50
1 Controlling spontaneous Controlling spontaneous emission emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

Embed Size (px)

Citation preview

Page 1: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

1

Controlling spontaneous Controlling spontaneous emissionemission

J-J GreffetLaboratoire Charles Fabry

Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

Page 2: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

2

Lecture 1

Controlling spontaneous emission: nanoantennas and super radiance

Lecture 2

Harnessing blackbody radiation

Page 3: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

3

Goal of an antenna Goal of an antenna for single photon for single photon emissionemission

Electrical Engineering point of view:

The source drives the antenna currentsThe currents radiate

Quantum optics point of view:

The atom excites the antenna modeThe antenna mode has radiative losses

How can we get more energy out of one atom ?

Page 4: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

4

Example of Example of antennaantenna

Chevalet

Page 5: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

5Mühlschlegel et al. Science 308 p 1607 (2005)

Optical NanoantennasOptical Nanoantennas

Page 6: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

6

Kühn et al. PRL 97, 017402 (2006)Anger et al., PRL 96, 113002 (2006)

Nanoantenna for Nanoantenna for fluorescencefluorescence

Page 7: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

7

Drexhage

Tailoring decay rate

Page 8: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

8

Controlling the directionControlling the direction

Page 9: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

9

Controlling the Controlling the lifetimelifetime

Fermi golden rule :

Page 10: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

10

Increasing the decay Increasing the decay raterate

Akselrod et al., Nature Photonics 8, p 835 (2014)

Page 11: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

11

Controlling Controlling spontaneous spontaneous

emission with a emission with a plasmonic resonatorplasmonic resonator

Nanoantennas Nanoantennas for light for light

emission by emission by inelastic inelastic tunnelingtunneling

Scattering by a dense cloud of cold atoms

Outline

F. Bigourdan B. Habert N. Schilder

Page 12: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

12

Nanoantennas for light emission Nanoantennas for light emission by inelastic tunnelingby inelastic tunneling

Can we overcome quenching ?

Page 13: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

13

Page 14: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

14

What is the gap plasmon mode ?

500 nm 800 nm

Page 15: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

15

Emission with a nanocylinder antenna

Page 16: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

16

Where is the improvement coming from ?

Page 17: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

17

Nanoantenna design rules

Chen et al., Phys. Rev. Lett. 108, 233001 (2012)Akselrod et al., Nature Nanophotonics 8, p 835 (2014)Bigourdan et al., Opt. Exp. 22, 2337 (2014)Kern et al., arxiv 1502.04935

Page 18: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

18

Suppressing blinking of quantum dots

Collaboration: B. Dubertret, ESPCI

B. Habert

Page 19: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

19

Plasmonic nanoresonator

B. Ji et al., Nature Nanotechnology 10, p 170 (2015)

The gold nanoshell serves as a nanoantenna

Collaboration: B Dubertret (LPEM)

Page 20: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

20

+ - + -

B. Ji et al., Nature Nanotechnology 10, p 170 (2015)

Page 21: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

21

Colloidal Quantum Dots

Blinking

Collaboration: B Dubertret (LPEM)

Page 22: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

22

Neutral excitonCharged exciton (trion)

160 ns

80 ns

20 ns

Decay acceleration

B. Ji et al., Nature Nanotechnology 10, p 170 (2015)

Page 23: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

23

Is it a Purcell effect ?

Page 24: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

24

The gold nanoshell supresses the blinking

Neutral excitonCharged exciton (trion)

160 ns

80 ns

20 ns

Blinking suppression

B. Ji et al., Nature Nanotechnology 10, p 170 (2015)

Page 25: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

25

Plasmonic resonator

The gold nanoshell increases the stability of the QD:

B. Ji et al., Nature Nanotechnology 10, p 170 (2015)

Page 26: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

26

Collective effects in light Collective effects in light scatteringscattering

N.J. Schilder, C. Sauvan, J.P. Hugonin, A. Browaeys,

Y. Sortais, F. Marquier

Laboratoire Charles Fabry, Institut d’Optique, Palaiseau (France)

Page 27: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

27

System of System of interestinterest

Dense cloud of ~ 1 - 500 atomsRandom atom distribution

1 μm ~

Page 28: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

28

1. Dense sample: or

1. Dipole energy dominates temperature:

T < 100 μK ( ~ 1 MHz)

Laser cooled atomic gases

T. Bienaimé et al., PRL 104, 183602 (2010)H. Bender et al., PRA 82 011404 (2010)Chalony et al., PRA 84 011401 (2011)Balik et al., PRA 87, 053817 (2013)

Experiments with large (106 - 109) and optically thick cold samples

λ ~1 μm

Conditions to observe optical resonant dipole-dipole interactions

Page 29: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

29

•Spontaneous emission (low excitation regime)

•Scattering of light (low excitation regime)

Page 30: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

30

Spontaneous Spontaneous emissionemission

What is the influence of collective effects on the spontaneous emission rate in the presence of strong interactions?

Page 31: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

31

Wigner-Weisskopf Wigner-Weisskopf theorytheory

Hamiltonian of the system:

Atom-photon coupling constant

No rotating Wave Approximation is made in order to keep all interactions mediated by virtual photons ! (by evanescent waves for nanophotonics people).

Fixed polarization + along the cloud axis.

Page 32: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

32

Wigner-Weisskopf Wigner-Weisskopf theorytheory

+

Choice of the general form of the wavefunction (low excitation)

Linear system for the eigenstates

Page 33: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

33

Wigner-Weisskopf Wigner-Weisskopf theorytheory

+

Choice of the general form of the wavefunction (low excitation)

Linear system for the eigenstates

Discussion: i) The system is identical to the classical pictureii) The near-field vectorial interactions are essential(and therefore no RWA can be performed).

Li et al., PRA 87, 053837 (2013)

Page 34: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

34

EigenstatesEigenstates

Page 35: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

35

Type 1 and 2Type 1 and 2

Page 36: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

36

Structure of super radiant Structure of super radiant statesstates

Page 37: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

37

Type 3Type 3

Page 38: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

38

Superradiant polaritonic Superradiant polaritonic modesmodes

Properties

1. Large decay rate (> 15 0)2. All atoms are excited.3. Spatial structure accounting for the retardation. 4. There are typically 5 superradiant states among 450 states.

Why 5 states ?

Page 39: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

39

Superradiant polaritonic Superradiant polaritonic modesmodes

Properties

1. Large decay rate (> 15 0)2. All atoms are excited.3. Spatial structure accounting for the retardation. 4. There are typically 5 superradiant states among 450 states.

Why 5 states ?

Page 40: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

40

Experimental investigations: weak excitation limit

F = 1

F = 2

F’ = 3 Δ

Laser - cooled 87Rb atoms T ~ 100 K

Page 41: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

41

Scattering in the low excitation Scattering in the low excitation regimeregime

The positions are generated randomly. The calculation is repeated over an ensemble of random realizations. Both the field and the square of the field are averaged.

Page 42: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

42

Role of super radiant Role of super radiant modesmodes

Page 43: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

43

Coherent and incoherent Coherent and incoherent scatteringscattering

Light scattering by a suspension of latex beads in water.

<E> = mean field (ensemble average)= coherent field= collimated fieldE = fluctuating field= incoherent field= diffuse field

Page 44: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

44

Coherent and incoherent Coherent and incoherent scatteringscattering

It can be shown that:

In a diagrammatic approach, the effective permittivity is essentially given by the so-calledmass-operator. For dense media, the inclusion of recurrent scattering terms is required.

Page 45: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

45

Far-field scattering patternFar-field scattering pattern

Coherent scattering Incoherent scattering

Most of the light is scattered coherently !

Page 46: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

46

Is Clausius Mossotti formula Is Clausius Mossotti formula valid ? valid ?

Page 47: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

47

Order of magnitude Order of magnitude analysisanalysis

Estimate of the permittivity:

At resonance:

Page 48: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

48

Effective permittivityEffective permittivity

Page 49: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

49

Structure of super radiant Structure of super radiant statesstates

Page 50: 1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)

50

Controlling Controlling spontaneous spontaneous

emission with a emission with a plasmonic resonatorplasmonic resonator

Nanoantennas Nanoantennas for light for light

emission by emission by inelastic inelastic tunnelingtunneling

Scattering by a dense cloud of cold atoms