23
1 A.Andronic 1 , H.Appelshäuser 1 , V.Babkin 2 , P.Braun-Munzinger 1 , S.Chernenko 2 , D.Emschernmann 3 , C.Garabatos 1 , V.Golovatyuk 2 , J.Hehner 1 , M.Hoppe 4 , E.Jimenez 1 , M.Kalisky 1 , C.Lippmann 1 , D.Moisa 5 , F.Uhlig 1 , M.Petris 5 , M.Petrovici 5 , A.Radu 1,5 , V.Simion 5 , R.Simon 1 , H.-K.Soltveit 3 , J.Stachel 3 , H.Stelzer 1 , A.Wilk 4 , J.P.Wessels 4 , Yu.Zanevsky 2 , V.Zhezher 2 and V.Zryuev 2 High rate beam test of Gas Detectors 1 GSI Darmstadt; 2 JINR Dubna; 3 University of Heidelberg, 4 University of Münster, 5 NIPNE Bucharest Results of experimental data analysis taken on the SIS GSI beam are presented. As a prototype of TRD detector, four proportional chambers of different configurations and one GEM detector were used. The main goal of experiment was studying the variation of detectors response under irradiation by high intensity beams.

1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

Embed Size (px)

Citation preview

Page 1: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

1

A.Andronic1, H.Appelshäuser1, V.Babkin2, P.Braun-Munzinger1, S.Chernenko2, D.Emschernmann3, C.Garabatos1, V.Golovatyuk2, J.Hehner1, M.Hoppe4, E.Jimenez1, M.Kalisky1, C.Lippmann1, D.Moisa5, F.Uhlig1, M.Petris5, M.Petrovici5, A.Radu1,5, V.Simion5, R.Simon1, H.-K.Soltveit3, J.Stachel3, H.Stelzer1, A.Wilk4, J.P.Wessels4, Yu.Zanevsky2, V.Zhezher2 and V.Zryuev2

High rate beam test of Gas Detectors

1GSI Darmstadt; 2JINR Dubna; 3University of Heidelberg, 4University of Münster, 5NIPNE Bucharest

Results of experimental data analysis taken on the SIS GSI beam are presented. As a prototype of TRD detector, four proportional chambers of different configurations and one GEM detector were used. The main goal of experiment was studying the variation of detectors response under irradiation by high intensity beams.

Page 2: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

2

Fig.1 Layout of the detector installation on the beam line

Description of the experimental setup

Detector typeActive area

(mm)Pitch

(μm)Number of planes

Detector “s task (destination)

Scintillation counters 50 x 40 - 2Trigger, beam

intensity monitor

Microstrip detectors 32 x 32 50 2x, 2yBeam shape

control

Parameters of beam monitoring detectors

Page 3: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

3

Fig.2. Layout of MWPC prototypes. Left panel: chambers built at GSI and Bucharest, right panel: chamber built in Dubna.

3mm

2mm

1mm

1mm

3 4 1 2

6 5 7 8

Fig. 3. The scheme of the GEM detector used as a prototype for CBM TRD

Holes are bi-conical with external diameter 70 μm, internal – 50 μm , pitch – 140 μm

wire pitch(mm)

anode-cathode

gap(mm)

drift region(mm)

pad size(mm)

active area( cm2 )

GSI-1 2 3 0 7.5 x 80 48

GSI-2 4 3 0 7.5 x 80 48

Bucharest 2.5 3 0 7.5 x 80 48

Dubna 2 2 8 3.0 x 4.0 1.92

Mechanical parameters of MWPC’s used in the TRD test beam.

40 mm

50

mm

10

25

Active area of GEM

Page 4: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

4

Page 5: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

5

Fig.5. Beam intensity distribution during the spill.The figures represent the case when extraction

time was 0.15 and 2.0 sec.

0.15 sec

The information from the upstream scintillation counter which covers the beam also was used for a total beam intensity estimation. Number of counts in this counter happened in time from the previous trigger was recorded.

Having in addition information from the clock about time between triggers we are able to recover the time structure of the beam passed through our detectors.

2.0 sec

Beam Intensity estimation

Page 6: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

6

Average pulse shape from FADC (50 bins x 30 nsec) for different readout chambers and different spill length

Page 7: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

7

Steps of Data Analysis

1. “Track” reconstruction with help of two Si (x and y strips with 50 μm pitch) stations.

2. Calculation expected track coordinate in each detector

3. Search for signals beyond the threshold around expected position

4. Calculation residuals R = Xexp – Xcoor

5. Calculation the total charge (sum up the signals from adjacent strips (pads))

6. Calculation of center of gravity using signals from adjacent strips, (σ ~ 0.4 - 0.6 mm)

7. Check the track validity using addition coordinate information from proportional chambers

Selection of tracks which have small residuals on selecteted chambers.

xx x

xx x xx

xx

xxx

Si-1(x,y) Si-2(x,y)

GSI-1 GSI-2 PC-Bucharest PC-Dubna GEM

Page 8: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

8

Steps of Data Analysis

xx x

xx x xx

xx

xxx

Si-1(x,y) Si-2(x,y)

GSI-1 GSI-2 PC-Bucharest PC-Dubna GEM

xx

1. “Track” reconstruction with help of two Si (x and y strips with 50 μm pitch) stations.

2. Calculation expected track coordinate in each detector

3. Search for signals beyond the threshold around expected position

4. Calculation residuals R = Xexp – Xcoor

5. Calculation the total charge (sum up the signals from adjacent strips (pads))

6. Calculation of center of gravity using signals from adjacent strips, (σ ~ 0.4 - 0.6 mm)

7. Check the track validity using addition coordinate information from proportional chambers

Selection of tracks which have small residuals on selecteted chambers.

Page 9: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

9

30 mm

7 mm

Strip position of GSI-1 chamber defined with Si “tracker”

Pads position of Dubna’s MWPC defined with Si “tracker”

3 mm

4 mm

Pads position of GEM defined with Si “tracker”

10mm

Page 10: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

10

GEM

Ar/CO2

GEM

Xe/CO2

Dubna

Xe/CO2

Dubna

Ar/CO2

Page 11: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

11

Xe/CO2

GSI-1 GSI-1

GSI-2

Xe/CO2

Ar/CO2

GSI-2

Ar/CO2

Page 12: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

12

Stability of the charge of signal from GEM and Dubna chamber vs beams intensity.

Page 13: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

13

Stability of the charge of signal from GSI chambers vs beam intensity

Page 14: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

14

Dubna, X-direction

Xe/CO2

Dubna, Y-direction

Xe/CO2

Pad numbers distributionin Dubna Chamber

x

y

Sense wire

16 mm

12

mm

n – number of pads taken for the measurement of center of gravity (position resolution)

Page 15: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

15

Dubna, X-direction

Ar/CO2

Dubna, Y-direction

Xe/CO2

Pad numbers distribution in Dubna Chamber (Ar/CO2)

Dubna, Y-direction

Ar/CO2

Dubna, Y-direction

Ar/CO2

Dubna, X-direction

Ar/CO2

Page 16: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

16

GSI-2

Ar/CO2

7 mV

GSI-2

Ar/CO2

7 mV

Pad number distribution and sp. resolution for GSI-2 chamber

GSI-2

Ar/CO2

10 mV

GSI-2

Ar/CO2

10 mV

Page 17: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

17

Space resolution vs beam Intencity for GSI-1 and GSI-2 Threshold =7mV

Ar/CO2

Page 18: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

18

Space resolution vs beam Intencity

(Dubna chamber)

Page 19: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

19

Conclusions

1. We did not observe a gas gain degradation up to intensity of 100 kHz/cm² in MWPCs with Ar/CO-2 and Xe/CO-2 mixtures.

2. We did not observe a spatial resolution worsening vs beam intensity for Dubna chamber (with a small pad size). A contribution of multiple scattering is significant in obtained spatial resolution for MWPCs (especially for Dubna chamber). 3. Pad size of MWPC should be optimized for the next beam test

Page 20: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

20

s1 s2

X-Y Coordinates X-Y Coordinates

Chambers under study

• Minimize a multiple scattering (everything besides chambers has to be taken out of the beam area)• Use fast 2D coordinate detectors for beam profile definition (GEM) (for signal degradation in high intensity beams studies a coordinate resolution of coordinate detectors (1-2) mm is enough )• Provide beam intensity variation with a long spill length (2 sec)• Try to decrease size of the beam (1-2 cm² ).• Increase number of DAQ channels.

Ch1 Ch2

S1 Sm1 Sm2 S2 – to scaler to control number of beam particles passed through the Chambers under study

S1S2 - trigger

For the next Run we need to

2 sec

Beam intensity

Beam extraction lenght

Page 21: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

21

10cm2 8cm2 6cm2

4cm2 2cm2 1cm2

10cm2

1cm2

2cm2

4cm2

6cm2

8cm2

TRD for CBM(3 stations)

Au+Au, at 25 AGeV, min bias events, Hit rates107

10cm2

Page 22: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

22

TRD for CBM Station №3

Page 23: 1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe

23

GSI-1

Xe/CO2

7 mV

GSI-1

Xe/CO2

7 mV

GSI-1

Xe/CO2

10 mV

Cut, n>5

Pad number distribution and resolution for GSI-1 chamber (Xe/CO2 )

GSI-1

Xe/CO2

10 mV