22
1 Mathe III Lecture 9

1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

Embed Size (px)

Citation preview

Page 1: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

1

Mathe IIILecture 9Mathe IIILecture 9

Page 2: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

2

max

s.t. j

x

g x,r = 0, j = 1, ...,m

f x,r

1 n 1 2 kx = x , .....x , r = r ,r , .....r

the solution is

and the maximum is

,

*

* *

x r

f r = f x r ,r

Envelope Theorem

Page 3: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

3

Envelope Theorem

*

j

*

j

f x r ,rf r=

r r

j

*f x r ,r

r

First, consider the case where there are no costraints:

maxx

f x,r

the solution is

and the maximum is

,

*

* *

x r

f r = f x r ,r

Page 4: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

4

Envelope Theorem (with no onstraints)

h

h j j

*

j h

xf f=x r r

f rr

maxx

f x,r h

f = 0x

h

fx

j

fr

0

j

*f x r ,r

r

*

j=

f rr

* *f r = f x r ,r

Page 5: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

5

*

j

f r

r

Envelope Theorem

max

s.t. j

x

g x,r = 0, j = 1, ...,m

f x,r

-m

i ii=1

x,λ,r = f x,r λ g x,rLAt the maximum point:

* *

i*i

h h

m

i=1

f x r ,r g x r ,r

x xλ

*nh

h=1 h j j

xf f=

x r r

(with constraints)

Page 6: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

6

*

j

f r

r

Envelope Theorem

*nh

h=1 h j j

xf f=

x r r

(with constraints)

Page 7: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

7

**

j j

f x r ,rf r=

r r

Envelope Theorem

*nh

h=1 h j j

xf f=

x r r

(with constraints)

* i

ih h

=

m

i=1

gf

x xλ

*h

h j

i

j

n

h

m

ii=1=1

g x f=

rx rλ

*

i hi

h j j

m n

i=1 h=1

g x f= λ

x r r

*ig x r ,r = 0

*ni h i

h=1 h j j

g x g+ = 0

x r r

*n

i h i

h=1 h j j

g x g

x r r

* ii

j j

m

i=1

g f= - λ

r r

Lagrange:

Page 8: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

8

Envelope Theorem (with constraints)

*

* ii

j j j

m

i=1

f r g f= - λ

r r r

-m

i ii=1

x,λ,r = f x,r λ g x,rL

*

j

x , λ,r=

r

L

* **

j j

x , λ ,rf r=

r r

L

Page 9: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

9

Non Linear Programming

max s.t.

1 1

m m

x

g x c

g x c

f x ......

1 nx = x , ....x

A simple case:

max s.t. x,y

g x, y cf x, y

Page 10: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

10

max s.t. x,y

g x, y cf x, y

x

y

.constf x, y =+ ++ g x, y c

g x, y = c

Page 11: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

11

max s.t. x,y

g x, y cf x, y

x

y

.constf x, y =+ ++ g x, y c

g x, y = c

The max is

a small change in c

has no effect on the max.

i.e. the constraint is binding,

the shadow price of

is c

not

λ 0

Page 12: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

12

max s.t. x,y

g x, y cf x, y

x

y

g x, y c

g x, y = c

If the situation is :

the max. is: the constraint is binding.

Increasing , relaxes the constraint c

the shadow price of is positive. λ c

and the max.increases

Page 13: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

13

Non Linear Programming

max s.t.

1 1

m m

x

g x c

g x c

f x ......

a general treatment

Let be a solution of the problem.* x

Let for

and for

*i

*i

i

i

i = 1,2, ....,k

i = k, ......,m

g x = c

g x < c

Page 14: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

14

Non Linear Programming a general treatment

-

k

i i ii=1

x,λ = f x λ g x -cL

The solution is a stationary point of the Lagrangian:

*

*h

h

f x c

cλ c

clearly an increase in ci increases the maximum. Hence: 0

h i

= 0, = 0, h = 1, ...,n i = 1, ...kx λ

L L

k

Page 15: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

15

Non Linear Programming a general treatment

if is a solution of the problem*x

j j = 1,3 .λ 0,. ..,m

is a stationary point (w.r.t. ) of the Lagrangian :

-

*i

m

i i ii=1

2 x. x

x = f x λ g x -c L

*j j1. j = 1, .g x mc , ..,

if then *j j jg x < c λ = j = 1, .4. 0, ..,m

m

Page 16: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

16

Non Linear Programming an example

max . .s t

2 2 2

2 2 2x

z xy4z - x - y - z

x + y + z 3

- - 2 2 2 2 2 2x, y, z = 4z - x - y - z λ z - xy x + y + z - 3L

-2x + λy - 2μx = 0x

L

-2y + λx - 2μy = 0y

L

4 - 2z - λ - 2μz = 0z

L

λ, μ 0

z < xy 0 λ =2 2 2x + y + z < 3 0 μ =

Page 17: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

17

Non Linear Programming an example

-2x + λy - 2μx = 0x

L

-2y + λx - 2μy = 0y

L

4 - 2z - λ - 2μz = 0z

L

if both constraints are2 2 2

inactiv

z < xy, x + y + z <

e :

3 λ = μ = 0

This candidate does not satisfy the constraints

x = y = 0, z = 2

Page 18: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

18

Non Linear Programming an example

-2x + λy - 2μx = 0x

L

-2y + λx - 2μy = 0y

L

4 - 2z - λ - 2μz = 0z

L

if only the first constraint is : 2 2 2

ina

λ = 0, z < xy, x + y +

tive

z

c

= 3

z < xy = 0 z = - 3

x = 0

y = 0

z = 3

2z = > 0

1+ μ no solution

Page 19: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

19

Non Linear Programming an example

-2x + λy - 2μx = 0x

L

-2y + λx - 2μy = 0y

L

4 - 2z - λ - 2μz = 0z

L

if only the second constraint is :

μ = 0,

ina

ctive

xy = z

z = 1 λ 0 λ = 2 x = y

if or : 2 2 x = y0 x =x y

2 2x + y = 22 2 2x + y + z = 3 no solution

Page 20: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

20

Non Linear Programming an example

-2x + λy - 2μx = 0x

L

-2y + λx - 2μy = 0y

L

4 - 2z - λ - 2μz = 0z

L

if only the second constraint is :

μ = 0,

ina

ctive

xy = z

indeed 2 2 2 λ = 4, x + y + z = 0 < 3

if x = 0 y = 0 z = 0

and is a candidate(0,0,0)

(0,0,0)

Page 21: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

21

Non Linear Programming an example

-2x + λy - 2μx = 0x

L

-2y + λx - 2μy = 0y

L

4 - 2z - λ - 2μz = 0z

L

if both constraints are : 2 2 2

act

xy = z, x + y +

ve

z

i

= 3

y - x 2 + λ + 2μ = 0

(0,0,0)

x = y 2 z = x

2 2 4x + x + x = 3 2 z = x = -1 2 = 1,-3

z = 1, x = y = 1 μ = 0, λ = 2 are candidates(1,1,1), (-1,-1,1)

(1,1,1)

(-1,-1,1)

Page 22: 1 Mathe III Lecture 9 Mathe III Lecture 9. 2 Envelope Theorem

22

Non Linear Programming an example

(0,0,0) (1,1,1) (-1,-1,1)

max . .s t

2 2 2

2 2 2x

z xy4z - x - y - z

x + y + z 3

2 2 2f(x, y, z) = 4z - x - y - z

f(0,0,0) = 0, f 1,1,1 = 1, f -1,-1,1 = 1

(-1,-1,1)(1,1,1) are maxima