26
1 Physics 206 Complete syllabus ( in pdf ) is posted on the course web site: http://www.phy.ilstu.edu /~hmb/phy206 /phy206.html

1 Physics 206 - Illinois State Universityhmb/phy206/PHY206SyllabusSpring14.pdf · 1 Physics 206 Complete syllabus ... A 50-minute quiz after each chapter V. A 2-hr comprehensive

  • Upload
    buidiep

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

1

Physics 206

Complete syllabus ( in pdf )

is posted on the course web site:

http://www.phy.ilstu.edu /~hmb/phy206 /phy206.html

2

Instructor: Hiroshi Matsuoka

Office: Moulton 313B Phone: (438) 3236 e-mail: [email protected]

Office hours: 2 - 3 p.m. (MWRF) or by appointment.

3

‘53 : Born in Tokyo, Japan.

‘78 : B.Eng. in Materials Eng. (U. of Tokyo) Grad school (Physics, U. of I)

‘85 : Ph.D in theoretical high energy physics

‘85-’90 : Research associate at Argonne Nat. Lab U. of Houston Nagoya U., Japan

‘90- : ISU (theoretical statistical physics)

4

Business Admin. 3 Chemistry 3 Theatre 3 Communication 2 Philosophy 2 Others 10 Sophomores 8 Juniors 5 Seniors 11

5

Texts (Required) “Chaos: Making a New Science” by James Gleick “Physics 206 Class Notes” by Matsuoka (PIP: Packet #3)

6

Course content Recent developments in “nonlinear science” in the cultural context of the latter half of the 20th century Especially, the recognition of “deterministic chaos” in a wide variety of natural phenomena

7

Course objectives

1. The role played by the human culture in the evolution of science

2. Impacts that scientific ideas have on the wider culture

3. A basic understanding of nonlinear science, especially deterministic chaos

8

Course structure I. At home before each class • Reading an assigned portion of the text

II. Class • A 3-min multiple-choice reading quiz at the beginning of class

• Lecture/demonstrations

• In-class hands-on labs

9

III. At home and/or in the computer studio lab (Moulton 309) • Homework questions

IV. A 50-minute quiz after each chapter

V. A 2-hr comprehensive final exam

10

Reading assignment & reading quizzes

• Reading assignment: on the course web site

• At the beginning of class: a 3-min multiple-choice reading quiz

• Extra points

• No make-up reading quiz

• Answers: given in class right after the quiz

• Answers: also on the web site

11

6 in-class hands-on labs

• One lab with the lowest score will be dropped

6 homework sets

• Homework sets will be posted on the web site

• Answers are given in class

• No late homework accepted

• The set with the lowest score will be dropped

12

Quizzes

• A 50-min quiz after each chapter

• 5 quizzes + an “optional” extra quiz

• The quiz with the lowest score among the 5 quizzes will be dropped.

13

• If you take the optional extra quiz and your score is better than your lowest score from the kept 4 quizzes, the optional quiz will replace the quiz with

the lowest score.

• No make-up extra quiz

• Tentative dates: “Class schedule” in the course syllabus

14

• Closed notes and closed book

• A list of equations and constants: included

• Cheating on a quiz -> a zero for that quiz that cannot be dropped

15

• In general, no make-up quiz. If an officially justifiable circumstance forces you to miss a quiz, contact me within one week after the missed quiz.

If you fail to contact me within that one week, no make-up quiz.

16

Final Exam: (The date and time will be

announced later)

• The 2-hour final exam will cover topics covered in the 5 quizzes

• Cheating -> a zero point for the exam

• Closed notes and closed book

• A list of equations and constants: included

17

On the course web site • Announcements including schedule changes. • Reading assignment • Links to the web sites mentioned in Class Notes • Reading quiz that you have taken and its answers

18

• Homework problems • Solutions for Homework problems • As the semester goes by, older “pdf” files will be taken off the web site.

Download files ASAP.

19

Grades • Regular points (100 points) Homework 25 points In-class labs 5 points Quizzes 50 points Final Exam 20 points • Extra points from reading quizzes: at most 3 points Your extra points = 3 (Your Total)/(Total Max)

20

• Grading scale (subject to change) A above 90.0 points B above 80.0 points C above 70.0 points D above 60.0 points

Important dates

January 27 (M): the last day to withdraw w/o WX

March 7 (F): the last day to withdraw w/ WX

21

Physicists’ view of nature (Class notes#1)

Based on collective experiences accumulated over centuries 1. “Physical nature is understandable.”

Behind seemingly complex physical phenomena, we find regularities that can be summarized by simple statements we call laws.

22

Using laws, we can explain a wide variety of phenomena. Physicists equate the simplicity of laws with the beauty of nature.

Example: Newton’s laws of motion

23

2. “Universal laws.” Various natural phenomena can be understood in terms of the same set of laws.

This universality of laws allows us to understand nature systematically.

Example: Newton’s laws of motion and gravitation

24

3. “Only experiments and observations can establish physical laws.”

Physics is an empirical science.

Physical laws cannot be chosen arbitrarily.

Example: Einstein’s special relativity: time runs slowly for a fast moving particle. Verified in the Lab.

25

4. “From a few basic laws to many results.”

There are a “limited” number of basic laws, from which many results logically follow.

Example: Newton’s laws of motion in mechanics

26

5. “Mathematics is physical nature’s language.”

Once we discover basic physical concepts and a law connecting them, we can find mathematical expressions for the concepts and the law.

Physical laws, as equations, lead to precise predictions for experiments.