76
Copyright © PIDOTECH Inc. All Rights Reserved.

1 Introduction

  • Upload
    silillo

  • View
    73

  • Download
    11

Embed Size (px)

DESCRIPTION

optimization

Citation preview

Page 1: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 2: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

2

v 설계기술의 현황

v PIDO Technology

v Applications

Page 3: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 4: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

설계비용은 제품원가의 5%이지만

설계가 제품원가에 미치는 영향은 70%

70%

20%

5%5%

5% PRODUCTDESIGN

50% MATERIAL

15% LABOR

30% OVERHEADINFLUENCE(%)

4

Page 5: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

5

• Design Requirements:

Product Performances

Manufacturability (DFM)

Assembly (DFA)

• Design Variables:

Shape and Size

Topology

Material

• Design Requirements:

Production without Defects

• Design Variables:

Process Parameters

(Variables)

Page 6: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

6

Design Problem Formulation

• Design Requirements

• Design Variables

Analysis Procedure Establishment

• CAE

• Experiments

Design Procedure Establishment

• Conventional Design

• Advanced Design (e.g. Optimization)

Page 7: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

7

Yes

Selectan initial design

Evaluate the performance usingCAE/Experiment

Are design requirements

satisfied ?

Adequate Design

Change design variables

Know-How

ExperienceIntuition

No

Page 8: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Ladder Type Frame 방식 차체의 장점- 노면으로부터의 소음, 진동 전달 유리- 플랫폼 공용화가 용이

Ladder Type Frame 방식 차체의 단점- 중량 증가- 지상고가 높음

Ladder Type Frame에서

충돌 관련된 설계부위를 변경하지 않고,

Carryover 설계 안보다 10kg 경량화 목표를 만족하면서

승차감 향상을 위한 진동특성 Spec.을 만족할 수 없을까?

Frame Type Carbody System

Page 9: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Minimize WeightPriority #1

Lower Limit ≤ 1th Torsional Freq.Priority #2

Lower Limit ≤ 2nd Bending Freq.Priority #3

Lower Limit ≤ 3rd Lateral Freq.Priority #4

Page 10: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

st1 st2 st3

ct1 ct2 ct3 ct4 ct5 ct6

두께 변수 (9개)두께 변수 (9개) 형상 변수 (6개)형상 변수 (6개)

△w1

△h1 △h2

△w2 △w3

△h3

△h2

* 충돌 특성에 영향이 미비한 설계변수와 설계변수 범위를 설계엔지니어로부터 제공받음

Page 11: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Design Problem

Design Variables (15)

Objective Function (1)

Constraints (3)

• 프레임 두께 변수 (9)

• 프레임 형상 변수 (6)

• Minimize Weight

• Lower Limit ≤ 1th Torsional Freq.

• Lower Limit ≤ 2nd Bending Freq.

• Lower Limit ≤ 3rd Lateral Freq.

Page 12: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

12

Yes

Selectan initial design

Evaluate the performance usingCAE/Experiment

Are design requirements

satisfied ?

Best Design

Modifydesign variables

AdvancedDesign Techniques

No

Automatic ProcessUsing PIDO technology

Page 13: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

13

Multidisciplinary Design Optimization (MDO)

: a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines

Page 14: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

x1 x12 x13 x123 x2 x23 x3l Discipline3: Durability

l Discipline1: Safety

l Discipline2: NVH

Conventional Design : Sequential / Hierarchical Procedure

x1 x12 x13 x123 x2 x23 x3 x1 x12 x13 x123 x2 x23 x3

x1 x12 x13 x123 x2 x23 x3

x1 x12 x13 x123 x2 x23 x3

x1 x12 x13 x123 x2 x23 x3

DOF of Design Performance DOF of Design Performance DOF of Design Performance

MDO : Concurrent / Simultaneous Procedure

l Discipline2: NVH

l Discipline1: Safety

l Discipline3: Durability

x1 x12 x13 x123 x2 x23 x3

x1 x12 x13 x123 x2 x23 x3

x1 x12 x13 x123 x2 x23 x3

DOF of Design Performance

x={xL, xS}xL={x1, x2, x3} : Local Design VariablesxS={x12, x13, x23, x123} : Shared Design Variables

Safety NVH Durability

DurabilitySafety

NVH

Page 15: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

15

quoted from M.J. Kiemele, Air Academy Associates, 2003

Page 16: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 17: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

17

PhysicalPrototype Virtual

Prototype

• Long development time• High cost• Unsatisfactory quality

due to design change difficulty

• Fast delivery• Low cost• High quality assurance in the early stage

Shifting from “Physical Prototype”to “Virtual Prototype”

In order to enhance the value of “Virtual Prototype” ,PIDO (Process Integration and Design Optimization) technology is a necessity.

• Integration of CAE tools• Automation of complex analysis and design procedures• Optimization of product/process designs

Page 18: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Analysis C

omponent Layer

Analysis C

omponent Layer

CAE Tools

TCP/IP

Visual Modeling

Message Broker (Socket)

Workflow Engine

ExecutionManager

JobScheduling

Manager

Design Data Manager

UI Framework

InterfaceEngine

Design Process Manager

PIAnO EnginePIAnO Engine

• integrating CAE tools in a distributed computing environment

• automating complex analysis and design procedures using “Engine”

• applying appropriate design tools including DOE and optimizers

A PIDO tool that can produce the best design solution by

Architecture of PIAnO Developed by PIDOTECH Inc.

Design C

omponent Layer

Design C

omponent Layer

DesignOptimization

Sequential ApproximateOptimization

Approximation

Design Of Experiments

Reliability Analysis

ParametricStudy

Reliability-BasedDesign

Optimization

What-IfStudy

18

Page 19: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

수작업 혹은 시행착오로 해 오던 해석 및 설계절차를 자동화해 주는 툴입니다.

해석모델에서설계변수 변경

결과 분석

CAE Solver 실행 레포트 생성

DecisionMaking

수동 Process

19

Page 20: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

수작업 혹은 시행착오로 해 오던 해석 및 설계절차를 자동화해 주는 툴입니다.

해석모델에서설계변수 변경

결과 분석

CAE Solver 실행 레포트 생성

DecisionMaking

수동 Process

자동 Process

20

Page 21: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

전문 설계 툴입니다. 최신의 설계 기법을 지속적으로 업그레이드 하고 있습니다.

What-If StudyWhat-If Study

Parametric StudyParametric Study

ReliabilityAnalysisReliabilityAnalysis

Designof ExperimentsDesignof Experiments

Meta-modelingMeta-modeling

DesignOptimizationDesignOptimization

Reliability-BasedDesign Optimization

Reliability-BasedDesign Optimization

1-D Parametric Study

Vector Parametric Study

FORM

Monte Carlo Sampling

Latin Hypercube Sampling

enhanced DimensionReduction Method (eDR)

Full Factorial Design

Central Composite Design(CCD/ICCD/FCCD)

Orthogonal Array

LHD/OLHD

Plackett-Burman Design

Box-BehnKen Design

Response Surface Model

Kriging Model

Radial Basis Function Model

Radial Basis Function Regression Model

Sequential Two-point Diagonal Quadratic Approximate Opt.

Micro Genetic Algorithm

Progressive Quadratic Response Surface Method

Evolutionary Algorithm

Advanced Single Loop Single Vector

Enhanced Reliability-Based design Optimization withSmart Initiation Approach (ERBOSIA – v3.x)

eDR-Based Robust Design Optimization (v3.x)

Metamodel-Based Sequential Approximate Opt. (v3.x)

Taguchi Method (v3.x)Taguchi Method (v3.x)Augmented LHD

Inherited LHD

Hybrid Optimization Algorithm (v3.x)

21

Page 22: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

기존 (Manual, 경험적 반복) Design Time

= 6개월 * 3명 * 160시간/월 = 2,880시간

PIAnO를 이용한 Design Time

= 2개월 * 3명 * 64시간/월 = 384시간

대표사례 (A사 드럼세탁기 현가시스템 및 캐비닛 통합설계)

설계시간 80% 이상 절감!(ex. 1억 3천만원 이상 절감)

제품 성능 향상!(ex. 세탁기 진동 33% 감소)

( ) ( ) ( )1 (2880-384) 1 3

8 1220´ =

´ ´

억원시간 억 천만원

시간 개월일일 월 년 22

Page 23: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 24: 1 Introduction

[샤시] ABS Controller Parameter Calibration의 최적설계(CarSim, Simulink)

[샤시] Torsion Beam Axle 형상 최적설계(Hypermesh, MSC.Nastran, ADAMS/Car, MSC.Fatigue)

[HEV] Parallel HEV Control Strategy의 최적설계(Simulink)

[P/T] 엔진 Fuel Rail의 형상 최적설계(ADINA)

[샤시] SUV 차량의 Ladder Type Frame 형상 최적설계(Hypermesh, MSC.Nastran)

[샤시] 후륜 현가장치의 Bush 최적설계(ADAMS)

[샤시] 전륜 현가장치의 Hardpoint & Bush 최적설계(ADAMS/Car)

[샤시] 차량 냉각모듈의 Isolator 형상 최적설계(Hypermesh, ABAQUS, MSC.Patran, MSC.Fatigue, Matlab)

[샤시] 실험계획법을 이용한 차량 Fuel Tank 사양 결정(Experiments)

[샤시] 샤시 통합제어기의 최적설계(CarSim, Simulink)

[P/T] 엔진 Dual CVVT Valve Timing의 최적설계(GT-Power)

[P/T] 디젤 SUV 차량의 출발가속성능 향상을 위한 최적설계(GT-Power, GT-Drive)

[P/T] 디젤엔진 Turbocharger용 Resonator 장착을 위한 최적설계(GT-Power)

[P/T] 엔진 Variable Induction System의 Runner Length 최적설계(GT-Power)

[P/T] 엔진 Intake Manifold의 EGR Port 파라메트릭 설계(GT-Power, STAR-CD)

[샤시] 샤시 해석 프로세스 자동화(ADAMS, CarSIm)

[샤시] 표준 내구/강도 해석 프로세스 자동화(Hypermesh, Hyperview, MSC.Patran/Nastran/ADAMS/Fatigue)

[샤시] 표준 내구/강도 해석 프로세스를 이용한 CTBA 최적설계(Hypermesh, In-house Code)

[샤시] 샤시 설계 프로세스 자동화(In-house Code)

[샤시] 차량 Engine Mount의 최적설계(MSC.Nastran)

[샤시] Front 서브 프레임 형상 최적설계(Hypermesh, MSC.Nastran, ABAQUS, ADAMS/Car, FEMFAT)

[샤시] 전륜 현가장치의 Hardpoint & Bush RBDO(ADAMS/Car)

[샤시] 차량 Fuel System의 Vent Valve 최적설계(Experiments)

[샤시] 차량 Frame Layout 형상 최적설계(NX, Hypermesh, LS-Dyna, In-house Code)

PIAnO 적용사례 I (자동차 분야)

Page 25: 1 Introduction

[전자] 휴대폰 Lens 시스템의 강건 최적설계(Code-V)

[전자] Switched Reluctance Motor의 최적설계(In-house Code)

[전자] 컴퓨터 HDD용 헤드 슬라이더의 Reduced Basis 최적설계(CML-Static)

[전자] 컴퓨터 HDD용 헤드 슬라이더의 RBDO(CML-Static)

[가전] 드럼 세탁기 현가장치의 최적설계(DADS, ANSYS)

[가전] Plate-Fin 형 열교환기의 Multi-Objective 최적설계(STAR-CD)

[가전] 에어컨/실외기 배관의 형상 최적설계(Hypermesh, MSC.Nastran, MSC.Fatigue)

[전자] 휴대폰 Lens 시스템의 공차 최적설계(Code-V)

[전자] 휴대폰 LCD BLU 광학성능 향상을 위한 이산 최적설계(SPEOS, In-house Code)

[전자] 휴대폰 LCD 모듈 파손방지를 위한 RBDO(Hypermesh, LS-Dyna)

[전자] 컴퓨터 DTR 디스크용 헤드 슬라이더의 형상 최적설계(CML-Dynamic, CML-Static)

[전자] 이동통신 시스템 Heat Sink의 최적설계(FLOTHERM)

[전자] 레이저 프린터용 Cleaning Blade의 최적설계(Hypermesh, ABAQUS)

[전자] LED 조명 Heat Sink의 최적설계(FLOTHERM)

[전자] ODD용 Spindle Motor의 최적설계(Flux3D)

[전자] HDD용 Spindle Motor의 최적설계(Flux3D)

[전자] Projection Optical System의 최적설계(Code-V)

[가전] 세탁기 액체 Balancer의 형상 최적설계(Experiments)

PIAnO 적용사례 II (전자/가전 분야)

Page 26: 1 Introduction

[항공] Rotorcraft 개념설계를 위한 MDO (15 In-house Codes)

[항공] 공력 성능 향상을 위한 항공기 날개 형상 최적설계(Gambit, Tgrid, FLUENT, Vorstab)

[국방] Tracked Vehicle 현가장치의 최적설계(In-house Code)

[국방] K2전차 연료냉각기의 Offset Strip Fin 형상 최적설계(FLUENT)

[국방] Lightweight Torpedo Structure의 신뢰성해석(MSC.Nastran)

[기계] 엘리베이터 구동부의 Heat Sink 형상 최적설계(FLUENT)

기계/로봇/제조장치

[건축] RC 빌딩 철골 구조물의 최적설계(MIDAS-Gen)

[발전] 풍력터빈용 Composite Blade의 다목적 구조 최적설계(SAMCEF)

[조선] LNG선 선체 블록의 구조 최적설계(ANSYS)

[조선] 선박 추진기의 Propeller 형상 최적설계(In-house Code)

[건축] High-Rise Truss 구조물의 최적설계(ABAQUS)

[항공] Compound Helicopter 개념설계를 위한 MDO(GTPDP, RDFD, CLBAR)

항공/우주/국방

[플랜트] 선박형 플랜트 배관 설비의 최적설계(CAESAR II)

조선/플랜트/건축/발전 제조 금형/공정

[장치] Thin Glass Transport System의 최적설계(Experiments)

[장치] 초정밀 Stage의 형상 최적설계(ANSYS)

[장치] Chip Breaker 장치의 최적설계(DAFUL)

[금형] Motor Bracket의 사출금형 Gate 위치 최적설계(MAPS3D)

[금형] 판재 성형 Blank Sheet의 초기 형상 최적설계(Hypermesh, ABAQUS)

[금형] 자동차 Front Bumper의 사출금형 냉각회로 형상 최적설계(MoldFlow)

[공정] 자동차 Fog Blank Cover의 사출성형 공정 최적설계(MAPS3D)

[공정] 세탁기 Balancer Case의 사출성형 공정 최적설계(MAPS3D)

[기계] 유압 브레이커 하우징의 구조 최적설계(SolidWorks, COSMOSWorks)

[조선] 능동 SONAR용 압전변환기 형상 최적설계(ANSYS)

[공정] 자동차 Instrument Panel의 사출성형 공정 최적설계(MAPS3D)

[금형] 컴퓨터 CD 트레이의 사출금형 Gate 위치 최적설계(MAPS3D)

[로봇] Wireless Sensor Node의 Leaping 기구 형상 최적설계(RecurDyn)

PIAnO 적용사례 III (기타 분야)

Page 27: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 28: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Design Problem

Design Variables (15)

Objective Function (1)

Constraints (3)

• 프레임 두께 변수 (9)

• 프레임 형상 변수 (6)

• Minimize Weight

• Lower Limit ≤ 1th Torsional Freq.

• Lower Limit ≤ 2nd Bending Freq.

• Lower Limit ≤ 3rd Lateral Freq.

Page 29: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

What-If Study

Parametric Study

DOE

Design Optimization

RBDORBDO

Reliability AnalysisReliability Analysis

Approximation

PIA

nO

CAE ToolsCAE Tools Design ToolsDesign Tools

Hypermesh

MSC.Nastran

•Hypermesh: Morphing•MSC.Nastran: Modal Analysis

•PIAnO: What-If Study,Parametric Study,Design Optimization

Embedded Design ToolsApplied CAE Tools

설계문제 분석

Used for

최적설계안 도출

Page 30: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

30

• 경량화 목표 12kg 감소 달성

• Frame 형상설계 프로세스 구축으로 설계시간 20% 절감

Weight(목적함수-최소화)

2nd Bending Frequency

1st Torsional Frequency

3rd Lateral Frequency

: Initial

: Optimal

: Infeasible Region12kg 감소(목표달성)

Page 31: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

31

두께 변화두께 변화

: Initial

: Optimalst1

st2

st3

ct1

ct2

ct3

ct4

ct5

ct6

st1 st2 st3

ct1 ct2 ct3 ct4 ct5 ct6

형상 변화형상 변화

△w1

△h1

△h2

△w2

△w3

△h3

설계영역

Page 32: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 33: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Torsion Beam Axle (TBA) is widely useddue to a lightweight and a simple configuration

Rear suspension

중량감소를 위해 Rear Suspension에

장착한 TBA의 내구성능과 K&C 특성을

동시에 향상시키려면 어떤 형상이 좋을까?

Page 34: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Maximize Fatigue Life Cycle

Roll Center Height ≤ Upper Limit

Minimize Weight

Total Roll Rate ≥ Lower Limit

W/C Lateral Stiffness ≥ Lower Limit

34

Page 35: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

TBA Thickness Trailing Arm Thickness

Position of Transition Region

Inflection Angle

35

Page 36: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

36

Position of Transition Region

Inflection Angle

TBA Thickness

Trailing Arm Thickness

Design Variables (4)

Objective Function (1)

Constraints (4)

• Shape Parameters Using Morphing(Inflection Angle, Transition Position)

• TBA Thickness

• Trailing Arm Thickness

• Maximize Fatigue Life Cycle

• Roll Center Height ≤ Upper Limit

• Weight ≤ Upper Limit

• Total Roll Rate ≥ Lower Limit

• W/C Lateral Stiffness ≥ Lower Limit

Page 37: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Hypermesh 7.0

MD.Nastran 2006r2(Modal Analysis)

MSC.ADAMS 2005r2(Roll Mode Analysis)

MSC.Fatigue 2005r2

Mass

Hot SpotsMax. Stress/Strain

Fatigue Life CycleMost Damaged Node

K&C Characteristics

Modal Neutral File

Time Load History Data

Fatigue Input

MSC.ADAMS 2005r2(K&C Analysis)

Elapsed Time for 1 simulation

@ 28 min

37

Page 38: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

What-If StudyWhat-If Study

Parametric Study

DOE

Design Optimization

RBDORBDO

Reliability AnalysisReliability Analysis

Approximation

PIA

nO

CAE ToolsCAE Tools Design ToolsDesign Tools

•Hypermesh: Morphing•MSC.Nastran: Modal Analysis•ADAMS/Car: Multibody Dynamics•MSC.Fatigue: Fatigue Analysis

•PIAnO: Parametric Study,Design Optimization

Hypermesh

MSC.Nastran

ADAMS/Car

MSC.Fatigue

Embedded Design ToolsApplied CAE Tools Used for

최적설계안 도출

설계문제 분석

Page 39: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

39

Initial Optimal

Upper Limit

Initial Optimal

Upper Limit

Initial Optimal Initial Optimal Initial Optimal

Lower LimitLower Limit

Roll Center Height Weight Total Roll Rate W/C Lateral Stiff.

Fatigue Life Cycle

•자동화 과정을 통해 설계기간 80%이상 단축

•중량 증가 없이 내구 수명 56.2% 증가

•목표 수준의 K&C 성능 도달

56.2% 향상

Feasible Feasible

Page 40: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

2.60

2.70

0.00

0.00

2.74

-7.00

-6.60

2.45

1.00 4.00

1.00 4.00

-8.00 11.00

-35.00 35.00

(a) TBA Thickness

(c) Inflection Angle

(b) TA Thickness

(d) Position of Transition Region: Initial

: Optimum

40

Page 41: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 42: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Tracked Vehicle

Minimize the maximum vertical acceleration at the CG of the hull !

Tracked Vehicle이 장애물 통과 시,탑승석의 승차감을 개선하면서내구성 향상이나 간섭방지를 위한Hydro-pneumatic Suspension Unit (HSU)의설계 개선 안은?

42

Page 43: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Loading ConditionLoading Condition

v설계변수(9) : Charging pressures of the 1st, 2nd, 5th and 6th HSU’s (4),Length of gas chambers (1),Pre-load for Belleville springs (1),Choking flow rate (1),Inner diameter of an orifice (1),Static track tension (1)

v목적함수(1) : Minimize Vertical acceleration at CG of the hull

v구속조건(15): Wheel travels during jounce (6),Equally distributed static forces on the wheels (6),Track tension (1),Charging pressures of the 3rd and 4th HSU’s (2)

HullWheel_1

C.G.

HullWheel_1

C.G.

Tracked VehicleTracked Vehicle

Wheel_6Wheel_1

0.36 m (14 inch)

Tracked vehicle runs over a semi-circular bump of 0.36 m radius with a velocity of 35 km/h.

43

Page 44: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

What-If StudyWhat-If Study

Parametric Study

DOE

Design Optimization

RBDORBDO

Reliability AnalysisReliability Analysis

Approximation

PIA

nO

CAE ToolsCAE Tools Design ToolsDesign Tools

• Inhouse-Code: Multibody Dynamics •PIAnO: Design Optimization

Inhouse-Code

Embedded Design ToolsApplied CAE Tools Used for

최적설계안 도출 (PQRSM)

44

Page 45: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9)

Initial

Optimal

설계변수 변화설계변수 변화개선 효과개선 효과

Acceleration at CG of the hull

• 목적함수의 최대 가속도가 40% 감소

• 15개의 구속조건을 모두 만족하는 설계 개선안 도출

45

Page 46: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Optimized Acceleration at SeatOptimized Acceleration at Seat Optimized Wheel TravelOptimized Wheel Travel

46

Page 47: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 48: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

48

최적화기법을 사용하여

자동차용 ABS Controller를

자동으로 설계할 수 있을까?

Design Path

ABS Controller를Calibration 해야 하는데…

Page 49: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

49

v설계변수(6): Brake Actuator Gain LR & RR (1),

ABS Controller FRT On & Off Switch Values (2),

ABS Controller RR On & Off Switch Values (2),

ABS Controller Switch Threshold (1)

v목적함수(1): Square Sum of Yaw & Station의 최소화

설계 요구 사항설계 요구 사항 설계 변수설계 변수

v Initial/Operating Conditions• Initial Speed: 120km/h• Spike Braking of 15mPa @ 0.2s• Split Mu (0.2L/0.5R) @ 3m

v 요구사항• Minimize Square Sum of Yaw• Minimize Station

ABS Controller FRT On Switch ValueABS Controller FRT Off Switch ValueABS Controller RR On Switch ValueABS Controller RR Off Switch Value

ABS Controller Switch Threshold

Brake Actuator Gain LR & RR

설계 문제설계 문제

Page 50: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

What-If StudyWhat-If Study

Parametric Study

DOE

Design Optimization

RBDORBDO

Reliability AnalysisReliability Analysis

Approximation

PIA

nO

CAE ToolsCAE Tools Design ToolsDesign Tools

CarSim

Simulink

•CarSim: Vehicle Dynamic Simulation•Simulink: Simulation System Modeling

•PIAnO: Design Optimization

Embedded Design ToolsApplied CAE Tools

최적설계안 도출

Used for

Page 51: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Initial DesignInitial Design Optimal DesignOptimal Design

총 6개의 설계변수(제어파라미터)를 갖는 ABS Controller 설계결과,

주어진 운전조건 하에서 Yaw Angle과 Station이 최소화되는 설계안을 도출함

Page 52: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 53: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

항공기 안정성을 유지하면서

양항비(L/D)를 최대화하기 위해

항공기 날개 형상을 최적화하려면…

53

Page 54: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

양력계수(CL)가 0.4인 받음각에서의항력계수(CD)를 최소화

0.0300

0.0320

0.0340

0.0360

0.0380

0.0400

0.0000 0.2000 0.4000 0.6000 0.8000

CD

CL

-4.0E-03

-2.0E-03

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

1.4E-02

1.6E-02

-20 0 20 40 60

Cnβ

_dyn

amic

Angle of attack

주어진 받음각 영역에서Cnβ_dynamic 값이 양수이어야 함

Infeasible

54

Page 55: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Main Wing Tail wingTwist Angle

(deg)Taper Ratio

(-)Dihedral

(deg)Height

(m)

Definition

Lower Bound

Midpoint

Upper Bound

L2

L2/L1

L1

-5.0

0.0

5.0

0.3

0.55

0.8

-10.0

0.0

10.0

-10.0

0.0

10.0

4.1

4.6

5.1

55

Page 56: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

설계변수의 범위

설계문제 정식화

Design variables Lower Initial Upper

Twist angle -10.00 -3.00 10.00

Taper ratio 0.30 0.58 0.80

Dihedral -5.00 0.00 5.0

Tail height 4.1 4.6 5.1

Find Twist angle,Taper ratio,Dihedral,Tail height

to minimize CD at (CL=0.4)

subject to Cnβ_dynamic(α) > 0,where α=[-7, 50]

56

Page 57: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

What-If Study

Parametric Study

Design Optimization

RBDO

Reliability Analysis

Embedded Design ToolsEmbedded Design ToolsApplied CAE ToolsApplied CAE Tools Used forUsed for

날개형상변경Gambit

DOE

Approximation

Design Optimization

PIAnO

CAE TOOLS DESIGN TOOL

최적설계안 도출 (EA)

DOE

Approximation

Mesh 작업Tgrid

계산Fluent

근사모델 생성 (RBF)

Vorstab

Gambit

Tgrid

Fluent

Vorstab

_n dynamicC b 계산

DC

실험점 선정 (OLHD)

57

Page 58: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

-4.0E-03

-2.0E-03

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

1.4E-02

1.6E-02

-20 0 20 40 60

Cnβ

_dyn

amic

Angle of attack

Infeasible

목적함수 구속조건

0.03328 0.03227

Initial Optimum

10 count (3.1%) 감소

구속조건 만족!

양력계수(CL)가 0.4인 받음각에서항력계수(CD)를 최소화

주어진 받음각 영역에서Cnβ_dynamic 값이 모두 양수이어야 함

58

Page 59: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Twist Angle : Initial

: Optimal

DesignVariables

Taper Ratio

Dihedral

Tail height

Optimum Design

Initial Design

59

Page 60: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 61: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

61

원가를 최소화하면서

성능에 관한 사양을 모두 만족시키는 설계안을

효과적인 설계프로세스를 통해 도출할 수 없을까?

Discharge pipe

Suction pipe

Compressor

Grommet (3)

Air Conditioner 실외기 (냉방전용) 배관 시스템Air Conditioner 실외기 (냉방전용) 배관 시스템

Page 62: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

62

Pipe 형상 설계변수

□ 원가절감§ 실외기 배관 전체의 질량을 최소화

□ 공진 주파수 회피§ 배관의 고유 주파수 중, 압축기의 회전 주파수(1차 ~ 3차 성분)가

없도록 설계– 60Hz 전원일 경우 : 55~60, 110~120 , 165~180 Hz

□ 강도 확보§ 압축기와 배관이 연결되는 지점의

수직, 수평 좌우, 수평 전후 방향의 최대 변위에 대해

배관계통의 최대 응력 값이 각각 190MPa 이내로 설계– 수직 최대 변위 : 7.0 mm

– 수평 좌우 및 수평 전후 최대 변위 : 각 7.5 mm

□ 피로 수명 확보§ 규정된 수직 파워스펙트럼밀도(PSD) 가진에 대해 1.5시간 이상의

수명확보

Page 63: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

§ 배관의 U-tube 길이 변화량을 설계변수로 고려

§ 각 설계변수의 상, 하한은 배관의 제조공정 및

공간적 제한조건을 고려하여 결정

63

Lower Initial Upper PIPE

X1 ΔL1 -56.0 0 +50.0 Discharge

X2 ΔL2 -100.0 0 +50.0 Discharge

X3 ΔL3 -20.0 0 +10.0 Suction

X4 ΔL4 -60.0 0 +15.0 Suction

X5 ΔL5 -22.0 0 +20.0 Suction

Design variables (unit: mm)

Page 64: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

64

Find

Minimize

Subject to

Change in pipe length,X=[X1, X2, X3, X4, X5]T

Pipe mass

Penalty value, P ≤ 0.5

Maximum stress (x) ≤ 190MPaMaximum stress (y) ≤ 190MPaMaximum stress (z) ≤ 190MPa

Fatigue life (discharge) ≥ 1.5 hours Fatigue life (suction) ≥ 1.5 hours

-56 ≤ X1 ≤ 50-100≤ X2 ≤ 50-20 ≤ X3 ≤ 10-60 ≤ X4 ≤ 15-22 ≤ X5 ≤ 20

배관 형상

원가 절감

공진 주파수 회피

강도 확보

피로수명 확보

설계 영역

Page 65: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

HyperMesh

ParametricFE modeling

MSC.Nastran

Unit staticanalysis

VB script

Static forcecalculation

MSC.Nastran

Linear staticanalysis

MSC.Nastran

Normal modesanalysis

MSC.Nastran

FrequencyResponse analysis

MSC.Fatigue

Fatigue lifeanalysis

FE model

In-house code

P valuecalculation

Multidisciplinary Analysis

1 Pre-processor & 4 Analyzers: 1회 해석 시간 약 4분(core2-duo 2.4GHz CPU and 2G RAM)

성능 지수성능 지수

다분야통합해석시스템

(자동 실행)

다분야통합해석시스템

(자동 실행)

약 3.7분 소요

65

HyperMesh

Mass calculation

Pipe massPipe mass Penalty value, PPenalty value, P Maximum stressMaximum stress Fatigue lifeFatigue life

설계 변수설계 변수Change in pipe length

X1~X5

Change in pipe length

X1~X5

Page 66: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

PIAnO를 이용한 다분야통합 해석 시스템 구축

66

ParametricFE modeling

Fatigue AnalysisStatic Analysis

Normal modes Analysis

Mass calculation

Page 67: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

CAE ToolsCAE Tools Design ToolsDesign Tools

What-If Study

Parametric Study

DOE

Design Optimization

RBDORBDO

Reliability Analysis

Approximation

PIA

nO

HyperMesh

MSC.Nastran

MSC.Fatigue

•HyperMesh: Morphing•MSC.Nastran: Static, Modal,

& Freq. Response Analysis•MSC.Fatigue: Vibration Fatigue Analysis• In-house Code: Data Calculations

•PIAnO: Parametric Study,Design Optimization

Embedded Design ToolsApplied CAE Tools

설계문제 분석

Used for

최적설계안 도출

In-house Code

Page 68: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

68

성능 개선성능 개선 설계변수 변화설계변수 변화

• 주어진 품질 요구사항을 모두 만족하면서초기 모델 대비 배관질량 약 18% 경량화 달성

Initial Optimal

X1

X2

X3

X4

X5

18%

Upper limit : 190MPa

Lower limit : 1.5 hours

회피 주파수 : 55~60, 110~120, 165~180 Hz

Page 69: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

Page 70: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

70

이동통신 시스템의Heat Sink의 형상을설계하고 싶은데…

이동통신 시스템의 열적 안정성을 보장하면서

원가절감을 위해 시스템의 부피를

최소화할 수 있는 설계안은?

Page 71: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

71

14

5

6

8

9

10 7

3

2

시스템 패키지의 사이즈를 최소화!조건 #1

12개의 junction 의 온도가 허용온도보다 낮아야 함.조건 #2

Main TR(11)

Driver TR(12)

Page 72: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

72

UpperBounds

40

40

10

35.0

DesignVariables

① RF Block의 heat sink 높이, HR

② Digital Block의 heat sink 높이, HD

③ RF Block의 base 두께, BR

Transition Position 변화량

LowerBounds

20

20

6

-35.0 10

12

4

④ Digital Block의 base두께, BD

⑤ Sunshield와 heat-sink의 공간, G

⑥ Digital Block의 heat sink 두께, tD

6

6

3

4⑦ RF Block의 heat sink 두께, tR3 Digital BlockDigital Block

RF BlockRF Block

⑤⑥

Page 73: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

73

Minimize (HR + BR)+(HD + BD )

• Heat sink Height of the RF block, HR• Heat sink Height of the Digital block, HD• Base Thickness of the RF block, BR• Base Thickness of the Digital block, BD• Gap of the Sun-shield to heat sink, G• Heat sink thickness of the Digital block, tD• Heat sink thickness of the RF block, tR

Ti – Tiallow ≤ 0 i=1,2,…,12

Design Variables (7)

Objective Function (1)

Constraints (12)

Page 74: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

74

Simulation Tool : Flotherm v7.0Grid information :

(Global + Local Grid) 799557 EA

1. 자연대류 냉각 (복사에 의한 열 전달 고려)2. Ambient Temp. : 50°C3. Altitude : 1800m4. Solar Load 고려

- 직접 조사되는 열 유속 : 753W/m2

5. Air property - Conductivity : 0.02839 (w/mk )- Density : 0.9059 (kg/m3)

6. ALDC 12종 property- Conductivity : 98 (w/mk )

7. FR4 property- Conductivity : Kx=Ky=35W/m.K,

Kz=0.33 W/m.K( 관련 규격 : Telcordia GR-63-CORE )

Analysis conditionsAnalysis conditions

Page 75: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

75

What-If StudyWhat-If Study

Parametric Study

DOE

Design Optimization

RBDORBDO

Reliability AnalysisReliability Analysis

Approximation

•FLOTHERM: Thermal Analysis for Electronic Equipment

PIA

nO

•PIAnO: DOE,Approximation,Design Optimization

CAE ToolsCAE Tools Design ToolsDesign Tools

FLOTHERM

Embedded Design ToolsApplied CAE Tools Used for

최적설계안 도출

실험점 선정

근사모델 생성

Page 76: 1 Introduction

Copyright © PIDOTECH Inc. All Rights Reserved.

개선 효과개선 효과

41.9 % 감소

Feasible

설계변수 변화설계변수 변화

20 40

① HR

② HD

6 10

③ BR

④ BD

6 12⑤ G

⑥ tD3 4

⑦ tR

시스템의 열적 안정성을 보장하면서

시스템 부피를 41.9% 감소시킴!

목적함수

구속조건들