43
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimina tion Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir and Dan Roth

1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir

Embed Size (px)

Citation preview

1

MPE and Partial Inversion inLifted Probabilistic Variable Elimination

Rodrigo de Salvo Braz

University of Illinois at

Urbana-Champaignwith

Eyal Amir and Dan Roth

Page 2

Repetitive patterns in graphical models

sick(mary,measles)

hospital(mary)

epidemic(measles) epidemic(flu)

sick(mary,flu)

… sick(bob,measles)

hospital(bob)

sick(bob,flu)……

… …

… …

Page 3

Repetitive patterns in graphical models

sick(mary,measles)

hospital(mary)

epidemic(measles) epidemic(flu)

sick(mary,flu)

… sick(bob,measles)

hospital(bob)

sick(bob,flu)……

… …

… …sick(mary,measles),

epidemic(measles))

Page 4

Repetitive patterns in graphical models

sick(mary,measles)

hospital(mary)

epidemic(measles) epidemic(flu)

sick(mary,flu)

… sick(bob,measles)

hospital(bob)

sick(bob,flu)……

… …

… …

Page 5

Lots of Redundancy!

sick(mary,measles)

hospital(mary)

epidemic(measles) epidemic(flu)

sick(mary,flu)

… sick(bob,measles)

hospital(bob)

sick(bob,flu)……

… …

… …

Page 6

Representing structure

sick(mary,measles)

epidemic(measles) epidemic(flu)

sick(mary,flu)

… sick(bob,measles) sick(bob,flu)……

… …

sick(P,D)

epidemic(D)

Poole (2003) named these parfactors,

for “parameterized factors”

Page 7

Parfactor

sick(Person,Disease)

epidemic(Disease)

8 Person, Disease sick(Person,Disease), epidemic(Disease))

Page 8

Parfactor

sick(Person,Disease)

epidemic(Disease)

8 Person, Disease sick(Person,Disease), epidemic(Disease)),

Person mary, Disease flu

Person mary, Disease flu

Page 9

Lifted Probabilistic Inference

Goal: to perform inference at the first-order level, without resorting to grounding.

First-Order Variable Elimination (FOVE): a generalization of Variable Elimination in propositional graphical models.

Eliminates classes of random variables at once.

Page 10

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

hospital(mary)

sick(mary, D)

epidemic(D)

Page 11

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

hospital(mary)

sick(mary, D)

epidemic(D) = Unification

Page 12

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

sick(mary,measles)

hospital(mary)

sick(mary, D)

D measles

epidemic(measles) epidemic(D)

D measles

Page 13

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

sick(mary,measles)

hospital(mary)

sick(mary, D)

D measles

epidemic(measles) epidemic(D)

D measles=

Page 14

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

sick(mary,measles)

hospital(mary)

sick(mary, D)

D measles

epidemic(measles) epidemic(D)

D measles

Page 15

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

sick(mary,measles)

hospital(mary)

sick(mary, D)

D measles

epidemic(D)

D measles

Page 16

Inference - Inversion Elimination (IE)

hospital(mary)

sick(mary, D)

D measles

epidemic(D)

D measles

P(hospital(mary) | sick(mary, measles)) = ?

Page 17

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

hospital(mary)

sick(mary, D)

D measles

D measles

Page 18

Inference - Inversion Elimination (IE)

P(hospital(mary) | sick(mary, measles)) = ?

hospital(mary)

Page 19

Inversion Elimination

Joint (A)

Example

X (p(X)) X,Y (p(X),q(X,Y))

Marginalization by eliminating class q(X,Y):

q(X,Y) X (p(X)) X,Y (p(X),q(X,Y))

X (p(X)) q(X,Y) X,Y (p(X),q(X,Y))

Page 20

Inversion Elimination

q(X,Y) X,Y (p(X),q(X,Y))

=X,Y q(X,Y) (p(X),q(X,Y))

= X,Y (p(X)) = X Y(p(X))

= X (p(X))

* depends on certain conditions

*

Page 21

Inversion Elimination - Conditions - I

Eliminated atom must contain all logical variables in parfactors involved.

sick(P,D)

epidemic(D)

Page 22

Inversion Elimination - Conditions - I

Eliminated atom must contain all logical variables in parfactors involved.

sick(P,D)

epidemic(D) epidemic(D)

Ok, contains both P and D

Page 23

Inversion Elimination - Conditions - I

Eliminated atom must contain all logical variables in parfactors involved.

sick(P,D)

epidemic(D)

Not Ok, missing P

sick(P,D)

Page 24

Inversion Elimination - Conditions - I

Eliminated atom must contain all logical variables in parfactors involved.

q(Y,Z)

p(X,Y)No atom can be

eliminated

Page 25

Inversion Elimination - Conditions - I

…sick(mary, flu)

epidemic(flu)

sick(mary, rubella)

epidemic(rubella)…

sick(mary, D)

epidemic(D)

D measles

Eliminated atom must contain all logical variables - guarantees that subproblems are disjoint.

Page 26

Inversion Elimination - Conditions - II

epidemic(measles)

epidemic(flu)

epidemic(D2)

epidemic(D1)

epidemic(rubella)

InversionElimination

Not OkD1 D2

Requires eliminated RVs to occur in separate instances of parfactor

Page 27

e(D) D1D2 (e(D1),e(D2))

= e(D) (0,0)#(0,0) in e(D),D1D2

(0,1)#(0,1) in e(D),D1D2

(1,0)#(1,0) in e(D),D1D2

(1,1)#(1,1) in e(D),D1D2

= e(D) v (v)#v in e(D),D1D2

Counting Elimination - A Combinatorial Approach

= ( ) v (v)#v in e(D),D1D2 (from i)|e(D)|

i

|e(D)|

i=0

Page 28

No shared logical variables between atoms,so counting can be done independently

(epidemic(D1, Region), epidemic(D2, Region))

Counting Elimination - A Combinatorial Approach

Page 29

Uncovered by Inversion and Counting

Eliminating epidemic from

epidemic(Disease1,Region), epidemic(Disease2,Region),

donations) No logical variable in all atoms,

so no Inversion Elimination Shared logical variables,

so no Counting Elimination

Page 30

Partial Inversion

e(D,R) D1D2,R e(D1,R), e(D2,R), d )

e(D,R) D1D2,R e(D1,R), e(D2,R), d )

R e(D,r) D1D2 e(D1,r), e(D2,r), d )

R e(D,r) D1D2 e(D1,r), e(D2,r), d )

R ’d ) = ’d )|R| = ’’d )

Inversion elimination is the case where all logical variables are inverted and subproblem is propositional.

Page 31

Partial Inversion, graphically

epidemic(D2,r1)

epidemic(D1,r1)

D1 D2

donations

epidemic(D2,R)

epidemic(D1,R)

D1 D2 donations

epidemic(D2,r10)

epidemic(D1,r10)

D1 D2…

Each instance a counting

elimination problem

Page 32

Partial inversion conditions

Conditioned subsets must be disjoint

friends(P1, P2), friends(P2,P1), smoke(P1), smoke(P2) )

Doesn’t work because subproblems share instances of friends.

Page 33

Second contribution: Lifted MPE

In propositional case,MPE done by factors containing MPE of eliminated variables.

A B

C

D

Page 34

MPE

A B

D

B D MPE

0 0 0.3 C=1

0 1 0.2 C=1

1 0 0.5 C=0

1 1 0.9 C=1

In propositional case,MPE done by factors containing MPE of eliminated variables.

Page 35

MPE

A B

B MPE

0 0.5 C=1,D=0

1 1.4 C=1,D=1

In propositional case,MPE done by factors containing MPE of eliminated variables.

Page 36

MPE

A

A MPE(B,C,D)

0 0.9 B=0,C=1,D=0

1 0.7 B=1,C=1,D=1

In propositional case,MPE done by factors containing MPE of eliminated variables.

Page 37

MPE

MPE

0.9 A=0,B=1,C=1,D=1

In propositional case,MPE done by factors containing MPE of eliminated variables.

Page 38

MPE

Same idea in First-order case But factors are quantified and so are assignments:

p(X) q(X,Y) MPE

0 0 0.3 r(X,Y) = 1

0 1 0.2 r(X,Y) = 1

1 0 0.5 r(X,Y) = 0

1 1 0.9 r(X,Y) = 1

8 X, Y p(X), q(X,Y))

Page 39

MPE

After Inversion Elimination of q(X,Y):

p(X) q(X,Y) MPE

0 0 0.3 r(X,Y) = 1

0 1 0.9 r(X,Y) = 1

1 0 0.5 r(X,Y) = 0

1 1 0.3 r(X,Y) = 1

8 X, Y p(X), q(X,Y))

p(X) ’ MPE

0 0.05 8 Y q(X,Y) = 1, r(X,Y) = 1

1 0.02 8 Y q(X,Y) = 0, r(X,Y) = 1

8 X ’p(X))

Liftedassignment

s

Page 40

MPE

After Inversion Elimination of p(X):

8 X ’p(X))

’’ MPE

0.009 8 X 8 Y p(X) = 0, q(X,Y) = 1, r(X,Y) = 0

’’)

p(X) ’ MPE

0 0.05 8 Y q(X,Y) = 1, r(X,Y) = 1

1 0.02 8 Y q(X,Y) = 0, r(X,Y) = 1

Page 41

MPE

After Counting Elimination of e:

e(D1) e(D2) MPE

0 0 0.3 r(D1,D2) = 1

0 1 0.9 r(D1,D2) = 1

1 0 0.5 r(D1,D2) = 0

1 1 0.3 r(D1,D2) = 1

8 D1, D2 e(D1), e(D2))

’ MPE

0.05 938 (D1=0,D2=0) e(D1)=0, e(D2) = 1, r(D1,D2) = 1

912 (D1=0,D2=1) e(D1)=1, e(D2) = 1, r(D1,D2) = 1

915 (D1=1,D2=0) e(D1)=1, e(D2) = 0, r(D1,D2) = 0

925 (D1=1,D2=1) e(D1)=0, e(D2) = 0, r(D1,D2) = 1

’)

Page 42

Conclusions

Partial Inversion:More general algorithm, subsumes Inversion elimination

Lifted MPE same idea as in propositional VE, but with

Lifted assignments: describe sets of basic assignments Universally quantified comes from Inversion Existentially quantified comes from Counting elimination

Ultimate goal: To perform lifted probabilistic inference in way similar to

logic inference: without grounding and at a higher level.

Page 43