHz GBW for 1 pF load• 2 µA current• Controlled body voltage sets the amplifier threshold

Vin Vout

Vou

t[V

]

Vin [V]

© Kinget/Chatterjee/Tsividis 36

OTA dc transfer characteristics and VNR generation

VNR generating circuit

Replica of OTA stage 1

Input differential voltage [mV]

Out

put d

i ff v

olta

g e [V

]

Increasing VNR

© Kinget/Chatterjee/Tsividis 37

Open Loop Performance (meas.)

Frequency [Hz]

Gai

n [d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

0.5 V Continuous time tunable active RC Filter

© Kinget/Chatterjee/Tsividis 39

0.5 V 5th order elliptic LPF

Frequency [Hz]

Gai

n [d

B]

280 kHz

135 kHz

© Kinget/Chatterjee/Tsividis 40

Filter tuning challenges at 0.5 V• Gm-C• MOSFET-C• Switching banks of R’s and C’s• Varactor-R techniques

Vtune [V]

Cgs

/Cox

Gate (0.4 V) Source

Drain (0.25 V)

Body (Vtune)

© Kinget/Chatterjee/Tsividis 41

Low-voltage tunable integrator

0.25 V 0.25 V

0.4 V

+

-Vin Vout

+

-

VDD

VDD

© Kinget/Chatterjee/Tsividis 42

Die photograph

• 0.18 µm CMOS

• MIM capacitors

• High-res resistors

• Standard VT

• Triple well devices

Filter PLL

Biasing circuits

OTAs

1mm

1mm

© Kinget/Chatterjee/Tsividis 43Frequency [Hz]

Gai

n [d

B]

Measured filter response for different supply voltages

© Kinget/Chatterjee/Tsividis 44

Measured filter response for different tuning voltages

Frequency [Hz]

Gai

n [d

B]

88 - 154 kHz(1.75x)

© Kinget/Chatterjee/Tsividis 45

Measured filter response for different chips

Frequency [Hz]

Gai

n [d

B]

1.3 % std dev in cut-off

frequency for 20 samples

© Kinget/Chatterjee/Tsividis 46

Measured 3rd order inter-modulation

25 kHz

20 kHz

15 kHz

30 kHz

40 dB

Input differential rms amplitude [V]

Out

put d

iffe r

entia

l rm

s am

plitu

d e [ V

]

Effect of gain enhancement

Frequency [Hz]

Gai

n [d

B]

Without gain-enhancement

With gain-enhancement

© Kinget/Chatterjee/Tsividis 48

Performance summary at 27C

727285104VCO feed-thru @280kHz [µV rms]

69.0150.5

84.5148.0

88.0154.5

96.5153.0

Tuning range [kHz] Vtune = VDD

Vtune = 0.0 V

58575755Dynamic range [dB]5353Out-of-band IIP3 [dBV]-3-3-3-5In-band IIP3 [dBV]50505050Input [mV rms] (100kHz / 1% THD)65687487Noise [µV rms]4.33.32.21.5Total current [mA]

135.0135.0135.0135.0-3 dB cut-off frequency [kHz]0.600.550.500.45VDD [V]

Functionality tested from 5C to 85C at 0.5 V

• Measured CMRR (10 kHz common mode tone): 65 dB• Measured PSRR (10 kHz tone on power supply): 43 dB

© Kinget/Chatterjee/Tsividis 49

Conclusions• Developed true low voltage design

techniques for 0.5 V analog circuits.• Low voltage OTAs designed - can be used as

building block in other designs.• Automatic biasing and tuning through bodies

of devices.• PLL-tuned 5th order elliptic low-pass filter

demonstrated.• Step towards 0.5 V analog circuits for the

nano-scale CMOS era

© Kinget 2005 52

Acknowledgments

• Analog Devices for supporting part of this work.

© Kinget 2005 53

More details

• [Cha 05] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLL-based tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.

• [Cha 04] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V bulk input fully differential operational transconductance amplifier," in European Solid-State Circuits Conference (ESSCIRC), pp.147-150, September 2004.

© Kinget 2005 54

References• [Guz 87] A. Guzinski, M. Bialko, and J. Matheau, "Body driven

differential amplifier for application in continuous-time active-C filter,''Proceedings of ECCD, pp. 315--319, 1987.

• [Bla 98] B. Blalock, P. Allen, and G. Rincon-Mora, "Designing 1-V op-amps using standard digital CMOS technology,'‘ IEEE Trans. Circuits Syst. II, vol. 45, pp. 769--780, July 1998.

• [Las 00] K. Lasanen, E. Raisanen-Ruotsalainen, and J. Kostamovaara, "A 1-V 5 µW CMOS-opamp with bulk-driven input transistors,'' 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 1038--1041, 2000.

• [Leh 01] T. Lehmann and M. Cassia, "1-V power supply CMOS cascode amplifier,'' IEEE J. Solid-State Circuits, vol. 36, pp. 1082--1086, July 2001.

• [Sto 02] T. Stockstad and H. Yoshizawa, "A 0.9-V 0.5-µA rail-to-rail CMOS operational amplifier,'' IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 286--292, 2002.

• [Fer 96] G. Ferri and W. Sansen, "A 1.3V opamp in standard 0.7µmCMOS with constant gm and rail-to-rail input and output stages,''IEEE International Solid State Circuits Conference, pp. 382--383, 478, 1996.

© Kinget 2005 55

References• [Pel 98] V. Peluso, P. Vancorenland, A. M. Marques, M. Steyaert,

and W. Sansen, "A 900-mV low-power ∆Σ A/D converter with 77-dB dynamic range,'' IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1887--1897, Dec. 1998.

• [Kob94] T. Kobayashi and T. Sakurai, “Self-adjusting threshold-voltage scheme (SATS) for low-voltage high-speed operation,” in IEEE Custom Integrated Circuits Conference (CICC), May 1994, pp. 271–274.

• [Von94] V. R. Kaenel, M. D. Pardoen, E. Dijkstra, and E. A. Vittoz, “Automatic adjustment of threshold and supply voltages for minimum power consumption in CMOS digital circuits,” in IEEE Symposium on Low Power Electronics, pp. 78–79, 1994.

• [Kar00] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, “Low-voltage analog circuit design based on biased inverting opampconfiguration,” IEEE Trans. Circuits Syst. II, vol. 47, no. 3, pp. 176–184, March 2000.

• [Bul00] K. Bult, “Analog design in deep sub-micron CMOS,” in European Solid-State Circuits Conference (ESSCIRC),September 2000, pp. 11–17.