48
7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13 http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 1/48 Transportation Technology Center, Inc., a subsidiary of the Association of American Railroads © TTCI/AAR, 2015. filename, p1 Final Presentation MSP Line 5 Cars 2015 Ruben Peña Stan Gurule Russ Walker 

06 Line 5 Final Presentation to MSP 2015-1-13

Embed Size (px)

Citation preview

Page 1: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 1/48

Transportation Technology Center, Inc., a subs idiary o f the Association of American Railroads

© TTCI/AAR, 2015. filename, p1

Final Presentation

MSP Line 5 Cars

2015

Ruben PeñaStan Gurule

Russ Walker 

Page 2: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 2/48

© TTCI/AAR, 2015, Filename p2

®Alstom/CAF

Line 5 Car ♦ Objective: Characterize and measure the performance

of the Line 5 fleet and make recommendations for any

necessary changes to optimize suspensionperformance.

Page 3: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 3/48

© TTCI/AAR, 2015, Filename p3

®

BogieArrangementViewLine 5 Car 

Page 4: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 4/48

© TTCI/AAR, 2015, Filename p4

®Bogie Arrangement Line 5 Car 

Page 5: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 5/48

© TTCI/AAR, 2015, Filename p5

®Method

♦ Characterize the track

♦ Characterize the cars

♦ Truck load equalization (dQ/Q) testing of cars♦ Test the cars at Capao Redondo yard on the curve and

perturbed tracks installed by MSP for this purpose.

♦ Use computer modeling of the car to estimate wheel

loads and L/V Ratio in a variety of condit ions

Page 6: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 6/48

© TTCI/AAR, 2015, Filename p6

®Performance Criteria

♦ The performance measures selected for the

computer modeling study and tests are based

on:

●United States (US) Code of Federal Regulations (CFR)Title 49 Part 213.333 Vehicle Track Interaction safetylimits.

● American Public Transit Association Wheel LoadEqualization Requirements APTA SS-M-014-06“Standard for Wheel Load Equalization of PassengerRailroad Rolling Stock.

●Flange climb indicator based on flange contact position

Page 7: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 7/48

© TTCI/AAR, 2015, Filename p7

®Performance Criteria

♦ United States (US) Code of

Federal Regulations (CFR)

Title 49 Part 213.333 Vehicle

Track Interaction safety limits.

●Wheel L/V ratio safety limit is afunction of flange angle and is0.95 for the 70-degree flange

used on Line 5 cars.

●The net axle lateral L/V ratiosafety limit is a function of axleload and is 0.61 for the empty

Line 5 car and 0.54 for theloaded Line 5 car.

Page 8: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 8/48

© TTCI/AAR, 2015, Filename p8

®Performance Criteria

♦ APTA Wheel Load Equalization Requirements

●Class G - where the track twist is maintained to less than 76.2mm (3 in) over 8.9 m (62 ft) track length.

▲35 percent wheel load at 63.5 mm (2.5 in)

▲No wheel lift at 76.2 mm (3 in).

●Class R - where the track twist is maintained to less than 76.2mm (3 in) over 8.9 m (62 ft) track length and additionally islimited to no more than 57.2 mm (2.25 in) in 3.0 m (10 ft).

▲35 percent wheel load at 50.8 mm (2 in)

▲No wheel lift at 63.5 mm (2.5 in).

●These requirements may be too restrictive because MSPmaintains their track to <12 mm track twist in 4 m.

Page 9: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 9/48

© TTCI/AAR, 2015, Filename p9

®Performance Criteria

♦ Flange Climb Indicator 

●The turnout defect simulation data was somewhat unusual.

▲Normally the single wheel L/V ratio analyzed with the 1.52 m(5 ft) moving window as specified by the CFR limits is a goodindicator of flange climb derailment potential, but in the caseof these turnout defect simulations it was not.

▲Because these simulations produced extremely high angle of

attack, and large lateral track displacements occurring over avery short distance, the simulations sometimes predictedderailment even when the 5ft window L/V ratio met thecriterion.

Page 10: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 10/48

© TTCI/AAR, 2015, Filename p10

®Performance Criteria

♦ Flange Climb Indicator 

Contact below thispoint on the flange

indicates likely flange

climb.

UIC 510-2 wheel profile

UIC 60 rail profile

with 60 deg switch

plane angle

Relative

Rolling Radius

= 19 mm

Location of steepestcontact point. (60

deg)

Note: The Wheel L/V Ratio Safety limit for this

condition is only 0.66 because the maximum contact

angle (60 deg) is smaller than the flange angle (70

deg).

Page 11: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 11/48

© TTCI/AAR, 2015, Filename p11

®Performance Criteria

♦ Flange Climb Indicator 

Simulation of 1:5 turnout with 1.8m defect (switch embedding) at 34kph. This figure shows the

highest contact angle (60 degrees) at the simulation distance of 53m. The rolling radius at this

location is about 0.019m.

Page 12: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 12/48

© TTCI/AAR, 2015, Filename p12

®Performance Criteria

♦ Flange Climb Indicator 

Simulation of 1:5 turnout with 1.8m defect (switch embedding) at 34kph. This figure shows a

flange climb derailment even though the wheel L/V ratio only just reached 0.66 and then for well

less that 1.52 m distance.

Page 13: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 13/48

© TTCI/AAR, 2015, Filename p13

®Suspension Modification

♦ The car was designed with a 4-point airspring

suspension. To improve performance TTCI suggested it

be modified to a 3-point suspension.

60L

Reservoir 

60L

Reservoir 

Cab EndLeveling Valve

42mm pipe

Equalizing Valve

No orifice No orifice

60L

Reservoir 

Non-Cab EndLeveling Valve

42mm pipe

Equalizing Valve

No orifice No orifice

60L

Reservoir 

60L

Reservoir 

60L

Reservoir 

60L

Reservoir 

Cab End

Non-Cab End

Leveling Valve

Leveling Valve

42mm pipe

19mm pipe

Equalizing Valve

19-mm orifice

19-mm orifice

42mm pipe

19-mm orifice

19-mm orifice 19-mm orifice

60L

Reservoir 

4 Point 3 Point

Page 14: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 14/48

© TTCI/AAR, 2015, Filename p14

®Suspension Modification

♦ Peak-to-peak secondary suspension vertical

displacement measurements during twist and roll tests.

●The plot legend lists the air spring to reservoir orifice size first,followed by the reservoir to reservoir crossover pipe orifice size.

●Displacement is much lower for all configurations of the 3-pointsuspension than the 4-point suspension.

0

0.01

0.020.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80

    V   e   r    t    i   c   a    l

    D    i   s   p

 .    (   m   e

    t   e   r   s    )

Speed 

(km/h)

42 mm 15 mm

42 mm 19 mm

25 mm 19 mm

19 mm 19 mm

19 mm 15 mm

4 Point

Page 15: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 15/48

© TTCI/AAR, 2015, Filename p15

®Suspension Modification

♦ Peak-to-peak lateral acceleration on the carbody floor

during twist and roll tests.

●Maximum p-p acceleration is lower with the three point car 

● Above 44 km/h the acceleration is lower for the 4-point car 

●The 3-point car with 15mm reservoir to reservoir crossover pipeorifice has the highest acceleration above 44 km/h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80

    L   a    t   e   r   a

    l    A   c   c   e

    l .    (   g    )

Speed 

(km/h)

42 mm 15 mm

42 mm 19 mm

25 mm 19 mm

19 mm 19 mm

19 mm 15 mm

4 Point

Floor

Page 16: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 16/48

© TTCI/AAR, 2015, Filename p16

®Suspension Modification

♦ Minimum vertical wheel load measured using rail strain

gages during twist and roll tests

●3-Point suspension has higher vertical wheel loads for cross

pipe dimension of 19 mm

●There is a large variation in the different 4-point configurationsshown, possibly due to variations in damper condition.

0%

20%

40%

60%

80%

100%

15 35 55 75

    M    i   n    i   m   u   m

    V   e   r    t    i   c   a

    l    (    P   e   r   c   e   n

    t   o    f

    S    t   a    t    i   c    )

Speed 

(km/h)

42 mm 19 mm

19 mm 19 mm

19 mm 15 mm

4Pt Inst

 Car

 2011

4Pt 42MM 2013

4Pt 24MM 2013

4Pt Non‐Inst Car 2011

Page 17: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 17/48

© TTCI/AAR, 2015, Filename p17

®Model Validation

♦ Truck Load

Equalization

●The truck mustdistribute the load tothe track equally on allthe wheels

●This is key topreventing flange

climb derailmentFlexible body Stiff Body

Page 18: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 18/48

© TTCI/AAR, 2015, Filename p18

®Model Validation

♦ Truck Load Equalization – Air springs deflated

●Simulation predictions match the test results very closely.

●Results don’t meet APTA class R requirements

0%

50%

100%

150%

200%

0 20 40 60 80    W     h

   e   e     l    L   o   a     d     (    %   o     f    N   o   m    i   n   a     l     )

Wheel 1R Height (mm)

Test 1L

Test 1R

Test 2L

Test 2R

Model 1L

Model 1R

Model 2L

Model 2R

G‐0%R‐35%  G‐35%

R‐0%

35% Wheel Load

Page 19: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 19/48

© TTCI/AAR, 2015, Filename p19

®Model Validation

♦ Perturbed Track

Tests

●Track geometry

(deviations in thetrack) may excitethe car in somemode of rigid body

vibration

Page 20: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 20/48

© TTCI/AAR, 2015, Filename p20

®Model Validation

♦ MSP installed test tracks at Capao Redondo yard

●Cars F085 and F086 were tested in 2011 (4-point)

Yaw

Bounce

Roll

 All Tests were

performed eastbound

with F086 Leading

Curve

Line 2

Line 1●MSP modified car F046 to 3-Point for

test purposes in 2013

Page 21: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 21/48

© TTCI/AAR, 2015, Filename p21

®Model Validation

♦ Pitch and Bounce

●Model displacements match test well at 70 and 80 km/h, butover estimates the displacements at lower speeds.

●Model accelerations match test at speeds below 60 km/h, butunderestimate the acceleration at higher speeds

0

0.20.4

0.6

0.8

1

30 50 70 90

    A   c   c   e    l   e

   r   a    t    i   o   n    (   g    )

Speed (km/h)

Test Lead Test

 Trail Model

 Lead Model

 Trail

0

0.01

0.02

0.03

0.04

0.05

30 50 70 90

    D    i   s   p    l   a   c   e   m   e   n    t    (   m   e    t   e   r   s    )

Speed (km/h)

Test Lead Left

Test Lead Right

Test Trail Left

Test Trail Right

Model Lead

 Left

Model Lead Right

Model Trail Left

Model Trail Right

Page 22: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 22/48

© TTCI/AAR, 2015, Filename p22

®Model Validation

♦ Twist and Roll

●Model vertical displacement is higher than the test data,although the trend is similar, showing resonance at the correct

speed.●Model lateral displacement is matches the test data closely.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

20 40 60 80

    D    i   s   p    l   a   c   e   m   e   n    t    (   m

   e    t   e   r   s    )

Speed (km/h)

Test Lead Left

Test Lead Right

Test Trail Left

Test Trail Right

Model Lead Left

Model Lead Right

Model Trail Left

Model 

Trail 

Right

0

0.01

0.02

0.03

0.04

0.05

0.06

20 40 60 80    D    i   s   p    l   a   c   e

   m   e   n    t    (   m   e    t   e   r   s    )

Speed (km/h)

Test Lead Test Trail Model Lead Model Trail

Page 23: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 23/48

© TTCI/AAR, 2015, Filename p23

®Turnout Simulations

♦ Statement of Work Requires:

●Diverging route simulation of 1:5, 1:9, and 1:12 turnouts

●New and worn wheel profiles

●New and curve worn rail profiles

●Switch embedding defect simulations for 1:5, 1:9, and 1:12turnouts

●Speeds of 20 km/h and 34 km/h for the 1:5 turnout, and20km/h, 40 km/h, and maximum civil speed for the 1:9 and 1:12turnouts. Maximum civil speeds are 46 km/h for the 1:9 and 70km/h for 1:12.

●Track and wheelset gage variations

Page 24: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 24/48

© TTCI/AAR, 2015, Filename p24

®Turnout Simulations

♦ The turnout run

matrix does not

include every

possiblecombination,

but examines

the effect of

each parameter

compared to

the base

simulation.

Page 25: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 25/48

© TTCI/AAR, 2015, Filename p25

®Turnout Simulations

♦ New and worn profi les.New Wheel

uic510-2_1361mmbb_860mmdia-r.whl [1]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

-30-25

-20-15-10-505

101520253035

4045

New Rail

uic60140_56-1-2_2013-r.ban [1]

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

-70-65

-60-55-50-45-40-35-30-25-20-15-10-5

0

5

Worn Wheel

wrnwheel_1361mmbb_860mmdia-r.whl [1]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

Worn Rail

curvewornrail-lefthand-extended_1435mm-r.ban [1]

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

-70-65-60-55-50-45-40-35-30-25-20-15

-10-505

Page 26: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 26/48

© TTCI/AAR, 2015, Filename p26

®Turnout Simulations

♦ Track and Wheelset gage Variations

Back to

Back

Gage

Min 1360 mm

Nom 1361 mm

Max 1362 mm

Min 1433 mmNom 1435 mm

Max 1445 mm

Page 27: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 27/48

© TTCI/AAR, 2015, Filename p27

®Turnout Simulation Predictions

♦ The baseline turnout simulations met safety limits

●The worst-case wheel force data occurred on the 1:5 turnout,which has the largest entry angle and the smallest radius

closure curve.

Page 28: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 28/48

© TTCI/AAR, 2015, Filename p28

®Turnout Simulation Predictions

♦ The plots show there is

not much variation with

speed or profi le

combination.0.0

0.2

0.4

0.6

0.8

1.0

15 35 55 75

    W

    h   e   e    l    L     /    V    R   a    t    i   o

Speed (km/h)

New Rail, New Wheel

New Rail, Worn Wheel

Worn Rail, New Wheel

Worn Rail Worn Wheel

Limit

1:5 Turnout

0.0

0.2

0.4

0.6

0.8

1.0

15 35 55 75

    W    h   e   e    l    L     /    V    R   a    t    i   o

Speed (km/h)

New Rail, New Wheel

New Rail, Worn Wheel

Worn 

Rail, 

New 

WheelWorn Rail Worn Wheel

Limit

1:9 Turnout

0.0

0.2

0.4

0.6

0.8

1.0

15 35 55 75

    W    h   e   e    l    L     /    V    R   a    t    i   o

Speed (km/h)

New Rail, New Wheel

New Rail, Worn Wheel

Worn Rail, New Wheel

Worn Rail Worn Wheel

Limit

1:12 Turnout

Page 29: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 29/48

© TTCI/AAR, 2015, Filename p29

®Turnout Simulation Predictions

♦ Gage Clearance Simulations meet the Safety Limits

Page 30: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 30/48

© TTCI/AAR, 2015, Filename p30

®Turnout Simulation Predictions

♦ The plots show there is

not much variation in

performance with gage

clearance except for the1:12 turnout, where

narrow gage clearance

shows lower L/V ratios.

0.0

0.2

0.4

0.6

0.8

1.0

15 35 55 75

    W    h   e   e

    l    L     /    V    R   a    t    i   o

Speed (km/h)

New Wh and Ra St Ga and B‐B

New Wh

 and

 Ra

 Nar

 Ga

 Wide

 B

‐B

Worn Wh and Ra St Ga and B‐B

Worn Wh and Ra Wide Ga Nar B‐B

Limit

1:5 Turnout

0.0

0.2

0.4

0.6

0.8

1.0

15 35 55 75

    W    h   e   e    l

    L     /    V    R   a    t    i   o

Speed (km/h)

New Wh

 and

 Ra

 St

 Ga

 and

 B

‐B

New Wh and Ra Nar Ga Wide B‐B

Worn Wh and Ra St Ga and B‐B

Worn Wh and Ra Wide Ga Nar B‐B

Limit

1:9 Turnout

0.0

0.2

0.4

0.6

0.8

1.0

15 35 55 75

    W    h   e   e    l

    L     /    V    R   a    t    i   o

Speed (km/h)

New Wh and Ra St Ga and B‐B

New Wh and Ra Nar Ga Wide B‐B

Worn Wh and Ra St Ga and B‐B

Worn Wh and Ra Wide Ga Nar B‐B

Limit

1:12 Turnout

Page 31: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 31/48

© TTCI/AAR, 2015, Filename p31

®Turnout Defect Simulations

♦ Switch Embedding Defect Simulations

Ramp Length = 1mDefect Length Varies 0 to 2.1m

Mainline Stock Rail

Defect

Switch Rail

Page 32: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 32/48

© TTCI/AAR, 2015, Filename p32

®Turnout Defect Simulation Predictions

♦ The 1:5 turnout is the most sensitive to defect length,followed by the 1:9 turnout. The 1:12 turnout was not

sensitive to defect length in the range simulated.

●The 1:5 turnout has lowlikelihood of derailmentfor defect lengths of 0.3m and less

The 1:9 turnouts has alow likelihood ofderailment for defectlengths of 1.5 m andless

●The 1:12 turnout haslow likelihood ofderailment for all of thedefect lengths

simulated (up to 2.1 m).

Page 33: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 33/48

© TTCI/AAR, 2015, Filename p33

®Turnout Defect Simulation Predictions

♦ Speed is an important

factor to consider with

defect length.

♦ At 20 km/h:

●On the 1:5 turnout the

maximum allowable defectlength increases from 0.3m to 0.9 m

●On the 1:5 turnout themaximum allowable defectlength increases from 1.8m to 2.1 m

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

15 35 55 75

    R   o    l    l    i   n   g

    R   a    d    i   u   s

    (   m ,

    t   o    i   n    d    i   c   a    t   e    f    l   a   n

   g   e   c   o   n

    t   a   c    t   p   o   s    i    t    i   o   n

    )

Speed (km/h)

NEW

0.3m Defect

0.6m Defect

0.9m Defect

1.2m Defect

1.5m Defect

1.8m Defect

2.1m Defect

Limit

1‐5 Turnout

0.000

0.005

0.010

0.015

0.020

0.025

15 35 55 75

    R   o    l    l    i   n   g

    R   a    d    i   u   s

    (   m ,

    t   o    i   n    d    i   c   a    t   e    f    l   a   n   g   e   c   o   n

    t   a   c    t   p   o   s    i    t    i   o   n

    )

Speed (km/h)

NEW

0.3m Defect

0.6m Defect

0.9m Defect

1.2m Defect

1.5m Defect

1.8m Defect

2.1m Defect

Limit

1‐9 Turnout

Page 34: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 34/48

© TTCI/AAR, 2015, Filename p34

®Turnout Defect Simulation Predictions

♦ Although it is out of the scope of this project to simulate

them, there are several options to reduce the wear on

the switch point that leads to this kind of defect. They

are listed here in case MSP chooses to evaluate them inthe future:

●Slight superelevation can be installed so that the switch pointfor the diverging route movement is elevated slightly.

Preliminary evaluation suggests the use of 12 mm of elevationramped in over 6 to10 m.

● A standard guard rail may be used just ahead of the switchpoint to move the wheelsets to the center of the track before the

point of switch.(continued on next slide)

Page 35: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 35/48

© TTCI/AAR, 2015, Filename p35

®Turnout Defect Simulation Predictions

(continued from previous slide)

● A “House Top” or “Cover Guard” can be installed over the

straight switch point to pull the wheelset away from thediverging switch point.

●Installing a FAKOP switch design that uses the alignment of thestock rail to steer the wheelset away from the switch point.

♦ The cost and performance of these options must beweighed against the option of simply performing

additional switch point maintenance.

Page 36: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 36/48

© TTCI/AAR, 2015, Filename p36

®Primary Suspension Stiffness Study

♦ Examine the effect of increasing primary suspension

stiffness on vehicle performance.

♦ Simulations focused on regimes that test the load

equalization performance of the vehicle.

Page 37: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 37/48

© TTCI/AAR, 2015, Filename p37

®Primary Suspension Stiffness Study

♦ The following inputs were used for primary stiffness

simulations:

●Truck load equalization with airbags inflated (cab end and non-

cab end inputs)●Truck load equalization with airbags deflated (cab end only)

●Nominal gage and back-to-back spacing, new wheel and railprofiles

●Speeds of 10-30 km/h in 5 km/h increments and 34 km/h(maximum civil speed). Total of 6 speeds

●1:5 turnout

●Nominal geometry, a track twist perturbation with amplitude

equal to MSP’s track twist limit and a track twist perturbationwith amplitude equal to twice MSP’s track twist limit

Page 38: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 38/48

© TTCI/AAR, 2015, Filename p38

®Primary Suspension Stiffness Study

♦ MSP’s Track Twist Limit

Outside Rail

Inside Rail8 mm

4 mm

2.5 m

Closure curve of 1:5 turnout

2.5 m 2.5 m

Page 39: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 39/48

© TTCI/AAR, 2015, Filename p39

®Primary Suspension Stiffness

♦ Primary stiffness affects

wheel load equalization

performance

0%

50%

100%

0 25 50 75

    P   e   r   c   e   n    t    V   e   r    t    i   c   a     l    L   o   a     d

Wheel 1L Height (mm)

Nominal New

Tuned

2 x Increase

3 x Increase

35% Load

Limit

G‐0%R‐35%G‐35%

R‐0%

35% Wheel 

Load

Empty Airbag Deflated

0%

50%

100%

0 25 50 75

    P   e   r   c   e   n    t    V

   e   r    t    i   c   a     l    L   o   a     d

Wheel 1L Height (mm)

Nominal New

Tuned

2 X Increase

3 X Increase

35% Load

Limit

G‐0%R‐35% G‐35%

R‐0%

35% Wheel Load

Cab Lead,

 Empty

 Airbag

 Inflated

0%

50%

100%

0 25 50 75

    P   e   r   c   e   n    t

    V   e   r    t    i   c   a     l    L   o   a     d

Wheel 1L Height (mm)

Nominal New

Tuned

2 X Increase

3 X Increase

35% Load

Limit

G‐0%R‐35%G‐35%

R‐0%

35% Wheel 

Load

Cab Trail,

 Empty

 Airbag

 Inflated

G‐0%R‐35% G‐35%

R‐0%G‐0%R‐35%G‐35%

R‐0%

Cab Trail,

 Empty

 Airbag

 Inflated

G‐0%R‐35% G‐35%

R‐0%

Page 40: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 40/48

© TTCI/AAR, 2015, Filename p40

®Primary Suspension Stiffness

♦ Track twist has a large

effect on performance.

●The model predicted

derailment at speeds above20 km/h for the stiffestsuspension running overover 24mm track twist.

0.0

0.2

0.4

0.6

0.8

1.0

5 15 25 35

    W    h

   e   e    l    L     /    V    R   a    t    i   o

Speed (km/h)

Nominal 

New Tuned 

Model 

Stiffness2 x Increase 3 x Increase

Limit

Perfect Track

0.0

0.2

0.4

0.6

0.8

1.0

5 15 25 35

    W    h   e   e    l

    L     /    V    R   a    t    i   o

Speed (km/h)

Nominal New Tuned Model Stiffness

2 x Increase 3 x Increase

Limit

Track twist

 limit

0.0

0.2

0.4

0.6

0.8

1.0

5 15 25 35

    W    h   e   e

    l    L     /    V    R   a    t    i   o

Speed (km/h)

Nominal New Tuned Model Stiffness

2 x Increase 3 x Increase

Limit

Twice track twist limit

Page 41: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 41/48

© TTCI/AAR, 2015, Filename p41

®Conclusions – Suspension Modification

♦ The 3-point suspension improves performance by

reducing vertical secondary suspension displacement

and increasing the minimum vertical wheel loads in the

Twist and Roll zone. These improvements are at theexpense of higher carbody lateral accelerations at

speeds above 44 km/h.

If a small cross pipe orifice size (15mm) is chosen theperformance of the 3-point suspension suffers.

Page 42: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 42/48

© TTCI/AAR, 2015, Filename p42

®Conclusions – Model Validation

♦ Overall the model matches test results reasonably well.

This is demonstrated in conditions that excite the

vehicle vertically, laterally, and on curved track, with the

general trends predicted by the model matching thetrends in the test.

♦ Quasi static truck load equalization simulations match

the test very well, indicating that the model is suitablefor use in parametric studies examining the effect of

primary suspension stiffness on vehicle performance.

Page 43: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 43/48

Page 44: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 44/48

© TTCI/AAR, 2015, Filename p44

®Conclusions – Turnout Defect Simulations

♦ Simulations show that 1:5 and 1:9 turnouts with defects

longer than 0.3 m and 1.5 m respectively have a

tendency for f lange climb derailment. For the 1:12

turnout defect lengths up to 2.1 m (the longestsimulated) do not show a tendency for f lange climb

derailment.

Speed has a signif icant effect on results of turnoutdefect simulations. If defects longer than recommended

occur on 1:5 or 1:9 turnouts, the risk of f lange climb

derailment could be reduced by applying a speed

restriction of 20 km/h or less.

C l i T t D f t Si l ti

Page 45: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 45/48

© TTCI/AAR, 2015, Filename p45

®Conclusions – Turnout Defect Simulations

♦ Possible actions to decrease the wear that leads to

turnout defects are:

●Installing a small amount of superelevation at the switch point.

Possibly as much as 12 mm ramped in over 6 to 10 m.●Installing guardrails ahead of the switch points.

●Installing a “Housetop,” which is a guardrail at the switch points.

●Installing a FAKOP switch design that uses the alignment of the

stock rail to steer the wheelset away from the switch point.

♦ These options were not analyzed as part of this project.

The cost and performance of these options must be

investigated and weighed against the option of simply

performing additional switch point maintenance.

C l i P i Stiff

Page 46: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 46/48

© TTCI/AAR, 2015, Filename p46

®Conclusions – Primary StiffnessSimulations

♦ Simulation predictions show that while primary stiffness

has a signif icant effect on truck load equalization

results, the effects are smaller for simulations using

track twist perturbations based on the normal MSP tracktwist maintenance limit.

♦ Primary stiffness simulations showed that the vehicle

performance is sensitive to track twist perturbations,

even at nominal primary stiffness values. Simulations

of a 1:5 turnout with a 24mm track twist perturbation

predict derailment for the highest primary stiffness at

speeds above 20 km/h

R d ti

Page 47: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 47/48

© TTCI/AAR, 2015, Filename p47

®Recommendations

♦ MSP should consider retrofitting the original Line 5 fleet

to the three point suspension using a 19mm air spring

to reservoir orifice and a 19mm reservoir to reservoir

crossover pipe orifice.●Test data showed that the three point modification may produce

higher lateral acceleration at some speeds. This should bechecked by measuring the ride quality of an existing design car

(or cars) and a modified car (or cars) when operated over theline at normal speeds. Care should be taken to control oraccount for other variables that would also affect the ridequality, such as speed, damper condition, wheel profile, traindirection, and track condition.

●MSP should evaluate the clearance envelope of the vehicle withthe three point suspension modification.

Recommendations

Page 48: 06 Line 5 Final Presentation to MSP 2015-1-13

7/23/2019 06 Line 5 Final Presentation to MSP 2015-1-13

http://slidepdf.com/reader/full/06-line-5-final-presentation-to-msp-2015-1-13 48/48

© TTCI/AAR, 2015, Filename p48

®Recommendations

♦ The 1:5 turnout, and to a lesser extent the 1:9 turnout

are very sensitive to switch point wear. MSP should

carefully maintain switch points to avoid flange climb

derailments.♦ The maximum primary stiffness in the worn condition

should be maintained at 1.5 kN/mm or less at each axle

box for Line 5 cars. This is consistent with the stiffness

used in the model to closely match the results

measured in the test of the worn vehicle. To ensure

safety at this stiffness level MSP should continue to

maintain track twist to less than 12 mm in 4 m on all oftheir tracks.