22
1 ACCRETING X-RAY MILLISECOND PULSARS IN OUTBURST M A U R I Z I O F A L A N G A Service d‘Astrophysique, CEA – Saclay Collaborators: J. Poutanen, L. Kuipers, E. Bonning W. Hermsen, J. M. Bonnet- Bidaud, L. Stella ISSI Bern Decembre 3, 2007

1 ACCRETING X-RAY MILLISECOND PULSARS IN OUTBURST M A U R I Z I O F A L A N G A Service d‘Astrophysique, CEA –Saclay Collaborators: J. Poutanen, L. Kuipers,

Embed Size (px)

Citation preview

1

ACCRETING X-RAY MILLISECOND PULSARS IN OUTBURST

M A U R I Z I O F A L A N G A

Service d‘Astrophysique, CEA –Saclay

Collaborators:

J. Poutanen, L. Kuipers, E. Bonning

W. Hermsen, J. M. Bonnet-Bidaud,

L. Stella

ISSI BernDecembre 3, 2007

2

MSPs hosted in LMXBs

SXT:L ~ 1031-1032 erg/s in quiescentL ~ 1036-1038 erg/s in outburst, recurence time 2-5 yr.

Close X-ray binaries: Companion: M << Msun, Accretion disk, Compact object NS: B~108G

Rich time variability, such as twin QPOs at kHz frequencies (400 - 1300 Hz, increasing with Mdot); kHz QPOs are thought to reflect Kepler at the inner accretion

disk. (Van der Klis, 2000, astro-ph/00001167)(The Power spectra obtained for SAX J1808.4-3658 during 2002 outburst.)

8 SXT which show X-ray millisecond coherent modulation.Spin frequencies lye between 180 and 600 Hz. (see review by Wijnands 2004, astro-ph/0403409)

Type-I X-ray bursts, with nearly coherent oscillations in the range 300-600 Hz .Burst oscillations reflect the NS spin frequency (D. Chakrabarty, Nature, 2003)(Burst oscilation from SAX J1808.4-3658 during 2002 outburst.)

ISSI BernDecembre 3, 2007

3

…now we know 8 LMXBs (transients) which show X-ray millisecond coherent modulation:

SAX J1808.4-3658: Ps = 2.5ms, Porb = 2hr (Wijnands & van der Klis 1998)

XTE J1751-306: Ps = 2.3ms, Porb = 42min (Markwardt et al. 2002)

XTE J0929-314: Ps = 5.4ms, Porb = 43.6min (Galloway et al. 2002)

XTE J1807-294: Ps = 5.3ms, Porb = 40min (Markwardt et al. 2003)

XTE J1814-388: Ps = 3.2ms, Porb = 4.3hr (Markwardt et al. 2003)

IGR J00291+5934: Ps = 1.67ms, Porb = 2.46hr (Eckert et al. 2004)

HETE J1900.1-2455: Ps = 2.65ms, Porb = 1.4hr (Markwardt et al. 2005)

The growing family of the X-ray millisecond pulsars

ISSI BernDecembre 3, 2007

4

Companion mass Mc/Msun

Com

pani

on r

adiu

s R

c/R

sun

Brown dwarfs0.1 Gyr

5 Gyr

1 Gyr

White dwarfs

XTE J0929-314XTE J1751-305XTE J1807-294

IGR J00291+5934SAX J1808..4-3658XTE J1814-338

Assuming that the companion star should fill its Roche lobe to allow sufficient accretion on the compact star

Companion Star

Brown dwarf models at different ages (Chabrier et al. 2000)

Cold low-mass white dwarfs with pure-helium composition

IGR J00291+5934 SAX J1808.4-3658 H-rich donor, brown dwarfXTE J1814-338XTE J0292-314XTE J1751-305 H-poor, highly evolved dwarf XTE J1807-294

ISSI BernDecembre 3, 2007

5

Recycling model for MSPs LMXB phase preceding the MSP stage;

mass transfer stops;the radio MSP switches on

Most binary MSPs have short orbital periods and mass function identifying the companions as low mass evolved dwarfs

X-ray transients can be the missing link between LMXBs and MSPs!

Old Neutron stars spin up by accretion from a companion

Radio Pulsar Millisecond Radio Pulsar

Spin up by

mass ac

cretio

n

Accreting NS in LMXBs are conventionally thought to be the progenitors of millisecond or „recycled“ radio pulsars (Alpar et al. 1982)

ISSI BernDecembre 3, 2007

6

INTEGRAL IBIS/ISGRI Observation

IGR J00291+5934

(20 - 40 keV)V709 Cas

Cas Gamma

2S0114+650

Cas A

IGR J00291+5934

(80 - 200 keV)

(40-80 keV) significance level ~51σ

(80-200 keV) significance level ~17σ

Rev 261/262/263/264; Exposure 343 ks

December 2004 Outburst

(20-40 keV) significance level ~88σ

derived angular distance: 18´

ISSI BernDecembre 3, 2007

7

Geometry of the emission region

XTE J1807-294

Thermal disk emission

The plasma is heated by the accretion shock as the material collimated by the hotspot on to the surface. The seed photons for Comptonization are provided by the hotspot.

Seed photons from the hotspot

Thermal Comptonization in plasma of Temperature ~ 40 keV

B ~ 108 G

Rm

(Falanga, Bonnet-Bidaud, poutanen et al. 2005)

θ

ISSI BernDecembre 3, 2007

8

HETE J1900.1-2455 Type I X-ray burst

ISSI BernDecembre 3, 2007

9

OUTBURST PROFILE

Discovery (Eckert et al. 2004)

From RXTE (Galloway et al. 2005)

(Falanga, Kuiper, Poutanen et al. 2005)

ISGRI 20-100 keV

PULSE PROFILE

IGR J00291+5934

Rev 261/262/263, ~205

Porbit = 2.457 hr

Ps = 1.67 ms

Pdot = +8.4 x 10-13 Hz/s

ISSI BernDecembre 3, 2007

10

OUTBURST PROFILE

XTE J1807-294

Discovery (Eckert et al. 2004)

From RXTE (Galloway et al. 2005)

(Falanga et al. 2005)(Falanga et al. 2005)

(Wijnands 2005, astro-ph/0403409)

XTE J1807-294

ISGRI 20-100 keV

Outburst are extended as a consequence of

X-ray irradiation of the disk? (King & Ritter 1998)

Distinct knee

(Powell, Haswell & Falanga, 2007)

ISSI BernDecembre 3, 2007

11

Pulsed fraction and Time lag : IGR J00291+5934

(Falanga et al. 2005)

If the spectrum has a sharp cutoff, the rms amplitude of the pulse at energies above the cutoff increases dramatically.

F(E) ≈E-(Γ0-1) exp(-[E/Ec]β),Componization photon index Γ(E) = Γ0 + β(E/Ec)β

(Falanga, Kuiper, Poutanen et al. 2005)

ISSI BernDecembre 3, 2007

12

(Falanga et al. 2005)

Hard X-ray

Soft X-ray

Hot corona Accretion disk

Time lag IGR J00291+5934

Compton scattering model

Time lag are normally hard

The energy spectra often observed in LMXBs suggests that the dominant radiative mechanism in the system is Compton scattering of soft photons in a hot plasma.

(For a review of models for spectral variability and time lags see Poutanen 2001)

ISSI BernDecembre 3, 2007

13

Time/Phase Lag Model Accretioncolumn

Disk

Disk soft photons

Soft photonsNeutron Star

Hard photons1-Cill

Hard photonsCill

θhot

θref

Compton cloud

(Falanga & Titarchuk 2007)

∆t(Cill,ref,hot,neref,ne

hot) =

upscattering lag + downscattering lag

ISSI BernDecembre 3, 2007

14

Spin-up IGR J00291+5934

We measured for the first time a spin-up for an accreting X-ray millisecond Pulsar

υ = + 8.4 × 10-13 Hz s-1

υ = + 3.7 × 10-13 (L37/η-1I45) (Rm/Rco)1/2 (M/1.4Msun) (υspin/600)-1/3 Hz s-1

ISSI BernDecembre 3, 2007

15

Is the Spin-up real?

An error in the source coordinates can give rise to timing error which may introduce a spurious spin-up or spin-down

1 YearOur observation

υ = + 5.8 × 10-14 Hz s-1

0.2 arcsec0.092 arcsec 0.2 arcsec

0.092 arcsec

0.092 arcsec source position error would introduce a non-existant spin-up rate of

Such an apparent spin-up would require a fairly large ~ 0.7 arcsec source position error during our observation

YES

ISSI BernDecembre 3, 2007

16

« Une étoile cannibale »

« Star eats companion »

17

Pulsar spin-up Animation

NASA, D. Barry

18

SAX J1808.4-3658

Rotation period: 2.5 ms Orbital period: 2 hrs

Low mass companionWijnands & van del Klis 1998

Chakrabarty & Morgan 1998 Light curve folded at the spin period

For a millisecond pulsar, e.g. SAX-J1808.4-3658, can take ~ 20% of 2.5 ms pulse period the time of flight delay cannot be neglected

Geometry illustration

19

Constraints on the neutron star mass-radius relation obtained by fitting the pulse profile of SAX J1808.4-3658 (filled circles with error bars) toghether with a set of equations of state ans strange star

(Poutantn & Gierlinski 2003)

ISSI BernDecembre 3, 2007

20

Intermittent MSP:

SAX J1748.9-2021 (Globular Cluster NGC 6440) , Pspin = 2.26 ms, Porb =8.3 hr.

AQL X-1, Pspin = 1.8 ms, Porb = ?

(Altamirano et al. 2007)

ISSI BernDecembre 3, 2007

(Casella et al. 2007)

21

Important Questions

Missing link between LXMB and ms radio pulsar ?

Analysis suggests that the spin frequency is limited to 760 Hz (95% confidence; Chakrabarty et al. 2003)

Several have suggested that gravitational radiation from a non-spherical neutron star might limit the maximum fraquency (Bildsten et al. 1998)

Detection by LISA?

Detecting more of these source with more instrument than before

ISSI BernDecembre 3, 2007

22

Thank You…

ISSI BernDecembre 3, 2007