10
11/8/2013 1 1 Biomass Feedstock, Pelleting, and CHP Opportunities Erickson Alumni Center West Virginia University June 25 th , 2013 Jim Freihaut, Ph.D. Professor, Architectural Engineering Director, DOE Mid Atlantic Clean Energy Applications Center Chief Scientist, DOE Energy Efficient Buildings Hub 104 Engineering Unit A Department of Architectural Engineering Pennsylvania State University Tel: 814-863-0083 Fax: 814-863-4789 [email protected] 2 DOE CLEAN Energy Application Centers John Cuttica Midwest, Intermountain, Northwest, and Pacific Regions [email protected] 312-996-4382 Jim Freihaut Mid-Atlantic Region [email protected] 814-863-0083 Beka Kosanovic Northeast Region [email protected] 413-545-0684 Isaac Panzarella Southeast and Gulf Coast Regions [email protected] 919-515-035 For More Information on DOE Boiler MACT Technical Assistance Katrina Pielli [email protected] 202-287-5850 DOE Boiler MACT Technical Assistance: http://www1.eere.energy.gov/m anufacturing/distributedenergy/ boilermact.html DOE Boiler MACT Technical Assistance Fact Sheet: http://www1.eere.energy.gov/m anufacturing/distributedenergy/ pdfs/boilermact_tech_asst_facts heet.pdf 3 Commercial Building Energy Use and Emissions C 1 H x Coal , C 1 H 0.85 Oil, C 1 H 2 Natural Gas, C 1 H 4 Site ~e - On Site Use of Fossil Fuels Imported Electric Power from Generating Sites District Heating Hot water from district plant m H2O Cp ΔT Oil (2.7%) Primary Energy Forms

06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

1

1

Biomass Feedstock, Pelleting, and CHP Opportunities

Erickson Alumni Center

West Virginia University

June 25th, 2013

Jim Freihaut, Ph.D.

Professor, Architectural Engineering

Director, DOE Mid Atlantic Clean Energy Applications Center

Chief Scientist, DOE Energy Efficient Buildings Hub

104 Engineering Unit A

Department of Architectural Engineering

Pennsylvania State University

Tel: 814-863-0083

Fax: 814-863-4789

[email protected]

2

DOE CLEAN Energy Application Centers

John Cuttica

Midwest, Intermountain,

Northwest, and Pacific Regions

[email protected]

312-996-4382

Jim Freihaut

Mid-Atlantic Region

[email protected]

814-863-0083

Beka Kosanovic

Northeast Region

[email protected]

413-545-0684

Isaac Panzarella

Southeast and Gulf Coast [email protected]

919-515-035

For More Information on DOE Boiler MACT Technical Assistance

Katrina Pielli

[email protected]

202-287-5850

DOE Boiler MACT Technical

Assistance:

http://www1.eere.energy.gov/m

anufacturing/distributedenergy/

boilermact.html

DOE Boiler MACT Technical

Assistance Fact Sheet:

http://www1.eere.energy.gov/m

anufacturing/distributedenergy/

pdfs/boilermact_tech_asst_facts

heet.pdf

3

Commercial Building Energy Use and Emissions

C1Hx

Coal , C1H0.85

Oil, C1H2

Natural Gas, C1H4

Site ~e -

On Site Use of Fossil Fuels

Imported Electric Power from Generating Sites

District Heating Hot water from district plant

m H2O Cp ΔT

Oil (2.7%)Primary

Energy

Forms

Page 2: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

2

The Beginning

Thomas Edison’s first

power station – the 1882

Pearl Street Station – the

world’s first commercial

power plant – was a CHP

power plant with a 50%

efficiency rate.

11/8/201

3Slide 5

Separate Heat & Power vs Combined Heat & Power

11/8/2013 6

SHP CHP

λU = Heat = 1.5

Power

~ 70% Recovered

& Used

~ 30% Efficiency

Lower emissions

Higher reliability

Lower Life Cycle costs?

CHP Value Proposition

Category 10 MW CHP 10 MW PV 10 MW Wind

Combined

Cycle (10 MW Portion)

Annual Capacity Factor 85% 25% 34% 87%

Annual Electricity 74,446 MWh 21,900 MWh 29,784 MWh 76,212 MWh

Annual Useful Heat 103,417 MWht None None None

Footprint Required 6,000 sq ft 1,740,000 sq ft 76,000 sq ft N/A

Capital Cost $20 million $60.5 million $24.4 million $10 million

Cost of Power 7.6 ¢/kWh 23.5 ¢/kWh 7.5 ¢/kWh 5.8 ¢/kWh

Annual Energy Savings 316,218 MMBtu 225,640 MMBtu 306,871 MMBtu 203,486 MMBtu

Annual CO2 Savings 42,506 Tons 20,254 Tons 27,546 Tons 35,090 Tons

Annual NOx Savings 87.8 Tons 26.8 Tons 36.4 Tons 76.9 Tons

Based on: 10 MW Gas Turbine CHP - 28% electric efficiency, 68% total efficiency, 15 PPM NOx

Electricity displaces National All Fossil Average Generation (eGRID 2010 ) -

9,720 Btu/kWh, 1,745 lbs CO2/MWh, 2.3078 lbs NOx/MWH, 6% T&D losses

Thermal displaces 80% efficient on-site natural gas boiler with 0.1 lb/MMBtu NOx emissions

11/8/2013 8

Principal Building

Activity kBTU/ft2-yr

Education 79.3

Food Sales 213.5

Food Service 245.5

Health Care 240.4

Lodging 127.3

Mercantile and Service 76.4

Office 97.2

Public Assembly 113.7

Public Order and Safety 97.2

Religious Worship 37.4

Warehouse and Storage 38.3

Electricty

EUI Fossil EUI Norm EEUI

Norm

FFEUI λ λ λ λ u

24.7 54.6 0.650 1.040 2.211

163.9 49.6 4.313 0.945 0.303

96 149.5 2.526 2.848 1.557

76.6 163.8 2.016 3.120 2.138

39.1 88.2 1.029 1.680 2.256

35.5 40.9 0.934 0.779 1.152

57.9 39.3 1.524 0.749 0.679

35.9 77.8 0.945 1.482 2.167

30.8 66.4 0.811 1.265 2.156

8.8 28.6 0.232 0.545 3.250

17.1 21.2 0.450 0.404 1.240

Average Heat/Power Ratios , λ λ λ λ uVarying Commercial Building Types

Server Farms, Data Centers, Casinos,

Industries Based on Thermal Processing, Refineries, Campuses

District Systems, Refineries, Pharmaceuticals

Page 3: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

3

U.S. Energy Environmental Systems R&D Issues

PG&E Commercial Load Profiles

0

0.2

0.4

0.6

0.8

1

0 20 40 60

Half Hour Interevals

Load

Series1

Series2

Series3

Series4

Series5

Series6

Series7

PG&E Large Commercial Load Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60

Half Hour Intervals

Load

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Electric Load Profiles from a Public Utility CompanyU.S. Energy Environmental Systems R&D Issues

PG&E Residential Load Profiles

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60

Half hour interval number

Load

Series1

Series2

Series3

Series4

Series5

Series6

Series7

PG&E Small Commercial Load Profiles

0

0.2

0.4

0.6

0.8

1

0 20 40 60

Half Hour Intervals

Load

Series1

Series2

Series3

Series4

Series5

Series6

Series7

11

CHP Design Goals

• Integrate natural gas engine, electric generator, heat

recovery equipment and thermally driven HVAC

equipment with the building systems

• Maximize economic advantage

• Minimize project cost

12

CHP System Design• Maximize Economic Advantage

• Match the CHP system Thermal/Electric Ratio with the facility requirements and Baseload the CHP system electric and thermal output

• Minimize Project Cost

• Understand the electric, heating and cooling loads and select equipment for maximum load factor – Not necessarily maximum efficiency.

Maximizing load factor is the way to maximize profit.

Page 4: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

4

13

CHP System Design• Thermal Form Varies – Electric Form is Constant

• Conventional Wisdom:

• Select Generator on Electric Load Basis

• Select Thermal Technology on Generator Basis

• Fit Thermal Output to Building

• CHP Wisdom:

• Select Thermal Technology on Thermal Load Basis

• Select Generator on Thermal Basis

• Fit Electric Output to Building

‘Thermal First’ design is the way to maximize load factor.

14

CHP System Design

• The heating and cooling Thermal/Electric Ratiosare the key load characteristics required to ensure high CHP Load Factor.

• Heating T/E Ratio = Heating Load in MBH / Electric Load in kW

• Cooling T/E Ratio = Cooling Load in Tons / Electric Load in kW

• (The T/E Ratio is the inverse of the Power/Thermal Ratio)

• The Load T/E Ratios define the CHP Configuration

15

CHP System Design

• Economics

• Essentially the thermal revenue represents the annual cost savings.

• Without thermal revenue, the cost savings are significantly reduced and the payback is greatly increased.

0% 20% 40% 60% 80% 100%

Revenue

Profit

Revenue/Profit Share

Electric

Thermal

16

CHP System Design

• Know your Loads:

• Electric utilities usually provide 15 min interval data from which can be derived load duration curves.

• Thermal information should be measured and tabulated through summer, winter and shoulder season.

• Thermal characteristics (flow, pressure, temp) need to be identified.

Electric Load Factor, 2007 Jan - Apr

89%

97%

0%

20%

40%

60%

80%

100%

120%

1,000 1,500 2,000 2,500 3,000 3,500 4,000

Power Demand (kW)

Tim

e a

bove P

ow

er

Dem

and v

alu

e

Average Mthly Steam Load Factor, 2003 - Apr 07

96%

90%

0%

20%

40%

60%

80%

100%

120%

4 5 6 7 8 9 10 15 20 22

Average Steam Demand in MMlbs/hr

Tim

e a

bo

veS

team

Dem

an

d v

alu

e

Page 5: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

5

Globalcon 2012 17

CHP System Design

• A 100 ton chiller has a 74% load factor while a 75 ton chiller has an 89% LF.

• The 100 ton unit has 33% more capacity (cost) but only produces 10% more output.

Typical data for illustrative purposes

Load Factor vs. Efficiency Load Factor

0

25

50

75

100

125

1 3 5 7 9 11 13 15 17 19 21 23

Hour of Day

Re

frig

era

tio

n T

on

s

Building Load 100 Ton Output 75 Ton Output

18

DG/TAT Match

Thermally-Activated Cooling

Technologies

Distributed Generation

Technologies

I.C. Engine Jacket +

Exhaust

Double-Effect

Absorption

Chiller

Microturbine

Solid Oxide Fuel Cell

I.C. Engine Exhaust

Single-Effect

Absorption ChillerDesiccant Air

Conditioner

180ºF

360ºF

800ºF

600ºF

Steam Turbine

Centrifugal Chiller

Gas-turbine

GT

MT

IC

E

IC

E

S

T

2E

1E

E

F

F

I

C

I

E

N

C

Y

0.65 T/kW

0.60 T/kW

0.35 T/kW

0.30 T/kW

1.20 T/kW with Duct Burner

19

CHP System T/E Ratio• Typical T/E Ratios for various CHP configurations

Generator Range Cooling TATT/E Ratio (Ton/kW)

Gas Turbine > 1 MWSteam Turbine

2E Absorber0.6 - 0.7

Microturbine < .4 MW2E Absorber

Desiccant0.4 - 0.5

IC Engine .1 to 3 MW1E Absorber

2E Absorber0.2 - 0.4

Fuel Cell > .25 MW 2E Absorber 0.1 - 0.2

0.0000.1000.2000.3000.4000.5000.6000.7000.8000.9001.000

0.00 5.00 10.00 15.00

λ λ λ λ D

EUF SHP

ηηηη B = 0.80ηηηη GTD = 0.32

ηηηη B = 0.92

ηηηη GTD = 0.55

(PEUF) SHP = (1 + λU) , where F SHP = 1/(ηGTD+λU/ηB )

F SHP

(PEUF) SHP = (1 + λU)ηGTDηB

ηB + ηGTDλU

SHP Primary Energy Utilization Index

Key parameter in

CHP design

PFFsite = Qu/ηηηηB

PFWesite =We

site /ηGTD

Page 6: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Fraction Thermal Exhaust Not Used

Perfect Match λ U = λ CHP

Conventional

System

Crossover Region(PE

UF

) C

HP

Mic

oro

turb

ine

Required performance by many

incentive programs

(EUF) CHP Microturbine (ηηηη= 25%, λλλλD max= 3.0)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

(PEUF) CHP IC Engine (ηηηη= 40 %, λλλλDmax = 1.5)

(PE

UF

) C

HP

IC

En

gin

e

Fraction Thermal Exhaust Not Used

Perfect Match λ U = λ CHP

Conventional

System

Crossover Region

Required performance by many

incentive programs

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.00 1.00 2.00 3.00 4.00

F S

HP

-F

CH

P

FS

HP

η η η η GTD = 0.33

ηηηη Boiler = 0.85

η η η η CHP Prime = 0.25

λ λ λ λ CHP = λ λ λ λ D

FESR = 1 – ηηηηGTD*ηηηηB

ηηηηCHP*(ηηηηB + λλλλu*ηηηηGTD)

FESR = 1 – ηηηηGTD/ηηηηCHP

(1(1(1(1 + λλλλu*ηηηηGTD/ηηηηB)

Fuel Energy Savings Ratio: Microturbine Prime Mover

11/8/2013 24

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.00 1.00 2.00 3.00 4.00

F S

HP

-F

CH

P

FS

HP

η η η η GTD = 0.55

ηηηη Boiler = 0.92

η η η η CHP Prime = 0.25

λ λ λ λ CHP = λ λ λ λ U

Primary Fuel Energy Savings Ratio: Microturbine Prime Mover

Page 7: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

7

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.00 0.50 1.00 1.50 2.00 2.50 3.00

F S

HP

-F

CH

P

FS

HP

λλλλ CHP = λ λ λ λ D

η η η η GTD = 0.33

ηηηη Boiler = 0.85

η η η η CHP Prime = 0.40

Primary Fuel Energy Savings Ratio: IC Prime Mover

Why CHP: PA Economics

11/8/2013 Slide 26

11/8/2013 Slide: 27

Why CHP: NJ Economics

Page 8: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

8

Amount and location of shale gas reserves Amount and location of shale gas reserves

388.49

336.14(DOE EIA estimates 400+)

197.02

95.59

8.30

Undiscovered technically recoverable natural gas in the US

Units: [trillions of cubic feet]

Conventional gas

Shale gas

Tight gas

Coalbed methane

Oil-associated gas

Amount and location of shale gas reserves

Source: Total Oil and Gas Resources Data Table, National Assessment of Oil and Gas Project, US Geological Survey, 2011

U.S. Energy Environmental Systems R&D Issues

Page 9: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

9

U.S. Energy Environmental Systems R&D Issues

EIA Gas Production Projections by Source

11/8/2013 34

Recent Natural Gas Prices

~ constant

24 hr Day

Conventional

Load

Profiles

24 hr Day

Desired Load Profiles

for CHP & Dynamic Controls Optimization

Increase Building Thermal Capacitance

Controlled and Known Infiltration (Latent Load)

Integrated Daylight and Lighting Controls

Short Term Electric and Thermal Storage

Reliable, Cost Effective Dynamic Controls

Building Design

Paradigm

Shift

Thermal

Electric

Thermal

Load

Kw

Load

Thermal

Load

Kw

Load

Need Hybrid Automobile Version of Building Energy Delivery Systems

Page 10: 06 CEAC Freihaut2013 - Pennsylvania State Universitybioenergy.psu.edu/shortcourses/2013PelletsnPower/06_CEAC... · 2013. 11. 8. · 11/8/2013 1 1 Biomass Feedstock, Pelleting, and

11/8/2013

10

24 hour cycle

Kw

Demand

Thermal

Demand

Prime Mover

Kw , Thermal

Steady State Output

Short Term

Electrical

StorageShort Term

Thermal

Storage

And all this for $X00/ft2

compared to $X,000/ft2 ……..automobiles

$X00,000/ft2 .......aircraft

with no significant rebuilds or breakdowns in 20 years!

It’s not rocket science, it’s a lot more difficult!

Need Hybrid Automobile Version of Building Energy Delivery Systems

District Systems – Heating and CHP

11/8/2013 38

Biomass fired district heating

power plant in Mödling, Austria

District heating accumulation tower

from Theiss near Krems an der Donau in

Lower Austria with a thermal capacity of

2 GWh

District heating pipe

in Tübingen, Germany

Masnedø CHP power station in Denmark. This station burns straw as

fuel. The adjacent greenhouses are heated by district heating from the

plant

39