23
1 Hägg, Capture with membranes Norges teknisk-naturvitenskapelige universitet Capture with membranes May-Britt Hägg Professor, Dep. Chem. Eng. TCCS6 Trondheim, June 14-16, 2011

1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

1

Hägg, Capture with membranes

Norges teknisk-naturvitenskapelige universitet

Capture with membranesMay-Britt Hägg

Professor, Dep. Chem. Eng.

TCCS6 Trondheim, June 14-16, 2011

Page 2: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

2

Outline of presentation

• Membrane capture technologies – brief overview• General about driving force and separation• New trends, examples

– Nanocomposites– Facilitated transport membranes– Pore tailored membranes– Membrane contactors– Process solutions

• Challenges using polymer membranes• Simulations must be mentioned• Conclusions

Page 3: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

3

CO2 capture – membrane technologies

• Depending on where in the process the membrane will be placed, the transport mechanisms and demands on the material will be very different

Page 4: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

4

Membranes in precombustion

Permeation is by solution-diffusionGoverning equations for:

concentration of H at surface (CH) and flux through membrane (JH2)

• Separation of CO2 – H2 at high temperature (> 300°C)

• Typical materials: – Pd / Pd-alloys

• Challenges:– Poisoning– Detection and elimination of

defects– Material costs

• Engineering design– Complex– Scale-up

2

0.5H s HC K P=

2,Re 2,

2

0.5 0.5( )2

t PerH HM sH

M

P PD KJX−

= −

Five stage process of permeation

Page 5: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

5

Membranes in oxyfuel combustion

Demands on the material:– High flow rate (diffusion coefficient)– Temperature (900-1100°C)– Chemical stability in oxidising and

reducing atmosphere – Compatible TEC (Thermal expansion

Coefficient) with joined materials.– No chemical reaction– No reaction with joined materials (seals,

interconnects etc.)Strong demands on the module sealing!

Ref.: Kvamsdal et. al. , SINTEF Energy

Mixed-conducting-membrane(inorganic oxide)

AirO2 depleted airO2 + 4e 2O2- 2O2-O2+4e

Page 6: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

6

Membranes in post combustion

Process design based on a typical coal fired power plant SO2, NOx, VOC and fly ash are removed to given spesifications Dehydration unit may complicate the process if needed for the membrane Feed gas components to membrane are basically (H2O), N2, CO2, and O2

Feed gas at atmospheric pressure, temp. ~50° – 70°C

N2, O2 to atmosphere

Pipeline to storage

Dried Flue Gas

CO2 separation unit

Dehydration

H2O

CO2( )

Membrane?

Page 7: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

7

Polymeric membranes for gas separation have been in commercial use since 1980’s

Areas of applications: H2-recovery Air separation (high purity N2) CO2 removal from Natural Gas VOC recovery from gas streams

• Standard polymeric materials are: derivates of cellulose acetate and polyimides

• Separation depends on trade-off between permeability and selectivity (the ”upper-bond”) and the driving force available

Feed

Retentate

Module Housing

Hollow Fibers

Permeate

Sealing

Sweep Gas(optional)

Page 8: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

8

The membrane will separate on basis of: Molecular size and structure of gas components Physical properties of the gases (ideal / non-ideal) Membrane material properties Transport mechanism (solution-diffusion in a polymer) Process conditions (temperature, pressure, concentrations)

Feed gas

Retentate

Permeate

The driving force in a standard membrane

( ) ( )2 2, 2, 2, 2,CO CO f H CO p l CO f H CO p lD S PJ x p x p x p x p

l l⋅

= ⋅ − ⋅ = ⋅ − ⋅

Flux = J [m3(STP)/(m2.h)]

Page 9: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

9

”The upper bond” with respect to driving force for polymer membranes in general

The upper-bond must be broken for the gas pair CO2-N2 if membranes are to be used in post-combustion.

This can be done in several ways:1) Nanocomposite materials2) Facilitated transport membranes3) Pore tailored inorganic membranes

Two other ways to neglect upper-bond: Using membrane contactors Innovative process design

Industrialattractive region

Page 10: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

10

1) Nanocomposite (mixed matrix) membranes- the effect of adding nonporous nanoparticles

PMP = poly(4-methyl-2pentyne), PDMS= poly(dimethyl-siloxane)TS = silica (SiO2) nanoparticles

Page 11: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

11

Nanocomposite material, an example: Crosslinked PMP with FS for air separation

The effect of fumed silica (FS) content on O2 permeability and O2/N2 selectivity of uncrosslinked( ) and crosslinked PMP ( ). Crosslinked membranes contain 2 wt% HFBAA; T=35˚C.Ref.: L. Shao, Thesis NTNU 2008

PMP+HFBAA

PMP

PMP+HFBAA+15w t%FS

PMP+HFBAA+25w t%FS PMP+HFBAA

+35w t%FS

0.00.5

1.01.5

2.02.5

3.03.5

4.04.5

500 1000 1500 2000 2500 3000 3500

O2 Permeability (Barrer)

O2/N

2 S

elec

tivity

Pure PMP

PMP with 25w% FS

Page 12: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

12

2) Facilitated transport membranes; generalSeveral types are available:• Ion-exchange resins• Hydrophilic polymers with CO2-reactive

salts• Polyelectrolytes• Biomimetic membranes• Fixed-site carriers

The category ”blue” above, contains a mobile carrier that can react with CO2 and diffuse acrosss the membrane – typically a supported liquid membrane (SLM)

In the fixed-site carrier the CO2-reactive funcionality is attached to the polymer backbone, and the CO2 rather ”hops” from site-to-site

Ref.: M. Mulder, 1996

Ref.: M.C. Trachtenberg, 2001

Page 13: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

13

Supported (immobilized) liquid membranes- an illustration

The mobile (aquous) carrier may typically be:

• Carbonates (K, Na)• Amines• Glycerol• Enzymes • Mixtures thereof

Left: Immobilized liquid membrane,(ILM) microporous polymer

Right: Flowing liquid membrane, (FLM) dense polymer

- Upper bond for selected polymers - Upper bond for some solvents - ILM using carbonate glycerol - ILM hollow fibers using glycerol

Ref.: M.G.Shalyigyn et al. 2008

Page 14: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

14

Fixed-site-carrier membrane – an example, PVAm• Mechanism of separation: diffusion through a non-porous membrane +

carrier transport. The driving force will thus be the partial pressure difference of the gases in the feed and permeate and the concentration difference of the complexed component

1) Separation by solution-diffusionN2

+CO2

CO2

∆P

l( )i

i h i l iPJ p x p yl

= −

( ) ( ),0 , ,0 ,i ic

i i i l ic ic lD DJ c c c cl l

= − + −

.i i ic S p=

Facilitated transport in polyvinylamine (PVAm):–The amino group contributes to transport of CO2through membrane as a bicarbonate ion (HCO3-) in the wet membrane while N2 is being retained.– CO2 transport through the membrane is attributed to this carrier effect along with the Fickian diffusion.

P D S= ⋅

2) Carrier added

Page 15: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

15

The FSC-membrane for CO2-capture developed at NTNU is currently being upscaled to a small pilot in collaboration with industry and also demonstrated at EDP power plant, Portugal

Process conditions:• Humidity of gas stream; >75%RH• Temperature should be below 70oC • Pressure 2 – 8 barCurrent results (in lab):CO2-permeance > 1 m3(STP)/m2.h.barCO2/N2 selectivity > 200

This is what we have – large sheets

This is what we want in a pilot – hollow fibers

Page 16: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

163) Pore tailored membranes; example: Carbon MS

Carbolite TZF

XX℃TC 2048CP

Gas in Gas out

Hollow fiber membrane

Quartz holder

CO2N2

Control protocol

Heating rateSoak timeFinal Temp.

Tailoring the pore size:

Carbonization parameters Temperature (500-1000 °C) Heating rate Soak time Atmosphere (vacuum or purge

gas) Purge gas flow rate

Cellulosic precursor Ideal carbon structure

10-1 100 101 102 103 104100

101

102

103

CO2 permeability [Barrer]

CO2/C

H 4 sel

ectiv

ityPure carbonFe(NO3)3Cu(NO3)2AgNO3SiO2Fe2O3MgOCaO

Robeson's upper bound

Dots are litterature values for carbonizedpolyimides

From the doctoral thesis of J.A. Lie 2005

Page 17: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

17

Other types: Membrane contactor for CO2-removal

• The membrane function is – To be a barrier between the gas and

absorbent liquid

• Advantages:– Compact system– No direct contact between gas and

liquid phases– Reduces problems such as liquid

entrainment and foaming– Lower ∆p

Ref.: figure from the PhD-work of K. N. Seglem

2 cosprPγ θ=

Pore radius in membrane depends on La Place eq.:∆P; over membrane γ ; surface tension of liquid cosθ; wetting angle

Page 18: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

18

..not only the membrane itself, but also creative process solutions are important..

• Ref.: T.C. Merkel et al., J. Membr. Sci., 359 (1-2) 2010: Two step process, counter-current sweep

• This membrane has a permeance of 1000 GPU (~2.7 m3(STP)/(m2.h.bar)), with only a selectivity CO2/N2 = 50 ( high flux, low selectivity)

• This design dramatically reduces the membrane area and energy demand while also meeting the product spesification for CO2 purity (> 95%)

• Challenges are in the process design rather than the membrane

Page 19: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

19

Challenges using polymer membranes for CO2 capture in flue gas streams

CHALLENGES TO BE ADRESSED

1. ”Standard” polymers may swell

2. Driving force may be too low for ”standard” membranes

3. Durability towards SO2, NOx, fly ash not good over time

4. Permeance or selectivity is too low

ACTIONS1. Materials can be crosslinked,

gas may have to be dried2. Work on the process design

or redesign the membrane3. FGD must be installed /

filters for fly ash4. Still not good enough?

WORK ON A DIFFERENT MATERIAL!

Creative design for materials with optimized separation properties for CO2 is ongoing all over the world – also with the Memfo group at NTNU

Page 20: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

20

Durability of the FSC-membrane developed at NTNU has been tested, for 500 hours (synthetic flue gas) and currently real flue gas (coal), 2 weeks (ongoing)

Courtesy: The Nanoglowa projectEU-6FWP

Process conditions : P feed 1.05-1.3 bar, permeate vacuum 250-100 mbar, Feed:16 %CO2 78% N2, 5% O2, 200 ppm SO2, 200 ppm NOx Temperature: 30°C and 50°C, Feed flow: 100-600 l/h and feed humidity over 95%.

Very stable results over time!

Page 21: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

21

Simulations/modeling and experiments should go hand in hand

• IGCC (precombustion) – flow diagram (left) with demands on membrane performance with respect to plant efficiency (right)

5060

7080

900

100

200

30015

20

25

30

35

40

Total CO2 recovery, %Selectivity (PCO2/PH2)To

tal p

lant

effi

cien

cy, %Coal dust

O2

Steam

Syngas

Gasifier25 bar

1200 - 1600 C

Quench gas

IP Steam boiler

235 C24.9 bar

Candle filters

336 C

35 C21.0 bar

Waste N2 from ASUSteam

Compressed air to ASU

Air

Exhaust gas to HRSG

CO2 compression train

CO2110 bar

30 C

Gas Turbine

Membrane section

Selexol and Claus units

Water25 C

24.3 bar

222 C24.2 bar

302 C18.0 bar

Venturi Scrubber

LP steam

260 C

CO Shift

Water70 C

24.7 bar

260 C

WaterHalogenated compounds

CO Shift

IP steam516 C29 bar

466 C

235 C24.2 bar

35 C

H2 rich

CO2 rich

Page 22: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

22

Conclusions

Membranes are clearly one of the emerging technologies for CCS

There are already pilot testing ongoing (Europe, USA) Membranes represent an environmental friendly

technology, no solvents – no hazardeous by-products Compact, modular solutions with small footprint (area) With optimized separation properties (the material), less

demand on energy than (current) absorption processes

Page 23: 1 Norges teknisk -naturvitenskapelige universitet · 2014. 11. 17. · 1 Hägg, Capture with membranes Norges teknisk -naturvitenskapelige universitet Capture with membranes May-Britt

23

Thank you for your attention

Acknowledgement to our supporting partners over the years:The Norwegian Research Council (CLIMIT / Gassnova)Statoil NanoGloWa EU-6FWPOur ”Memfo” membrane group for good research