60
Introduction to Differential Equations Chapter 1 Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

1-Introduction to ODE

Embed Size (px)

Citation preview

Page 1: 1-Introduction to ODE

Introduction to Differential Equations

Chapter 1

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 2: 1-Introduction to ODE

Overview

II. Classification of Solutions

Chapter 1: Introduction to Differential Equations

I. Definitions

III. Initial and Boundary Value Problems

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 3: 1-Introduction to ODE

I. Definitions

Learning Objective

AtAt thethe endend ofof thethe section,section, youyou shouldshould bebe ableable totodefinedefine aa differentialdifferential equationequation andand bebe ableable totoclassifyclassify differentialdifferential equationsequations byby type,type, orderorder andandlinearitylinearity..

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 4: 1-Introduction to ODE

I. Definitions

Basic Example

ConsiderConsiderxexf 2)(

xexf 2' 2)(

022)(2)( 22' xx eexfxf

satisfiessatisfies thethe DifferentialDifferential EquationEquation::f

02' yy

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 5: 1-Introduction to ODE

I. Definitions

What is a Differential Equation

AA differentialdifferential equationequation (DE)(DE) isis anan equationequation containingcontaining thethederivativesderivatives ofof oneone oror moremore dependentdependent variablesvariables withwithrespectrespect toto oneone oror moremore independentindependent variablesvariables..

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 6: 1-Introduction to ODE

I. Definitions

Examples

023 )1 '' yy

yxdt

dy

dt

dx423 )3

1 )2 32 xyxdx

dyx

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 7: 1-Introduction to ODE

I. Definitions

Classification

DifferentialDifferential equationsequations (DE)(DE) cancan bebe classifiedclassified byby::

•• TYPETYPE

•• ORDERORDER

•• LINEARITYLINEARITY..

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 8: 1-Introduction to ODE

I. Definitions

Classification by Type

TwoTwo typestypes ofof DifferentialDifferential equationsequations (DE)(DE) existexist::

•• ORDINARYORDINARY DIFFERENTIALDIFFERENTIAL EQUATIONEQUATION (ODE)(ODE)..

AnAn equationequation containingcontaining onlyonly ordinaryordinary derivativesderivatives ofof oneoneoror moremore dependentdependent variablesvariables withwith respectrespect toto aa SINGLESINGLEindependentindependent variablevariable isis saidsaid toto bebe anan OrdinaryOrdinaryDifferentialDifferential EquationEquation (ODE)(ODE)..

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 9: 1-Introduction to ODE

I. Definitions

Examples of ODE

xeydx

dy 5 )1

06 )22

2

ydx

dy

dx

yd

yxdt

dy

dt

dx 2 )3

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 10: 1-Introduction to ODE

I. Definitions

•• PARTIALPARTIAL DIFFERENTIALDIFFERENTIAL EQUATIONSEQUATIONS (PDE)(PDE)..

AnAn equationequation containingcontaining partialpartial derivativesderivatives ofof oneone oror moremoredependentdependent variablesvariables withwith respectrespect toto twotwo oror moremoreindependentindependent variablesvariables isis saidsaid toto bebe aa PartialPartial DifferentialDifferentialEquationEquation (PDE)(PDE)..

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 11: 1-Introduction to ODE

I. Definitions

Examples of PDE

0 )12

2

2

2

y

u

x

u

t

u

t

u

x

u

2 )2

2

2

2

2

x

v

y

u

)3

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 12: 1-Introduction to ODE

I. Definitions

Classification by Order

TheThe orderorder ofof aa differentialdifferential equationequation (ODE(ODE oror PDE)PDE)isis thethe orderorder ofof thethe highesthighest derivativederivative inin thetheequationequation..

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 13: 1-Introduction to ODE

I. Definitions

Examples of Orders

xeydx

dy 35

062

2

ydx

dy

dx

yd

xeydx

dy

dx

yd

45

3

2

2

is of order 1 (or first-order)

is of order 2

is of order 2

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 14: 1-Introduction to ODE

I. Definitions

FirstFirst--orderorder ODEODE areare occasionallyoccasionally writtenwritten inin differentialdifferentialformform ::

Remarks

0),(),( dyyxNdxyxM

AnAn nnthth--orderorder ODEODE inin oneone dependentdependent variablevariable cancan bebeexpressedexpressed inin thethe generalgeneral formform ::

0),...,,,,( )(,,, nyyyyxF

where F is a real-valued function of n+2 variables.

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 15: 1-Introduction to ODE

I. Definitions

Classification by Linearity

AnAn nthnth--orderorder ODEODE

is said to be linear if F is a linear function of the variables:

0),...,,,,( )(,,, nyyyyxF

xgyxayxa...yxayxa n

n

n

n

01

1

1

)(,,, ,...,,, nyyyy

Thus,Thus, thethe generalgeneral formform forfor anan nthnth--orderorder ODEODE is:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 16: 1-Introduction to ODE

I. Definitions

Classification by Linearity

LinearityLinearity isis characterizedcharacterized byby thethe followingfollowing twotwo propertiesproperties::

1.1. TheThe dependentdependent variablevariable (in(in thisthis casecase )) andand allall itsitsderivativesderivatives mustmust bebe ofof powerpower atat mostmost 11

1. The coefficients for each dependent variable and allits derivatives are only in terms of the independentvariable (in this case ).

y

x

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 17: 1-Introduction to ODE

I. Definitions

Examples for linear ODEs

04 )1 dyxdxxy

02 )2 yyy

xeydx

dyx

dx

yd 5 )3

3

3

xyyx 4

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 18: 1-Introduction to ODE

I. Definitions

Examples for non-linear ODEs

xeyyy- 21 )1

0sin )22

2

ydx

yd

0 )3 2

4

4

ydx

yd

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 19: 1-Introduction to ODE

I. Definitions

Example:

For each of the following ODEs, determine the order and state whether it is linear or non-linear:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 20: 1-Introduction to ODE

I. Definitions Solution:

ODE Order Linearity

0cos dxxxydy

062

2

dt

dQ

dt

Qd

022

xyyyyxy

0 yyxey

Linear

Linear

Non-linear

Non-linear

1

2

3

2

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 21: 1-Introduction to ODE

I. Definitions Solution:

ODE Order Linearity

sin

012 xdydxy

2

2

2

1

dx

dy

dx

yd

Linear

Non-linear

Non-linear

1

1

2

2sin

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 22: 1-Introduction to ODE

I. Definitions

Exercise-I:

For each of the following ODEs, determine the order and state whether it is linear or non-linear:

tydt

dyt

dt

ydt sin2

2

22

teydt

dyt

dt

ydy

2

22 )1(

12

2

3

3

4

4

ydt

dy

dt

yd

dt

yd

dt

yd

02 tydt

dy

tytdt

ydsin)sin(

2

2

32

3

3

)(cos tytdt

dyt

dt

yd

ttydt

dyt tan12

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 23: 1-Introduction to ODE

II. Classification of Solutions

Learning Objective

At the end of this section, you should be able toAt the end of this section, you should be able to

•• verify the solutions to a given ODE verify the solutions to a given ODE •• identify the different types of solutions of an identify the different types of solutions of an

ODE.ODE.

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 24: 1-Introduction to ODE

Definition:

A solution of a DE is a function that satisfies the DEidentically for all in an interval , where is theindependent variable.

yx I x

II. Classification of Solutions

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 25: 1-Introduction to ODE

Example

xy ln

),0( I

is a solution of the DE: 0'" yxy

xy lnx

y1

'2

1"

xy

xxxyxy

1)

1('''

2

Indeed,

II. Classification of Solutions

011xx

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 26: 1-Introduction to ODE

Definition:

A solution in which the dependent variable is expressedsolely in terms of the independent variable and constantsis said to be an explicit solution.

II. Classification of Solutions

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 27: 1-Introduction to ODE

Definition:

A solution in which the dependent and the independentvariables are mixed in an equation is said to be an implicitsolution.

II. Classification of Solutions

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 28: 1-Introduction to ODE

Examples:

xy ln is an explicit solution of the DE: 0'" yxy

922 yx

922 yx

is an implicit solution of the DE: 0' xyy

Indeed:

Implicit differentiation: 0'22 yyx

0' yyx

1)

2)

II. Classification of Solutions

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 29: 1-Introduction to ODE

General or Particular solution

Example:

Consider the ODE: 0' yyxey is a solution (particular)

xcey (where c is a constant) is a solution (general)

II. Classification of Solutions

xey 2 is also a solution (particular)

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 30: 1-Introduction to ODE

General or Particular solution

• A solution of a DE that is free of arbitrary parameters is called a particular solution.

II. Classification of Solutions

Definitions:

• A solution of a DE representing all possible solutions iscalled a general solution.

• A solution of a DE containing n arbitrary constants is called an n-parameter family of solutions.

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 31: 1-Introduction to ODE

Example

II. Classification of Solutions

xcey is a 1-parameter family of solutions of the DE

0' yy

xx decey is a 2-parameter family of solutions of the DE

0" yy

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 32: 1-Introduction to ODE

Example:

Verify that the indicated function is an explicit solution ofthe given DE :

II. Classification of Solutions

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 33: 1-Introduction to ODE

Example:

1)

II. Classification of Solutions

2;02x

eyyy

2

x

ey

2

2

1'

x

ey

22 )2

1(2'2

xx

eeyy

022 xx

ee

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 34: 1-Introduction to ODE

Example:

2)

II. Classification of Solutions

tey;ydt

dy 20

5

6

5

62420

tey 20

5

6

5

6 te

dt

dyy 20)

5

6(20' te 2024

tt eey

dt

dy 2020

5

6

5

6202420

tt ee 2020 242424 24

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 35: 1-Introduction to ODE

3)

II. Classification of Solutions

xcosey;yyy x 20136 3

xey x 2cos3 xexey xx 2sin22cos3' 33 xey x 2sin23 3

xexeyy xx 2cos42sin6'3" 33 yxey x 42sin6'3 3

yyy 136 yyyxey x 13'642sin6'3 3

yxexey xx 92sin62sin233 33

yxey x 92sin6'3 3

092sin62sin69 33 yxexey xx

Example:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 36: 1-Introduction to ODE

4)

II. Classification of Solutions

xtanxseclnxcosy;xtanyy

xxxy tanseclncos

xxxxxy seccostanseclnsin' 1tanseclnsin xxx

xxxxxy secsintanseclncos" xxxx tantanseclncos

xxxxxxxyy tanseclncostantanseclncos

xtan

Example:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 37: 1-Introduction to ODE

5)

II. Classification of Solutions

t

t

ec

ecPPPP

1

1

1;1

t

t

ec

ecP

1

1

1

21

1111

1

1'

t

tttt

ec

ececececP

21

12

1

221

2211

11 t

t

t

ttt

ec

ec

ec

ececec

t

t

t

t

ec

ec

ec

ecPP

1

1

1

1

11

11

t

tt

t

t

ec

ecec

ec

ec

1

11

1

1

1

1

1

'

12

1

1 Pec

ect

t

Example:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 38: 1-Introduction to ODE

6)

II. Classification of Solutions

xx xececy;ydx

dy

dx

yd 2

2

2

12

2

044

xxx xeececy 222

21 22' xxx xececec 2

22

22

1 22

xxxx ecyecxecec 22

22

22

21 22

xecyy 222'2"

yyy 4'4" yyecy x 4'42'2 22 yyec x 4'22 2

2

04222 22

22 yecyec xx

Example:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 39: 1-Introduction to ODE

7)

II. Classification of Solutions

0

02

2

x,x

x,xy,02 yyx

0,2

0,,2'

xx

xxy

0,022

0,0)(222'

22

22

xxx

xxxyxy

Solution on ,

0limlim)0()0(

lim0

2

00

h

h

h

h

yhy

hhh

0limlim)0()0(

lim0

2

00

h

h

h

h

yhy

hhh

0)0(' y

02 yyx is still valid at 0.

Example:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 40: 1-Introduction to ODE

Exercise-II:

Verify that the indicated functions are explicit solutions ofthe given DE :

II. Classification of Solutions

tttttyttyy

tttyttytytyyt

ttyttytytyyt

tety

ttytyyy

ttytyyt

t

sincosln)(cos)( ;2

0 ,sec'')5

ln)( ,)( ;0 ,04'5'')4

)( ,)( ;0 ,0'3''2)3

3)( ,

3)( ,34)2

3 ,)1

22

21

2

12

21

12

21)3()4(

22

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 41: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Learning Objective

At the end of this section, you should and be able toAt the end of this section, you should and be able to

•• Define IVP and BVP Define IVP and BVP •• Verify solutions to DE subjected to given initial Verify solutions to DE subjected to given initial

conditions.conditions.

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 42: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Definition

A DE with initial conditions on the unknown function and itsA DE with initial conditions on the unknown function and itsderivatives, all given at the same value of the independentderivatives, all given at the same value of the independentvariable, is called an variable, is called an initialinitial--value problemvalue problem, IVP., IVP.

0x

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 43: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Examples

3)0( ,0 )1 yyy

25)1(' ,0 )2 yyy

5)2( ,0'2'' )3 yyyy

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 44: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Definition

A DE with initial conditions on the unknown function and itsA DE with initial conditions on the unknown function and itsderivatives, all given at different values (e.g. at and )derivatives, all given at different values (e.g. at and )of the independent variable, is called an of the independent variable, is called an boundaryboundary--valuevalueproblemproblem, BVP., BVP.

0x 1x

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 45: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Examples

22

,1;2 )1

yyeyy x

11,10;2 )2 yyeyy x

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 46: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Examples

Find the solution of the IVP or BVP if the general solution is the Given one:

,23;0 )1 yyy xecxy 1

313 ecy 23 y

231 ec

31 2ec

xx eeexy 33 22solution of the IVP:

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 47: 1-Introduction to ODE

III. Initial and Boundary Value Problems

16

,08

;04 )2

yyyy xcxcxy 2cos2sin 21

82cos

82sin

821

ccy

2221 cc

08

y 21 cc

Examples

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 48: 1-Introduction to ODE

III. Initial and Boundary Value Problems

solution of the BVP:

62cos

62sin

621

ccy

22

3 21 cc

16

y 1

2

3 21 cc

23 11 cc

13

21

c

13

22

c

xxy 2cos2sin13

2

Examples

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 49: 1-Introduction to ODE

III. Initial and Boundary Value Problems

xcxcxy 2cos2sin 21

0cos0sin0 21 ccy 2c

10 y 12 c

,22

,10;04 )3

yyyy

cossin2

21 ccy

2c

22

y 22 c

22 c

12 cIMPOSSIBLE NO SOLUTION

Examples

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 50: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Exercise-III

1) Determine and so that will satisfy the conditions :

08

y 2

8

y

1c 2c 12cos2sin 21 xcxcxy

2) Determine and so that will satisfy the conditions :

xececxy xx sin222

1 1c 2c

00 y 10 y

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 51: 1-Introduction to ODE

End Chapter 1

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 52: 1-Introduction to ODE

I. Definitions Solution-I:

ODE Order Linearity

Linear

Non-Linear

Linear

Non-linear

2

2

4

1

tydt

dyt

dt

ydt sin2

2

22

teydt

dyt

dt

ydy

2

22 )1(

12

2

3

3

4

4

ydt

dy

dt

yd

dt

yd

dt

yd

02 tydt

dy

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 53: 1-Introduction to ODE

I. Definitions Solution-I:

ODE Order Linearity

Non-linear

Linear

Linear

2

3

1

tytdt

ydsin)sin(

2

2

32

3

3

)(cos tytdt

dyt

dt

yd

ttydt

dyt tan12

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 54: 1-Introduction to ODE

Solution-II:

II. Classification of Solutions

0

2323

)23()23('

23'

3 , )1

22

2

22

tttt

ttttyty

ty

ttytyyt

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 55: 1-Introduction to ODE

Solution-II:

II. Classification of Solutions

tteeetytyty

etyety

etyetyt

ety

tt

tytyty

tytytytyt

ty

tety

ttytyyy

ttt

tt

ttt

t

34)(3)(4)(

)( ,)(

,)( ,3

1)( ,

3)(

33)(3)(4)(

0)()()( ,3

1)( ,

3)(

3)( ,

3)( ,34 )2

2)3(

2)4(

2

)4(2

)3(2

"2

'22

1)3(

1)4(

1

)4(1

)3(1

''1

'11

21)3()4(

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 56: 1-Introduction to ODE

Solution-II:

II. Classification of Solutions

034

)(3)2(232

2)(,)(

02

3

2

1

)2

1(3)

4

1(232

4

1)(,

2

1)(

)( ,)( ;0 ,0'3''2 )3

111

1232'1

"2

2

3''2

2'2

21

21

21

21

21

23

2'1

"1

2

23

''1

21

'1

12

21

12

ttt

tttttytyyt

ttytty

ttt

tttttytyyt

ttytty

ttyttytytyyt

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 57: 1-Introduction to ODE

Solution-II:

II. Classification of Solutions

0ln45ln105ln6

ln4)ln2(5)5ln6(45

32ln6)( ,ln2)( ,ln)(

04106

4)2(5)6(45

6)( ,2)( ,)(

ln)( ,)( ;0 ,04'5'' )4

22222

2334422

'2

"2

2

444"2

33'2

22

222

23421

'1

"1

2

4"1

3'1

21

22

21

2

tttttttt

ttttttttttytyyt

tttttyttttyttty

ttt

tttttytyyt

ttyttytty

tttyttytytyyt

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 58: 1-Introduction to ODE

Solution-II:

II. Classification of Solutions

ttt

ttt

t

t

tttttttt

tttyy

tttt

ttt

tttt

ttttty

tttt

tttt

ttttty

tttttyttyy

seccos

1

cos

cossincos

cos

sin

sincosln)(cossincoscos

sincosln)(cos''

sincoscos

sincosln)(cos

sincos)cos

sin(sincosln)(cos)(''

coscosln)(sin

cossin)cos

sin(coscosln)(sin)('

sincosln)(cos)( ;2

0 ,sec'' )5

222

2

2

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 59: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Solution-III

1)

208

21

ccy

128

21

ccy

12cos2sin 21 xcxcxy

12

2)(1

82cos

82sin

821

21

ccccy

)(28

2sin28

2cos28

' 2121 ccccy

2

212

c

xcxcxy 2sin22cos2' 21

2

211

c

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.

Page 60: 1-Introduction to ODE

III. Initial and Boundary Value Problems

Solution-III

2)

1200 ccy

112210 121 cccy

210 ccy

xececxy xx cos22' 22

1

1 ,1 21 cc

xececxy xx sin222

1

220' 21 ccy

Generated by Foxit PDF Creator © Foxit Softwarehttp://www.foxitsoftware.com For evaluation only.