1-s2.0-000925419290138U-main

Embed Size (px)

Citation preview

  • 8/10/2019 1-s2.0-000925419290138U-main

    1/12

    Ch em ical G eology,

    97 (1992) 101-112

    Elsevier Science Publishers B.V., Amst erd am

    [7]

    O l i v i n e d i s s o l u t i o n k i n e t i c s at n e a r su r f a ce c o n d i t i o n s

    101

    Roy A. Wogelius ~ and John V. Walther

    De pa rtme nt of Geological Sciences, Northwestern University, Evanston. 1L 60208, USA

    (Rece ived March 29, 1991 ; revised and accept ed Novemb er 8, 1991 )

    ABSTRACT

    Wogelius, R.A. and Wal ther, J.V., 1992. Oli vine dissoluti on kinetics at near-surface conditions. Chem. Geol., 97: 101-

    112.

    Fluidized bed dissolution experiments have been conduc ted as a function o fp H at 25 C with fayalitic olivine (Fo6) in

    HC1 solutions and wit h forsteritic olivine (Fo91) in solutions contain ing the organic ligand potassi um hydrogen phthal ate

    (KHP ). At 25C the dissolution rate (R ) of fayalite as a function of pH is:

    R (mo l cm -2 s -1 ) = 1.1-10 -1an+ o.69+ 3.2 10-14+ 1.2-10-J6aH+ -o.sl (1)

    where an+ is the activity of H + in solution. The dissoluti on rate at 25 C of Fo6 at a given pH is a factor of 6 greater than

    that of forsteritic olivine. The assumption that the rates increase on a molar basis with Fe content allows calculation of

    dissolution rates of Fe-Mg solid solution olivines of inter mediate compositions. Batch-type dissolution experiments were

    completed with

    FO91

    at 65C in solutions at pH 1.8, 6.0 and 9.8. The rate equatio n obtaine d from these experimen ts is:

    R (mol cm -2 s -I ) =3. 5-1 0-1 al l+ o.5+ 1.0- 10-~3+6.3 10-17all+ -O.5 (2 )

    When combi ned with previously published data for Fo91at 25 C, the 65 C exp erime nts indicate that the activa tion energy

    of the olivine dissolution rea ction in ac idic, organic-free solutions is ~ 19 _+ 2.5 kcal. mol -~. Dissoluti on experi ments with

    forsteritic olivine in solutions containing KHP at 25 C demo nstrate that the rate of dissolution is increased in these solu-

    tions relative to rates measured in KHP-absent HC1-H20 solutions. Apparently, the increase in rate is caused by Mg

    complexation at the olivine surface. Ligand- promoted dissolution is thought to occur in parallel with pr oton-promo ted

    dissolution. Theref ore, the net rate, Rnet, is the sum of the two rates:

    R.e (tool cm -2 s -1 ) =0. 8-

    lO-12[Lp]45 RH

    (3)

    where [Lp] denotes the concentration of KHP; and RH+ denotes the proton-p romoted dissolution rate.

    1 . In troduct ion

    R e c e n t l a b o r a to r y s t u d i e s o n t h e d i s s o l u t i o n

    r a te s o f si l ic a t e m i n e r a l s h a v e s u s t a i n e d G o l d -

    i c h s ( 1 9 3 8 ) p r o p o s e d w e a t h e r i n g s e q u e n c e

    a n d h a v e s h o w n t h a t t h is s e q u e n c e i s t h e r e su l t

    o f th e c h a n g e i n t h e c h e m i c a l b o n d i n g e n v i r o n -

    m e n t a m o n g s i l i c a t e m i n e r a l s ( s e e , e .g . , F u r r e r

    a n d S t u m m , 1 9 8 3 , 1 9 8 6; H e l g e s o n e t a l. , 1 98 4 ;

    B l u m a n d L a s a ga , 1 9 8 8; C a r r o l l- W e b b a n d

    ~Currently at Department of Earth Sciences, University

    of Oxford, Oxford OX1 3PR, UK.

    Walther, 1988; Brady and Walther, 1989; Casey

    et al., 1989; and the references containe d

    therein). Fe is the fifth most abundant ele-

    ment in the Earth's crust and approximately

    one-half is present in the ferrous state. Because

    this valence state is unstable in the presence of

    free oxygen in the Earth's atmosphere, when

    minerals that contain ferrous iron dissolve the

    Fe released into solution will oxidize:

    4Fe+2+O2 +2H 20~ 4Fe +3+ 4OH - (1)

    Thus, the interpretat ion of the dissolution ki-

    netics of ferrous iron-bearing silicates must

  • 8/10/2019 1-s2.0-000925419290138U-main

    2/12

    102 R .A . WOGELIUS AND J .V . WALTHER

    c o n s i d e r t h e f e r ri c c o m p o n e n t i n so l u t i o n .

    T h e r e f o r e , d i s s o l u t i o n p r o c e s s e s o f f e r ro u s

    i r o n - b e ar i n g m i n e r a l s a r e o f t e n c o m p l i c a t e d b y

    t h e p r e c i p i ta t i o n o f o x i d i z ed F e c o m p o u n d s o r

    m i n e r a l s u r f a c e c o a t i n g s a n d b y t h e p o s s i b l e

    o x i d a t i o n o f F e a t t h e m i n e r a l s u r f ac e . W e h a v e

    u s e d f l o w - t h r o u g h r e a c t o r s y s t e m s t h a t d i s -

    s o l v e f a y a l i t i c o l i v i n e a n d a d d f e r r o u s i r o n t o

    t h e s o l u t i o n p h a s e a t a c o n s t a n t r a t e . S i n c e t h e

    s o l u b il i ti e s o f f e rr ic ( h y d r ) o x i d e s a r e e x -

    t r e m e l y l o w , w e a s s u m e t h a t t h e r a t e t h a t d i s -

    s o l v e d f e r r o u s i r o n c a n o x i d i z e ( D a v i s o n a n d

    S e e d , 1 9 8 3; M i l l e r o e t a l. , 1 9 8 7 ) c o n s t r a i n s t h e

    p r e c i p i t a t i o n r a t e o f f e rr i c ( h y d r ) o x i d e s .

    T h e r e f o re , b y k n o w i n g b o t h t h e o x i d a t i o n r a t e

    a n d d i s s o l u ti o n ra te , w e c a n p r e d i c t h o w m u c h

    F e c a n b e t r a n s p o r t e d o u t o f t h e f l u i d i z e d b e d

    r e a c t o r s y s t e m a s d i s s o l v e d f e r r o u s i r o n b e f o r e

    i t p r e c i p i t a t e s .

    P r e v i o u s s t u d i e s h a v e d i s c u s s e d t h e r o l e t h a t

    o r g a n i c a c i d s p l a y i n t h e s u r f a c e c o n t r o l l e d d i s -

    s o l u t i o n r e a c t i o n . I n g e n e r a l, b i d e n t a t e o r g a n i c

    l i g a n d s t e n d t o i n c r e a s e d i s s o l u t i o n r a te s b y

    c o m p l e x i n g w i t h m e t a l i o n s a t t h e m i n e r a l s u r -

    f ac e a n d w e a k e n i n g t h e m e t a l - o x y g e n b o n d s o f

    t h e s o l i d b y b o n d p o l a r i z a t i o n ( s e e, e .g ., H u a n g

    a n d K e l le r , 1 9 7 0 ; H u a n g a n d K i a n g , 1 9 72 ; A n -

    t w e i l e r a n d D r e v e r , 1 9 83 ; F u r r e r a n d S t u m m ,

    1 98 3 , 1 9 86 ; Z u t i c a n d S t u m m , 1 9 84 ; M a s t a n d

    D r e v e r , 1 9 8 7 ) . S p e c i fi c al ly , b o t h G r a n d s t a f f

    ( 1 9 8 6 ) a n d W o g e l iu s a n d W a l t h e r ( 1 99 1 )

    h a v e s h o w n t h a t p o t a s s i u m a c i d p h t h a l a te i n-

    c r e a s e s t h e d i s s o l u t i o n r a t e o f f o r s t e r it i c o l iv -

    i n e . W e p r e s e n t f u r t h e r e x p e r i m e n t s d e t a i l i n g

    t h i s e f f e c t .

    F i n a ll y , to b e a b l e to u n d e r s t a n d d i s s o l u t i o n

    k i n e t ic s a t h i g h e r t e m p e r a t u r e s , w e p r e s e n t e x -

    p e r i m e n t s a t 6 5 C . U s i n g t h e s e d a t a t o g e t h e r

    w i t h p r e v i o u s l y r e p o r t e d 2 5 C d a t a ( W o g e l i u s

    a n d W a l t h e r, 1 99 1 ) w e e v a l u a t e t h e t e m p e r a -

    t u r e d e p e n d e n c e o f t h e o l i v i ne d i s s o l u t i o n

    r e a c t i o n .

    2 Experimen tal methods

    O l i v in e s o f t w o d i f fe r e n t c o m p o s i t i o n s w e r e

    u s e d i n t h e s e e x p e r i m e n t s : F o 9 1 ( f r o m S a n

    C a r l o s, A r i z o n a , U . S . A . ) ; a n d F o6 ( f r o m t h e

    F o r s y t h e I ro n M i n e , Q u 6 b ec , C a n a d a ) . B e f o re

    t h e o l i v i n e s w e r e p r e p a r e d f o r d i s s o l u ti o n ,

    p o r t i o n s o f al l m i n e r a l s a m p l e s w e r e a n a l y z e d

    b y e l e c t r o n m i c r o p r o b e w a v e l e n g t h - d is p e r s i v e

    s p e c t ro m e t r y ( W D S ) t e c h n i q u e . T a b l e 1 s h ow s

    t h e m e a s u r e d c o m p o s i t i o n s o f t h e m i n e r a l s

    u s e d i n t h e s e e x p e r i m e n t s . N o e v i d e n c e o f

    z o n i n g o r c o n t a m i n a t i n g p h a s e s w i t h i n g r a in

    b o u n d a r i e s w a s f o u n d , a l t h o u g h t h e F o 6 w a s

    i n t e r g r o w n w i t h d i o p s i d e .

    A l l e x p e r i m e n t a l s a m p l e s w e r e i n i t i a l l y

    c r u s h e d t o m m s i ze g r a in s i n a s t ai n l e s s -s t e e l

    o r a g a t e m o r t a r . F o r F O 6 a b i n o c u l a r m i c r o -

    s c o p e a n d v a c u u m n e e d l e w e r e u s e d a ft e r in i -

    t i a l c r u s h i n g t o s e p a r a t e o u t F o 6 f r o m t h e i n -

    t e r g r o w n d i o p s i d e . A f t e r p r e l i m i n a r y c r u s h i n g

    a n d s e p a r a t i o n , u n w a s h e d c r y s ta l s o f b o t h

    c o m p o s i t i o n s w e re g r o u n d t o a f i ne p o w d e r i n

    a n a g a t e m o r t a r a n d e x a m i n e d b y X - r a y d if -

    f r a c t i o n ( X R D ) f r o m 11 t o 6 4 ( 2 0 ) . N o

    c o n t a m i n a t i o n w a s d i s c o v e r e d b y t h i s t e c h -

    n i q u e , i n d i c a t i n g t h a t t h e s t a r ti n g m a t e r i a l w a s

    a t le a st 9 5 % p u r e . A r a n d o m s a m p l i n g o f t h e

    F o 6 t o b e u s e d i n t h e s e e x p e r i m e n t s w a s a l s o

    T A B L E 1

    C h a r a c t e r i z a ti o n o f e x p e r i m e n t a l m a t e r i a l

    O l i v i n e o x i d e w e i g h t p e r c e n t a g e s

    O x i d e F o 9 L F o 6

    M g O 4 9 . 2 4 2 . 4 5

    F e O 9 . 2 1 6 8 . 0 6

    S i O 2 4 0 . 7 2 2 9 . 8 0

    N i O 0 . 3 9 0 . 0 0

    M n O n . a. 0 . 7 0

    T o t a l 9 9 . 5 4 1 0 1 . 1 0

    n . a . = n o t a n a l y z e d .

    S i e v e s i ze s a n d B E T s u r f a c e a re a s

    S i e v e s i ze B E T

    ( / ~ m ) ( c m 2 g - 1

    2 5 0 < d < 4 2 0 3 0 7 . 0

    1 4 9 < d < 2 5 0 5 9 8 . 0

  • 8/10/2019 1-s2.0-000925419290138U-main

    3/12

  • 8/10/2019 1-s2.0-000925419290138U-main

    4/12

    1 0 4 R.A. WO GELIUS AND J.V. WALTHER

    - 1 1 1

    I [ 9 I i i

    1 2 f

    d

    - 1 4

    F o y o l i t e

    D i s s o l u t i o n R o t e

    0 )

    0 , _ I , I , I , ~

    1 2 3 4 5 6

    p H

    F i g . I . F a y a l i t i c o l i v i n e d i s s o l u t i o n r a t e s a s a f u n c t i o n o

    p H i n t h e a c i d i c r e g io n . Circles a r e d i s s o l u t i o n r a t e s c a l -

    c u l a t e d f r o m M g r e l e a s e , triangles a r e r a t e s f r o m S i r e -

    lease , squaresa r e r a t e s f r o m F e r e l e a s e . Hexagons a r e r a t e s

    c a l c u l a t e d f r o m S i e v e r a n d W o o d f o r d ' s ( 1 9 79 ) F e r e le a s e

    d a t a , inverted triangles a r e r a t e s f r o m t h e i r S i r e l e a s e d a t a .

    Solid symbols a r e f o r ra t e s u n a f f e c t e d b y p r e c i p i t a t i o n o r

    o x i d a t i o n o f s u r fa c e F e , open symbols a r e f o r r a t e s a f -

    f e c t e d b y e i t h e r o f t h o s e p r o c e s s e s . Superimposed symbols

    i n d i c a t e s t o i c h i o m e t r i c d i s s o l u t i o n ( s e e te x t ) .

    Sold line

    r e p r e s e n t s t h e f a y a l i t e r a t e l a w d i s c u s s e d i n t h e t e x t ,

    dashed

    line

    a p p r o x i m a t e s t h e f a y a l i te d i s s o l u ti o n r a t e l a w

    m i n i m u m .

    s p h e r e , a l o n g w i t h d a t a f r o m t h e b a t c h e x p e r i -

    m e n t s o f S ie v e r a n d W o o d f o r d ( 1 9 7 9 ) f o r F o 4 .

    T h e l o g a r i t h m o f t h e m e a s u r e d r a te , n o r m a l -

    i z e d p er 4 g- at . o f o x y g e n ( m o l e o f o l i v i n e ) p e r

    c m 2 p e r s e c o n d , i s s h o w n a s a f u n c t i o n o f p H .

    C i r c l e s a r e r a t e s c a l c u l a t e d f o r o u r e x p e r i -

    m e n t s f r o m M g r e l e a s e , t r i a n g l e s f r o m S i r e -

    l e a s e , a n d s q u a r e s f r o m F e r e l e a s e . H e x a g o n s

    a r e r a t e s c a l c u l a t e d f r o m F e r e l e a s e a n d i n -

    v e r t e d t r i a n g l e s a r e f r o m S i r e l e a s e f o r S i e v e r

    a n d W o o d f o r d s e x p e r i m e n t s a t p H 4 . 5. O u r

    e x p e r i m e n t s w e r e c o m p l e t e d i n s i m p l e H C 1 -

    H 2 0 s o l u t io n s , t h o s e o f S i ev e r a n d W o o d f o r d

    u s e d a c e ti c a c i d - l i t h i u m a c et a te m i x t u r e s o f 0 . 2

    M c o n c e n t r a t i o n . S o l i d s y m b o l s f o r o u r f lu i -

    d i z e d b e d d a t a r e p r e s e n t r a t e s m e a s u r e d d u r -

    i n g an i n i ti a l p e r i o d o f d i s s o l u t i o n o f < 5 0 0 h r

    a n d s o l i d s y m b o l s f o r t h e S i e v er a n d W o o d -

    f o r d d a t a a r e f o r d i s s o l u t i o n d u r i n g a n i n i t i a l

    6 5 0 - h r p e r i o d i n a d e o x y g e n a t e d a t m o s p h e r e .

    F o r o u r e x p e r i m e n t s t h e o p e n s y m b o l s r e p r e -

    s e n t m i n i m u m r at es m e a s u r e d a f te r a t le a st 5 0 0

    h r o f r e a c ti o n a n d f o r S ie v e r a n d W o o d f o r d s

    b a t c h d a t a t h e o p e n s y m b o l s g i v e t h e r a t e c a l -

    c u l a t e d a f t e r 1 5 0 h r o f l in e a r r e l e a s e i n a n e x -

    p e r i m e n t co m p l e t ed w i t h P o 2 = 0 . 2 a t m . S u-

    p e r i m p o s e d s y m b o l s f r o m th e s a m e e x p e r i m e n t

    i n d i c a t e s t o i c h i o m e t r i c d i s s o l u t i o n . N o t e t h a t

    d i s s o l u t i o n i s s t o i c h i o m e t r i c i n a ll e x p e r i -

    m e n t s e x c e p t t h e b a tc h e x p e r i m e n t a t r e d u c e d

    P o 2 - T h e s o l i d l i n e w a s o b t a i n e d b y a r e g r e s -

    s i o n t h r o u g h a l l t h e s o l i d s y m b o l s e x c e p t f o r

    t h e r a t e c a lc u l a t e d f r o m S i r el e a se i n t h e S i e v e r

    a n d W o o d f o r d e x p e r i m e n t . T h e d a s h e d l in e

    r e p r e s e n t s o u r e s t im a t e o f t h e d i s s o l u t i o n r a te

    - 1 0 . . . . . . . r ~ T

    - 1 1 - 12) H 3 IIIIIII~i-;I

    0 , 4 - 1 4 i i i

    i o s o o 1 o o o 1 s o o 2

    E - 1 0

    l

    --~ - 1 1 . . i l _ r _ . i L i a _ i 4 1 1 1 _ l l .

    - 1 2 i 1

    -I 3 I 6) pH 2

    - 1 4 i i I I

    0 1 O 0 2 0 0 3 0 0 4 0 0 5 0 0

    I ~ - 1 0

    - 1 1

    - 1 2 r - ~ l ~ @ l - l r i g O

    - 1 3 . L - 2 0) p H 2 0 0 0 O @ I i

    1 4 1

    0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

    t i m e h r s )

    F i g . 2 . F l u i d i z e d b e d e x p e r i m e n t r e s u lt s a s a f u n c t i o n o

    t i m e f o r F o 6 d i s s o l u t i o n i n H C 1 .

    Circles

    a r e d i s s o l u t i o n

    r a t e s b a s e d o n M g r e le a s e ( e x p e r i m e n t 20 o n l y ) , triangles

    a r e r a t e s b a s e d o n S i re l e a s e , squares a r e r a te s b a s e d o n F e

    r e l ea s e . W h e n d i s s o l u t i o n i s s t o i c h i o m e t r i c symbols a r e

    superimposed

    ( s e e t e x t ) .

    IIorizontal lines

    a r e b e s t - f i t

    s t e a d y - s ta t e d i s s o l u t i o n r a t e s f o r r e a c t i o n t i m e s o f < 5 0 0

    hr . Solid lines a r e c a l c u l a t e d f r o m M g r e l e a s e , long-dashed

    lines a r e c a l c u l a t e d f r o m S i r e le a s e , a n d short-dashed lines

    a r e c a l c u l a t e d f r o m F e r e l e a s e . Numbers in parentheses

    c o r r e s p o n d to e x p e r i m e n t n u m b e r : ( 1 2 ) = e x p e r i m e n t 12

    a t p H 3 , n o t e d e c r e a s e i n r a t e a f t e r ~ 60 0 h r o f r e a c t i o n

    w i t h m i n i m u m a t l o g R = - 1 3 .5 ; ( 1 6 ) = e x p e r i m e n t 1 6 a t

    p H 2 , n o t e s t o i c h i o m e t r i c r e l e a s e a n d s t e a d y - s t a t e d i s s o -

    l u t i o n m a i n t a i n e d u p t o ~ 4 50 h r; a n d ( 2 0 ) = e x p e r i m e n t

    20 a l s o a t p H 2 , r a t e i s t h e s a m e a s e x p e r i m e n t 16 f o r

    5 0 0 h r ., t h e n d e c r e a s e s b y t w o o r d e r s o f m a g n i t u d e .

  • 8/10/2019 1-s2.0-000925419290138U-main

    5/12

    O L I V I N E D I S S O L U T I O N K I N E T I C S A T N E A R - S U R F A C E C O N D I T I O N S 1 0 5

    in the pH range 2-6 for long-term experiments

    conduct ed in conta ct with atmospheri c Po2.

    Fluidized bed rate measurements are plot-

    ted vs. time in Fig. 2 with circles, triangles and

    squares cor responding to rates calculated from

    Mg, Si and Fe release, respectively. The lines

    represent the best-fit steady-state olivine dis-

    solution rate calculated from Mg release (solid

    line), Fe release (short d ashes) and Si release

    (long dashes). For both experiment 12 (pH 3 )

    and experiment 20 pH 2) a period of steady-

    state dissolution persists of ~ 500 hr followed

    by a period during which the rate decreases

    significantly. Experiment 16, also at pH 2,

    shows a period of 500 hr of steady-state stoi-

    chiometric dissolution at essentially the same

    initial rate meas ured in experimen t 20.

    3.2. Interpretation

    Solubility calculations done using the

    E Q 3 N R

    computer code (Wolery, 1983 ) for the experi-

    mental fluids that are in equilibrium with at-

    mospheric Po2 show that they are all supersa-

    turated with at least one ferric iron-bearing

    solid phase such as hematite or goethite. Thus

    we must conside r the kinetics of Fe oxidation

    and precipitation in these experiments. The

    rate of oxidation of ferrous iron to ferric in so-

    lution has been studied by Davison and Seed

    (1983), and Millero et al. (1987). Davison

    and Seed ( 1983 ) obta ined the following equa-

    tion for the rate of oxidation (Rox) of Fe in

    dilute solutions at 25 C:

    Rox ( mol l -1 s- l) =

    3.33-10 ~ [Fe( II) ]Po2 (O H- )2 (2)

    where [ Fe (II) ] is the mola rity of ferrous iron;

    Po2 is the partial pressure of oxygen in atmo-

    spheres; and ( O H - ) is the activity of hydrox-

    ide in solution. Similar experiments by Millero

    et al. (1987) confirm that the depend ence of

    the oxidation rate on the square of the hydrox-

    ide activity is valid in dilute solutions to pH-

    rate values as low as 5 and may be applicable

    at even lower pH. The rate of addition of

    Fe (II) to our experime ntal fluids from fayalite

    dissolution is at least two orders of magnitude

    faster than the rate at which the Fe can be oxi-

    dized and then presuma bly precipitated out of

    solution in our fluidized bed apparatus. For

    example, at pH 3, the dissolution rate of fay-

    alite is 10-12 mol

    c m - 2 S - 1 .

    In our experimen-

    tal set-up, this corresponds to a steady-state Fe

    concentr ation of 10 -4 mol 1-~. The residence

    time of fluid in the reactor is ~ 5- 104 s. To be

    conservative in the following application of the

    oxidation rate law, we assume that the mini-

    mu m rate of oxidation is obtained at pH 5 and,

    therefore, use a hydroxide activity of 10-9 M

    in this calculation. Given the above oxidation

    rate law with an Fe concen tra tion of 10-4 M at

    atmospheri c partial pressure of 02 (0.2 atm. )

    the rate of Fe oxidation for solutions with

    pH ~< 5 in the fluidized bed is calculat ed to be

    7-10-12 mol 1-~ s -~. For the residence time

    given, the calcula ted oxidation rate could con-

    vert 3.5.10 -7 mol 1-1 Fe(I I) to Fe(I II ) before

    the Fe leaves the system, only 0.35% of the to-

    tal Fe in solution. I f the oxidation rate con tin-

    ues to decrease as a function of ( OH -) 2 as pH

    decreases below 5, then the rate of Fe oxida-

    tion at pH 3 will be even slower and the per-

    cent of Fe oxidized while in the re actor system

    will be even smaller. Therefore, simple oxida-

    tion resulting in precipitation of a ferric iron

    phase as the fayalite dissolves is too slow a re-

    action to decrease the observed dissolution rate

    by the amounts observed in our experiments.

    Presumably, this is why the rates are unaf-

    fected for several hundred hours in the flui-

    dized bed reactor; the amount of Fe oxidized

    and precipitated out of solution is small com-

    pared to the total Fe concentration. Appar-

    ently, after an extended period of time, a sig-

    nificant amount of Fe on the mineral surface

    becomes oxidized or enough ferric-oxide or

    -hydroxide has precipitated on the surface to

    decrease the number of rapidly reacting sur-

    face sites and thereby decrease the dissolution

    rate. Clearly, from the data p rese nted in Fig. 2,

  • 8/10/2019 1-s2.0-000925419290138U-main

    6/12

    106 R.A. WOGELIUS AND J.V. WALTHER

    the rates established in the short term begin to

    decrease after 500 hr. White and Yee's ( 1985 )

    experiments on Fe-bearing silicates showed

    that aqueous Fe 3+ is reduced by ferrous iron

    exposed at silicate surfaces. In their long-term

    experiments with hornblende, reduction at the

    mineral surface of Fe 3+ in solution is rapid and

    the release of unoxidized Fe 2+ from the min-

    eral surface to the solut ion at low pH slows after

    ~ 500 hr. When the dissolved Fe 3+ is reduc ed

    at the silicate surface, a ferric ion is created in

    the coordination environment of the silicate

    surface. Presumably in our experiments sur-

    face Fe also oxidizes and thus over time a dif-

    ferent surface enviro nment is presented for in-

    teraction with the fluid and the fundamental

    dissolution reaction of protonation. The oxi-

    dized surface apparently hydrolyzes more

    slowly and thus gives a decreased dissolution

    rate. Siever and Woodford's experime nt at pH

    4.5 with Po := 0. 2 atm. rapidly (t < 150 hr)

    gave rates similar to the decreased rates mea-

    sured in our exper iments after 500 hr at lower

    pH and at the same Po2- Their deoxygenated

    experiment gave a long-term Fe release rate

    that is consistent with our < 500 hr measured

    rates. The lower than stoichiometric Si release

    in their deoxygenated experi ment probably in-

    dicates precipitation of a silicate phase since

    they completed this e xperiment in a fluid su-

    persaturated with several SiO2 polymorphs.

    Because the Siever and Woodford oxygenated

    experiment shows similar rates with a differ-

    ent experimental set-up, we conclude that these

    results indicate a change in the rate cont rolling

    reaction with time. It is interesting to note that

    throughout the acidic pH range for times of

    < 1200 hr the dissolution rates calculated from

    Mg, Si and Fe release decrease to about the

    same value. These nearly pH-i ndepe ndent re-

    lease rates probably represent the minimum

    dissolution rate for oxidized fayalitic olivine

    surfaces in aqueous fluids at 25 C.

    The rate of fayalite dissolution in a deoxy-

    genated atmosphere at a given pH in the pH

    interval 2-7 and at 25C is six times greater

    than that of forsterite (Wogelius and Walther,

    1991 ). For forsterite in the pH range 2-12 we

    have:

    Rvo mol cm - 2 s- ~ =

    9.07.10-12an+ o54+ 5.25- 10-15

    +2.33 10-1vaH+ -o3J (3)

    whereas for fayalite at acidic to neutra l pH we

    can write:

    Rva mol c m- 2 s- l ) =

    1.1- 10-1an+ 069+3.22 10 -14 (4)

    If the pH dependence of dissolution rates is

    similar for all silicates in basic solutions (Brady

    and Walther, 1989), then we can extend the

    fayalite dissolution rate law out to pH 12 by

    adding this depe nden ce at high pH to obtain:

    Rva

    (m ol cm -2 s - ~ ) = 1.1-10-~a~+ 69

    + 3.22 .10- 14+ 1.2.10-16all+ 03 (5)

    We can interpolate between eq. 3 and eq. 5 to

    calculate rates for olivines of intermediate

    composition along the Fo-Fa solid solution

    join by assuming that the rate can be obtained

    by summing the end- membe r rates on l-mol

    fraction basis:

    R o l m o l c m - Z s - l ) = X v a R v a + X v o R F o (6)

    where Xva and Xvo denote the fayalite and for-

    sterite mole fraction of the olivine, respec-

    tively. The total amount of Fe oxidized per unit

    time, as given in eqn. 2, is a function o f the

    fluid volume. In order to calculate the relative

    rate of dissolution to oxidation the solid sur-

    face area to fluid volume ratio

    S / V )

    must be

    known. For stoichiometric dissolution the rate

    of Fe release is:

    Ro = 2XvaRo, S / V) (7)

    The relative rate of Fe released to Fe oxidized

    will then simply be

    R J R o ~ .

    A positive relative

    rate indicat es that in a flow-through system the

    concentr ation of Fe( II ) in solution will equal

    a steady-state level and thus allow transport of

  • 8/10/2019 1-s2.0-000925419290138U-main

    7/12

    OLIVINE DISSOLUTION KINETICS AT NEAR-SURFACE CONDITIONS 107

    n -

    U

    n , ,

    2 )

    0

    14

    12

    10

    8

    6

    2

    0

    2

    I I I I I I

    I I [ I I I 4

    2 3 4 5 6 7 8

    pH

    Fig. 3. Comparison of Fe release rate from olivine disso-

    lution,

    Rd,

    to rate of Fe oxidation, Rox, in dilute fluids

    (Davison and Seed, 1983).

    Solid circles

    give the relative

    rate calculated for our fluidized bed experiments,

    solid

    hexagon

    gives the relative rate calculated for Siever and

    Woodford's ( 1979 ) Po~ = 0.2 atm. experiment. The solid

    curvejoining the symbols represents a solid surface area

    to fluid volume ratio S/V) contour of 104 cm 21 -~.

    Fe away from the reacting olivine surface. For

    our laboratory experiments the parameters

    necessary to complete relative rate calcula-

    tions are well chara cteriz ed; the surface area to

    volume rate of the system is on the order of 10 4

    cm 2 1 ~, the Fe co ncentr ations range between

    10 -6

    and

    10 -4 M,

    and we assu me a Po2 o f 0.2

    atm.

    The results of relative rate calculations for

    the fayalite dissolution experiments are pre-

    sented in Fig. 3 as the log of the relative rate

    vs. pH. We show the relative rates arrayed

    along the 104-cm2-1-1 S~ V contour. The solid

    circles are our expe riments at pH's 2 and 3, the

    hexagon is for Siever and Wo odfor d's data. As

    this diagram clearly shows, the fluidized bed

    experiments were completed in an environ-

    ment where oxidation kinetics are sluggish

    compared to dissolution. Only above pH 6

    would Fe oxidation become approximately

    equal to the rate of addit ion of Fe( II) to

    solution.

    4 F o r s t e r i t e d i s s o l u t i o n a t 6 5 C

    Our previous discussion focussed on how

    adding Fe to the olivine solid solution effects

    the rate. Now, we turn to some preli minary ex-

    periments that explore how the dissolution rate

    of forsteritic olivine varies as a function of

    temperature.

    4.1. Results

    FOgl was

    dissolved at 65C by batch tech-

    nique in buffere d pH 1.8 and 9.8 solutions and

    in an unbuffered pH 6.0 solution. Changes in

    concentration over t ime for these experiments

    are plotted in Fig. 4 and listed along with the

    7

    E

    1 2 0

    1 0 0

    80

    60

    20

    i r i

    o

    5 4

    o i L d L - - - - r - - - - ~ - - - 4

    0

    0 - - 5 1 0 1 5 2 0 2 5 3 0 O - - 5 1 0 1 5 2 0 2 5

    t i m e h r )

    I I I I

    2O

    0 i t I . I I I

    0 5 10 15 20 25

    f l m e h r )

    Fig. 4.

    FOgl

    batch experiments at 65C showing concentration increasing linearly as a function of time.

    Circles

    are Mg

    concentration;

    triangles

    are Si concentration.

  • 8/10/2019 1-s2.0-000925419290138U-main

    8/12

    1 08

    T A B L E 2

    Fo91

    b a t c h d i s s o l u t i o n e x p e r i m e n t s a t

    6 5 C

    ( r a t e s i n m o l

    c m - 2 s - ~ )

    T i m e ( 1 0 - S m o l l - ~ )

    ( h r . )

    [ M g ] [ S i ]

    E x p e r i m e n t

    14

    u n b u f f e r e d , p H 6 :

    0 . 5 0 . 5 2 0 . 0 0

    1 .0 0 . 7 0 0 .1 8

    3 .9 1 .75 0 .42

    25.1 16.9 1.49

    l og r at e - 1 2 . 1 0 - 1 2 . 1 3

    E x p e r i m e n t

    15

    K C 1 - HC 1 b u f f e r , p H 1 .8 :

    1 .2 5 .62 3 .52

    2.8 14 .3 8 .40

    3 .8 20.3 12.5

    20 .1 1 04 .0 7 0 .2

    log ra te - 10.35 - 10.29

    E x p e r i m e n t 1 6, N a O H - N a - b o r a t e b u f fe r , p H 9 .8 :

    1 .2 0 . 1 6 0 . 00

    3 .8 1 .57 0 .00

    20 .1 1 3 .6 0 . 00

    log ra te - 11 .38

    I

    0~

    0 4

    I

    E

    o

    E

    p

    0~

    o

    - 9

    - 1 1

    - 1 3

    - 1 5

    J

    F o r s f e r T f e D i s s o l u t i o n R G t e s

    6 5

    C . . '

    ,,,,,,

    . Q . - , = 0 s

    I I l ~ l l l ~ l

    2 4 6 8 1 12

    pH

    Fig . 5 .

    Fo91

    d i s s o l u t i o n r a t e s a t 6 5 C c o m p a r e d t o t h e

    2 5 C d a t a .

    S y m b o l s

    s a m e a s F ig . 2 a b o v e .

    S o l i d l i n e

    g i v e s

    2 5 C r a t e l a w w i t h s l o p e o f 0 . 31 i n b a s ic r e g i o n ,

    d a s h e d

    l ine

    g i v e s 6 5 C r a t e l a w w i t h s l o p e o f 0 . 5 i n b a s i c r e g i o n .

    c a l c u l a t e d d i s s o l u t i o n r a t e s i n T a b l e 2 . N o S i

    w a s d e t e c t e d in e x p e r i m e n t 16 ( p H 9 .8 ), w h i c h

    s u g g e s ts p r e c i p i t a t i o n o f a s i l ic a t e p h a s e . B e -

    c a u s e th i s p h a s e m a y c o n t a i n M g a s w e ll , t h e

    r a te c a l c u l a t e d fr o m M g r e le a s e is a m i n i m u m .

    R . A . W O G E L I U S A N D J .V . W A L T H E R

    C a l c u l a t i o n s w i t h E Q 3 N R a s s u m i n g S i i s p r e s -

    e n t a t c o n c e n t r a t i o n s j u st b e l o w t h e l o w e r l i m i t

    o f d e t e c t i o n o f th e D C P s h o w t h a t t h i s f lu i d is

    s a t u r a t e d w i t h a n t i g o r i te a n d b r u c i te . F l u i d p H

    g i v e n i n T a b l e 2 f o r t h e s e e x p e r i m e n t s w a s

    m e a s u r e d a t 2 5 C f o r e a c h r u n a n d c a l c u l a te d

    a t 6 5 C w i t h E Q 3 N R .

    4 2 Comparisons

    T h e r a t e s g i v e n i n T a b l e 2 a r e p r e s e n t e d i n

    F i g . 5 a s a f u n c t i o n o f p H . C i r c l e s a r e r a t e s c a l-

    c u l a t e d f r o m M g r e le a s e , t r ia n g l e s a r e r a t e s c a l-

    c u l a t e d f r o m S i r e l e a s e . T h e l o w e r s o l i d l i n e

    r e p r e s e n ts t h e r a t e l aw d e r i v e d f r o m m e a s u r e -

    m e n t s a t 2 5 C f o r F o 9 1 a n d F o m o ( W o g e l i u s

    a n d W a l t h e r , 1 99 1 ) . T h e d a s h e d c u r v e r e p r e -

    s e n t s t h e r a t e a s a f u n c t i o n o f p H c o n s t r u c t e d

    f r o m o u r 6 5 C d a t a a n d t h e l og r a t e v s. p H d e -

    p e n d e n c e o f 0.5 o f B r a d y a n d W a l t h e r ( 1 98 9 )

    f o r s i l ic a t e d i s s o l u t i o n i n b a s i c - p H s o l u t i o n s a t

    6 5 o C . T h e r e f o r e , w e w r i t e t h e d i s s o l u t i o n r a t e

    l a w f o r f o r s t e r i t i c o l i v i n e a t 6 5 C a s:

    R (m o l cm -2 s - 1 = 3 .5 - 1 0 - 10a ll+ O.5

    + 1.0 10-13..{_ 6.3 10 -17 all+

    - 0 . 5 ( 8 )

    B e t w e e n 2 5 a n d 6 5 C t h e p H d e p e n d e n c e o f

    t h e r a t e u n d e r a c i d i c c o n d i t i o n s d o e s n o t a p -

    p e a r t o c h a n g e s i g n i fi c a n tl y j u d g i n g f r o m t h e

    p H 2 a n d 6 e x p e r i m e n t s . T h i s is c o n s i s t e n t w i t h

    s i m i l a r f i n d i n g s b y S ch o t t e t a l. ( 1 98 1 ) f o r M g -

    b e a r i n g p y r o x e n e s b e t w e e n 2 0 a n d 5 0 C .

    W e c a n u s e t h e s e d a t a t o e s t i m a t e a n a c t i v a -

    t i o n e n e r g y , E a, a t c o n s t a n t p H f o r t h e o l i v i n e

    d i s s o l u t i o n r e a c t i o n t h r o u g h t h e A r r h e n i u s

    r e l a t i o n s h i p :

    2 . 3 0 3 R ( l o g R ~ - l o g R 2 )

    E a ( k c a l. m o l - 1 =

    7 2 - L - - T 1 - I

    (9)

    w h e r e R is th e g a s c o n s t a n t i n c a l. m o l - ~ K - ~;

    R i is th e d i s s o l u t i o n r a t e a t t e m p e r a t u r e T i i n

    k e l v i n s; a n d E a is th e a c t i v a t i o n e n e r g y f o r t h e

    d i s s o l u t i o n r e a c t i o n . A n a c t i v a t i o n e n e r g y o f

    1 9 + 2. 5 k c a l . m o l - ~ i s c a l c u l a t e d f o r t h e f o r -

  • 8/10/2019 1-s2.0-000925419290138U-main

    9/12

    O L I V I N E D I S S O L U T I O N K I N E T I C S A T N E A R -S U R FA C E C O N D I T I O N S [ 0 9

    s t e r i t i c o l i v i n e d i s s o l u t i o n r e a c t i o n i n s o l u -

    t i o n s w i t h a c i d i c to n e a r - n e u t r a l p H .

    5. Forsterite dissolution in potassium hydrogen

    p h t h a l a t e K H P )

    5 1 R e s u l t s

    F o g l w a s d i s s o l v e d i n t h e f l u i d i z e d b e d r e -

    a c t o r i n t h e p r e s e n c e o f t h e o r g a n i c l i g a n d p o -

    t a s s i u m h y d r o g e n p h t h a l a t e ( K H P ) a t 1 0 - 2.3

    M . T a b l e 3 s h o w s t h e c a l c u l a t e d p r o t o n - p r o -

    m o t e d a n d o r g a n i c l i g a n d - p r o m o t e d d i s s o l u -

    t i o n r a t e s o b t a i n e d f r o m t h e m e a s u r e d t o t a l

    d i s s o l u t i o n r a t e f o r f o r s t e r i t i c o l i v i n e a l o n g

    TABLE 3

    Fo9] KH P-pro mote d dissolution rates at 25 C (rates in 10-~3 mol

    CITI-2 S I )

    l og p H M e a s u r e d r a te H + r a te K H P - p r o m o t e d

    [ KH P ] rate

    M g S i F e M g S i F e

    - 1. 3 3.0 5.13 3.23 3.02 2.23 2.9 1.0 0.79

    - 1.3 4.0 3.78 1.88 1.68 0.68 3.1 1.2 1.00

    - 1 . 3 5.0 1.83 1.93 n.d. 0.23 1.6 1.7 n.d.

    - 2. 3 4.2 1.74 1. 31 n.d. 0.54 1.2 0.81 n.d.

    n . d . = n o da t a .

    - 1 2

    0 3

    t N

    I

    o - 1 3

    -6

    E

    d

    ~ -1 ,*

    o

    I , [ ~ I L I

    1 2 3 4

    - l o g K H P )

    F i g. 6. K H P - p r o m o t e d o l i v i n e d i s s o l u t i o n r a te s d e r i v e d

    f r o m G r a n d s t a f f ( 1 9 8 6 ) o p e n s y m b o l s ) a t p H 4 . 5 c o m -

    p a r e d t o o u r d a ta a t p H 5 f i l led sym bols ) . Circ les a r e r a t e s

    c a l c u l a t e d f r o m M g r e l e a s e ,

    triangles

    a r e r a t e s c a l c u l a t e d

    f r o m S i r e le a s e . N o t e l i n e a r d e p e n d e n c e o f lo g r a t e o n l o g

    o r g a n i c l i g a n d c o n c e n t r a t i o n .

    w i t h r e s u l t s a t 1 0 -1 .3 M f r o m W o g e l i u s a n d

    W a l t h e r ( 1 99 1 ). G r a n d s t a f f ( 1 9 8 6 ) a l s o c o m -

    p l e t e d e x p e r i m e n t s o n o l i v i n e d i s s o l u t i o n i n

    s o l u t i o n s c o n t a i n i n g K H P . T h e a b s o l u t e v a l-

    u e s o f G r a n d s t a f f ' s d a t a d i f f e r f r o m o u r s d u e

    t o d i f f e r e n c e s in c a l c u l a t e d s u r f a c e a r e a s ( s e e

    M u r p h y , 1 9 85 ) . T o c o m p a r e d a t a s et s w e h a v e

    d e c r e a s e d h i s s u r f a c e a r e a s b y a f a c t o r o f 2 0

    w h i c h i n c r e a s e s h i s d i s s o l u t i o n r a t e s b y a f a c -

    t o r o f 2 0 . Fi g. 6 c o m p a r e s G r a n d s t a f f ' s a d -

    j u s t e d r e s u l ts ( o p e n s y m b o l s ) a s a f u n c t i o n o f

    t h e n e g a t i v e l og o f t h e K H P m o l a r i t y o f t h e s o -

    l u t i o n w i t h s o m e o f o u r d a t a ( f il l e d s y m b o l s )

    a t - l o g ( K H P ) = l . 3 . C ir cl es a n d t ri an g le s

    r e p r e s e n t M g r e l e a s e a n d S i r e l e a s e , r e s p e c -

    t i v e l y . G r a n d s t a f f ' s d a t a i n t h i s f i g u r e a r e a ll a t

    p H 4 .5 w h i le o u r m e a s u r e m e n t w a s m a d e a t p H

    5 ; h o w ev e r , t h e r e s u l t s s t i l l ag r ee c l o s e l y .

    R e g r e s s io n a n a l y si s o f G r a n d s t a f f ' s d a t a f r o m

    b e t w e e n l 0 - 4 a n d 1 0 -x M K H P g i ve s a l og r a te

    vs . - l o g ( K H P ) d e p e n d e n c e o f - 0 . 4 5 a s

    s h o w n b y t h e s o l i d l i n e in F i g . 6. S i n c e t h e p H

    o f o u r e x p e r i m e n t s is e q u a l to 5 .0 r a t h e r t h a n

    4 . 5 w e d i d n o t u s e o u r d a t a i n t h e r e g r e s s i o n

    c a l c u l a t io n . I f t h e l i g a n d - p r o m o t e d a n d p r o -

    t o n - p r o m o t e d d i s s o l u t i o n r e a c t i o n s a r e p a r a l -

    l el , t h e n t h e o v e r a l l r a t e c a n b e w r i t t e n a s a s u m

    o f th e o r g a n i c f r e e r a t e l a w a n d t h e o r g a n i c -

    p r o m o t e d r a t e l aw . T h e r e f o r e , t h e r a te l a w fo r

    f o r s t e ri t ic o l iv i n e d i s s o l u t i o n w i t h K H P p r e s -

    e n t i n s o l u t i o n a t m o l a r i t i e s a t ~ 1 0 - x is:

    R F o (

    t oo l c m -

    2 S - 1 ) =

    0 . 8 - 1 0 - 1 2 [ L p ] 0.45

    + 9 . 0 7 - 1 0 - 1 2 a l l +

    0 . 5 4 +

    5.25 10 - 15

    + 2 . 3 3 1 0 - J 7 a H +

    --0.31

    (lO)

    w h e r e

    [ L p ]

    d e n o t e s t h e m o l a r c o n c e n t r a t i o n

    o f p h t h a l at e . I n F ig . 7 w e c o m b i n e G r a n d -

    s t a ff ' s r a te v s. c o n c e n t r a t i o n o f K H P d e p e n -

    d e n c e w i t h t h e r e m a i n d e r o f o u r d a t a t o p r es -

    e n t t h e f o r s t e r i t e d i s s o l u t i o n r a t e l a w a s a

    f u n c t i o n o f p H c o n t o u r e d f o r K H P m o l a li ty .

    T h e s e a r e o u r K H P r e su l ts , w i t h t h e s o l id s y m -

    b o l s a t l o g ( K H P ) = - 1 .3 a n d t h e o p e n s y m -

  • 8/10/2019 1-s2.0-000925419290138U-main

    10/12

    l l 0 R.A. WO GELIU S AND J.V. WALTHER

    I

    - 1 2

    E

    o

    - 1 3

    E

    E

    - 1 4

    I I I I

    K P

    _ _ _ i _ ~ _ ~ ~ 1 1

    2 3 4 5 6

    1 0 - 1 . 3

    1 0 - z - 3

    1 0 - 3 - 3

    1 0 - 4 3

    pH

    F ig . 7 . D e p e n d e n c e o f o l i v i n e d i s s o l u t i o n r a t e l aw o n m o -

    l a ri ty o f K H P a n d s o l u t io n p H .

    Ope n circle

    a n d

    open tr i

    angle

    g i v e t h e r a t e s c a l c u l a t e d f r o m M g r e l e a se a n d S i re -

    l e a s e, r e s p e c t i v e l y , i n a 1 0 - 2 .3 M s o l u t i o n o f K H P .

    S o l i d

    sym bols

    a r e d a t a a t 1 0 - ~3 M K H P ( s e e T a b l e 4 ) . T h e

    solid

    l ine

    i s t h e r a t e l a w f o r f o r s t e r i t i c o l i v i n e a t 2 5 C w i t h o u t

    o r g a n i c s i n s o l u t i o n , t h e

    d a s h e d l in e s

    g i v e t h e r a t e s f o r s o -

    l u t io n s w i t h t h e i n d i c a t e d a m o u n t s o f K H P i n so l u ti o n .

    bols at log(KHP)=-2.3. Again, circles and

    triangles are for Mg and Si release, respec-

    tively. Note that the rate law derived from Fig.

    6 is consis tent with our exper iments at 10- ~.3

    and 10-23 MKHP.

    The 0.45 dependence of the log of the rate

    on the log of the conc entrati on of KHP is sim-

    ilar to the 0.6 slope measure d for olivine in as-

    corbic acid and the slope of ~0.5 5 for olivine

    as a funct ion of all+ in acidic solutions at 25 C

    (Wogelius and Walther, 1991; Blum and Las-

    aga, 1988, respectively). Our ligand-promoted

    mechanism, which we suggest occurs by the

    complexation of the organic compo und with a

    single Mg exposed at the solid surface, predicts

    a 0.5 dependenc e for the log of the dissolution

    rate on the log of the ligand activity.

    6 C o n c l u s i o n s

    Measured dissolution rates of fayalitic oliv-

    ine in experiments unaffe cted by oxidation or

    precipitation are approximately a factor of 6

    greater than those meas ured for forsterite at the

    same pH. Fayalite does show a depende nce on

    the activity of H + similar to that of forsterite

    at acid pH, suggesting that the mec hani sm of

    dissolution may be similar for both end-m em-

    ber compositions even though the magnitudes

    of the rates differ. In contrast to our laboratory

    experiments, at the neutral to basic pH levels

    (5-9) and low mineral surface area to fluid

    volume ratios of most natural surface aquatic

    systems, the dissolution of olivines with high

    fayalite content, while rapid in relation to most

    other silicates, will not add ferrous iron to so-

    lution fas ter than the rate at which tha t Fe will

    be oxidized at present atmospheric Po2. Even

    at pH 5, surface area to volume relationships

    would need to be greater t han 1000 cm 2 of ol-

    ivine per liter of fluid in order for the kinetic

    balance to shift toward transport instead of

    immediate oxidation and precipitation. This

    balance shifts further towards the immobili-

    zation of Fe if in situ oxidation of Fe(II) oc-

    curs at the olivine surface and decreases the

    rate of the hydrolysis reaction, as apparently is

    the case. Exper iments indicate that even at pH

    as low as 2, where the initial dissolution rate is

    orders of magnitude faster than the oxidation

    rate, the precipitation of secondary Fe(III)-

    bearing phases (or in situ oxidation of surface

    Fe) may eventually interfere with the dissolu-

    tion reaction. Thus in most near-surface

    aqueous fluids Fe transport away from olivine

    before precipitation as an (hy dr) oxid e will be

    minimal. This is consistent with the ubiqui-

    tous Fe-oxide phases found along cracks and

    grain boundaries o f most natural olivines that

    have been in contact with aqueous fluids. Our

    results with fayalitic olivine, when compared

    to previous results from forsteritic olivine,

    show that increasing the Fe content of olivine

    increases the dissolution rate of olivine. Be-

    cause the detachment rate of the octahedral

    cations apparently controls the dissolution rate

    of silicates in solutions with acidic pH (Brady

    and Walther, 1989), these measurement s sug-

    gest similar dependencies may exist for other

    Fe-bearing silicate solid solutions. By analogy,

    if substituting Fe for Mg in the octahedral site

    increases the dissolution rate for olivine, the

    same result may hold true for other Fe-Mg

  • 8/10/2019 1-s2.0-000925419290138U-main

    11/12

    OLIVINE DISSOLUTION KINETICS AT NEAR-SURFACE CONDIT IONS 1 ] l

    s o l i d s o l u t i o n s s u c h a s e n s t a t i t e - f e r r o s i l i t e a n d

    d i o p s i d e - h e d e n b e r g i t e .

    A d i s s o l u t i o n r a t e d e p e n d e n c e f o r f o r s t e r i t i c

    o l i v i n e o n t h e c o n c e n t r a t i o n o f s e ve r a l o r g a n ic

    l ig a n d s t o b e t w e e n t h e 0 . 4 a n d 0 . 6 p o w e r s u p -

    p o r t s t h e i d e a t h a t t h e i n c r e a s e o f t h e r a te o c -

    c u r s b y s u r fa c e M g c o m p l e x a t i o n . A b s o l u t e

    v a l u e s o f c h e la t e d r a t es m u s t b e d e t e r m i n e d b y

    e x p e r i m e n t s f o r s p e c i f i c l i g a n d s , b u t w e p r e -

    d i c t t h e f u n c t i o n a l d e p e n d e n c e o n t h e s u r f a c e

    a c t i v i t y o f t h e l i g a n d s h o u l d b e u n i v e r s a l t o o r-

    g a n i c s t h a t i n c r e a s e t h e r a te b y 1 : 1 c o m p l e x i n g

    w i t h M g .

    A s e x p e c t e d , b a t c h e x p e r i m e n t s a t 6 5 C o n

    f o r s t e r i t i c o l i v i n e d e m o n s t r a t e t h a t t h e o l i v i n e

    d i s s o l u t i o n r e a c t i o n i s s t r o n g l y t e m p e r a t u r e

    d e p e n d e n t . A c t i v a t i o n e n e r g i e s 1 9 k c a l.

    m o l - l ) f o r f o r s t er i ti c o l i v i n e d i s s o l u t i o n i n

    a c i d i c a n d n e u t ra l s o l u t i o n s c o m p u t e d b y c o m -

    p a r i n g o u r 6 5 C d a t a t o p r e v i o u s l y p u b l i s h e d

    l o w e r - t e m p e r a t u r e d a t a a r e c o n s i s t e n t w i t h a

    s u r f a c e - c o n t r o l l e d m e c h a n i s m . F i n a l l y , b e -

    c a u s e t h e d i s s o l u t i o n r a t e s m e a s u r e d f o r o l i v -

    i n e a r e a m o n g t h e h i g h e s t r a t e s m e a s u r e d f o r

    c o m m o n s i li c a te s , o u r r e su l ts w i t h o r g a n i c

    a c i d s a n d f a y a l i t i c c o m p o s i t i o n s s u g g e s t t h a t

    o l i v in e d i s s o l u t i o n k i n et i cs m a y d o m i n a t e b o t h

    t h e M g a n d F e m a s s t r a n s f er i n t h e w e a t h e r i n g

    o f n a t u r a l s y s t e m s t h a t c o n t a i n a b u n d a n t

    a m o u n t s o f o l i v in e . E x a m p l e s o f s u c h s y s te m s

    i n c l u d e b a s a l ti c f l o w s , t u f f a n d a s h e m p l a c e -

    m e n t s ; m a f i c a n d u l t r a m a f i c p l u t o n s ; a n d m e -

    t a m o r p h o s e d d o l o m i t i c l i m e s t o n e s.

    A c k n o w l e d g e m e n t s

    T h i s w o r k w a s s u p p o r t e d i n p a r t b y N S F

    g r an t s E A R - 8 7 - 1 9 4 5 7 , E A R - 9 1 - 0 3 4 5 8 , a n d b y

    a N o r t h w e s t e r n U n i v e r s i t y R e s e a r c h F e l l o w -

    s h ip . T h e a u t h o r s w o u l d l ik e t o t h a n k P a t B r a d y

    f o r h e l p w i t h t h e l a b o r a t o r y w o r k a n d f o r n u -

    m e r o u s t h e o r e t i c a l a n d p r a c t ic a l d i s c u s s i o n s ;

    E l a i n e S t r e e t s a n d A r g o n n e N a t i o n a l L a b o r a -

    t o ry f o r t h e B E T m e a s u r e m e n t s ; R i c k K r a m e r

    f o r a s s is t a n ce w i t h t h e S E M w o r k ; B e rn i e W o o d

    for s u p p l y i n g t h e

    Fo91;

    and a careful r e v i e w e r

    for comme nts that impro ved the manuscript.

    R e f e r e n c e s

    Antweiler, R.C. and Drever, J.l., 1983. The weather ing of

    a late Tertiary volcanic ash: importance of organic sol-

    utes. Geochim. Cosmochim. Acta, 47: 623-629.

    Blum, A.E. and Lasaga, A.C., 1988. Role of surface s pe -

    c i a t i on in t h e l o w - t e m p e r a t u r e d i s s o l u t i o n of minerals.

    Nature ( London ), 331 : 431-433.

    Brady, P.V. and Walther, J.V., 1989. Contro ls on silicate

    d i s s o l u t i o n kinetics in neutral and basic pH s o l u t i o n s

    at 25C. Geochim. Cosmochim. Acta, 53: 2823-2830.

    Brunauer , S., Emmet t, P.S. and Teller, E., 1938. Adsorp-

    tion o f gases in mu ltimolecul ar layers. J. Am. Chem.

    Soc., 60: 309-319.

    Carroll-Webb , S.A. and Walther, J.V., 1988. A surface

    complexation model for the pH-dependenc e of corun-

    dum and kaolinite dissolution rates. Geochim. Cos-

    mochim. Acta, 52: 2609-2623.

    Casey, W.H., Westrich, H.R., Arno ld, G.W. and Banfield,

    J.F., 1989. The surface chemistry of dissolving labra-

    dorite feldspar. Geochim. Cosmochim. Acta, 53: 821 -

    832.

    Chou, L. and Wollast, R., 1984. Study of the weathe ring

    of albite at room temperat ure and pressure with a flui-

    dized bed reactor. Geochim. Cosmochim. Acta, 48:

    2205-2217.

    Davison, W. and Seed, G., 1983. The kinetic s of oxida-

    tion of ferrous iron in synthetic and natural waters.

    Geochim. Cosmochim. Acta, 47: 67-79.

    Furrer, G. and S tumm, W., 1983. The role of surface co-

    ordination in t h e d i s s o l u t i o n of ~-A1203 in dilute acids.

    Chimia, 37: 338-341.

    Furrer, G. and Stumm, W., 1986. The coordinati on

    chemistry of weathering, 1. Dissolution kinetics of 6-

    A1203 and BeO. Geochim. Cosmochim. Acta, 50:

    1847-1860.

    Goldich, S., 1938. A s t udy of rock weathering. J. Geol.,

    46:17-58.

    Grands taff, D.E., 1986. The dissolut ion rate of forsteritic

    olivine from Hawaiian beach sand. In: S.M. Colman

    and D.P. Deither (E ditors), Rates of Chemical

    Weathering of Rocks and Minerals. Academic Press,

    Orlando, Fla., pp. 41 -57.

    Helgeson, H.C., Murphy, W.M. and Aagaard, P., 1984.

    Thermodynami c and kinetic constraints on reaction

    rates among minerals and a q u e o u s s o l u t i o n s II. Rate

    constants, effective surface area, and the hydrolysis of

    feldspar. Geochim. Cosmochim. Acta, 48: 2405-2432.

    Huang, W.H. and Keller, W.D., 1970. Dissolution of rock-

    forming silicate minerals in organic acids: simulated

    f irs t - s tage weathering of fresh m ineral surfaces. Am.

    Mineral., 55: 2076-2094.

  • 8/10/2019 1-s2.0-000925419290138U-main

    12/12

    1 1 2 R . A . W O G E L I U S A N D J .V . W A L T H E R

    H u a n g , W . H . a n d K i a n g , W . C . , 1 97 2. L a b o r a t o r y d i s s o -

    l u t i o n o f p l a g i o c l a s e f e l d s p a r s i n w a t e r a n d o r g a n i c

    a c i d s a t r o o m t e m p e r a t u r e . A m . M i n e r a l . , 5 7: 1 8 4 9 -

    1859.

    M a s t , M . A . a n d D r e v e r , J . l . , 1 9 8 7. T h e e f f e c t o f o x a l a t e

    o n t h e d i s s o l u t i o n r a t e s o f o l i g o c l a s e a n d t r e m o l i t e .

    G e o c h i m . C o s m o c h i m . A c t a , 51 : 2 5 5 9 - 2 5 6 8 .

    Mi l l e ro , F . J . , So to long o , S. an d Izagu i r re , M. , 1987 . The

    o x i d a t i o n k i n e t ic s o f F e ( I I ) i n s ea w a t e r. G e o c h i m .

    C o s m o c h i m . A c t a , 5 1 : 7 9 3 - 8 0 1 .

    M u r p h y , W . M . , 1 9 85 . T h e r m o d y n a m i c a n d k i n e t i c c o n -

    s t r a i n ts o n r e a c t i o n r a t e s a m o n g m i n e r a l s a n d a q u e o u s

    s o l u t i o n s . P h . D . D i s s e r t a t i o n , U n i v e r s i t y o f C a l i f o r -

    n i a , B e r k e l e y , C a l i f . ( u n p u b l i s h e d ) .

    Scho t t , J . , Be rne r , R .A . and S j6be rg , E .L . , 1981 . Mec ha-

    n i s m o f p y r o x e n e a n d a m p h i b o l e w e a t h e r in g , I . E x p e r-

    i m e n t a l s t u d i e s o f i r o n - f r e e m i n e r a l s . G e o c h i m , C o s -

    m o c h i m . A c t a , 4 5 : 2 1 2 3 - 2 1 3 5 .

    S i e v e r , R . a n d W o o d f o r d , N . , 1 9 7 9. D i s s o l u t i o n k i n e t i c s

    a n d t h e w e a t h e r i n g o f m a f ic m i n e r a l s. G e o c h i m . C o s -

    m o c h i m . A c t a , 4 3 : 7 1 7 - 7 2 4 .

    W h i t e , A . F . a n d Y e e, A . , 1 9 85 . A q u e o u s o x i d a t i o n - r e d u c -

    t i o n k i n e t i c s a ss o c i a t e d w i t h c o u p l e d e l e c t r o n - c a t i o n

    t r a n s f e r f r o m i r o n - c o n t a i n i n g si l i ca t e s . G e o c h i m . C o s -

    m o c h i m . A c t a , 4 9 : 1 2 6 3 - 1 2 7 5 .

    W o g e l i u s , R . A . a n d W a l t h e r , J .V . , 1 99 1. O l i v i n e d i s s o l u -

    t ion a t 25 C: e f fec t s o f pH , P ~o2, and orga n ic ac ids .

    G e o c h i m . C o s m o c h i m . A c t a , 5 5: 9 4 3 - 9 5 4 .

    W o l e r y , T . J ., 1 98 3. E Q 3 N R . A c o m p u t e r p r o g r a m f o r

    g e o c h e m i c a l a q u e o u s s p e c i a t i o n - s o l u b i l i t y c a l cu l a -

    t i o n s : u s e r ' s g u i d e a n d d o c u m e n t a t i o n . L a w r e n c e L i v -

    e r m o r e N a t l . L a b . , L i v e r m o r e , C a li f . , U C R L - 5 3 4 1 4 .

    Z u t i c , V . a n d S t u m m , W . , 1 98 4. E f f e c t o f o r g a n i c a c i d s

    a n d f l u o r i d e o n t h e d i s s o l u t i o n k i n e t i c s o f h y d r o u s a l -

    u m i n a : A m o d e l s t u d y u s i n g t h e r o t a t i n g d i s c e l e c -

    t r o d e . G e o c h i m . C o s m o c h i m . A c t a , 4 8 : 1 4 9 3 - 1 5 0 3 .