1-s2.0-S0167732214004462-main

Embed Size (px)

Citation preview

  • 7/24/2019 1-s2.0-S0167732214004462-main

    1/4

    Critical behavior of optical birefringence at the nematicsmectic A phase

    transition in a binary liquid crystal system

    Sudipta Kumar Sarkar, Malay Kumar Das

    Department of Physics, North Bengal University, Siliguri 734 013, West Bengal, India

    a b s t r a c ta r t i c l e i n f o

    Article history:

    Received 1 July 2014

    Received in revised form 6 September 2014Accepted 23 September 2014

    Available online 26 September 2014

    Keywords:

    Phase transition

    Binary liquid crystal mixture

    Optical birefringence

    Critical behavior

    Tricritical point (TCP)

    We report the measurement of optical birefringence (n) of a binary liquid crystal system consisting of

    decyloxycyanobiphenyl (10OCB) and heptylcyanobiphenyl (7CB) by means of a high resolution temperature

    scanning technique. The birefringence data are found to be rather successful in studying the nature of the tran-

    sition and the critical behavior at the nematicsmectic A (NSmA) phase transition in these mixtures. In the

    vicinity of NSmA phase transition the optical birefringence (n) data exhibit strong pretransitional

    behavior which gets enhanced as the nematicregion diminishes.The critical exponent (), when plottedagainst

    the McMillan ratio (TNA/TNI), a uniform crossover from second order to rst order behavior have been observed

    with a tricriticalpoint (TCP) atx10OCB = 0.587. The3D-XYlimit for the NSmA phase transition would hypothet-

    ically reach at the McMillan ratio equal to 0.937 for this binary system.

    2014 Published by Elsevier B.V.

    1. Introduction

    The liquid crystalor mesophase is a distinct state of matter observedbetween the isotropic liquid and the crystalline solid. These compounds

    exhibit different types of phase transitions and have been found good

    model systems for testing the general concept of phase transitions and

    critical phenomena. Two of the more common mesophases are the ori-

    entationally ordered nematic (N) and the layered smectic A (SmA)

    phases [1]. The nature of the nematicsmectic A (NSmA) phase transi-

    tion in liquid crystals has been a subject of extensive theoretical and ex-

    perimental studies due to its several interesting features. Duringthe last

    four decades, numerous efforts have been made to determine the uni-

    versalityclass of the NSmA phase transition,yet it remains a majorun-

    solved problem in the eld of soft condensed matter systems. From the

    mean eld approach Kobayashi [2] and McMillan [3] suggested that the

    NSmA phase transition can either be ofrst order or second order de-

    pending on the nematic range. According to McMillan [3], the nature of

    the NSmA phase transition is governed by the parameter TNA/TNI,

    whereTNAandTNIare the nematicsmectic A (NSmA) and nematic

    isotropic (NI) phase transition temperatures respectively. When the

    McMillan ratio (TNA/TNI) exceeds the limiting value 0.87, the nematic

    smectic A (NSmA) phase transition becomes rst order otherwise it

    will be of second order. The crossover from second order to rst order

    nature takes place at a tricritical point (TCP). On the basis of coupling

    between the nematicand smectic order parameters and Landaufree en-

    ergy expansion, de Gennes[1,4]predicted the NSmA phase transition

    to be in the three dimensionalXY(3D-XY) universality class in analogywith the normal-superconducting phase transition. However, Halperin,

    Lubensky and Ma (HLM) [5] envisaged that the NSmA phase transition

    is always rst order in nature owing to the coupling between the ne-

    matic director uctuations and the smectic A order parameter. So the

    idea of tricritical point (TCP) does not arise in this case. Alben[6]sug-

    gested the existence of tricritical point (TCP) in liquid crystal binary

    mixtures. In recent years, several works have been performed on ne-

    maticsmectic A (NSmA) phase transition and its critical behavior

    but different experimental results reveal that the crossover behavior

    from second order to rst order nature of the NSmA phase transition

    is not universal. Even if, the theoretical limiting value of the McMillan

    ratio is 0.87 for the tricritical point (TCP), experimentally it is found to

    lie between 0.942 and 0.994[710].

    In this work, we reportthe phase diagram of a binarysystem consisting

    of two terminal polar liquid crystal compounds decyloxycyanobiphenyl

    (10OCB) and heptylcyanobiphenyl (7CB). From the high resolution

    temperature scanning technique, the optical birefringence (n) for

    seven different concentrations of this binary system has been mea-

    sured. In order to shed some light on the critical nature of the NSmA

    phase transition, the high resolution birefringence data have been

    used. The primary interest is to extract the critical exponent ()

    which determines the order character of the nematicsmectic A (N

    SmA) phase transition and also allow us to nd out the 3D-XYas well

    as the tricritical limit of the NSmA phase transition in this binary

    system.

    Journal of Molecular Liquids 199 (2014) 415418

    Corresponding author.

    E-mail address:[email protected](M.K. Das).

    http://dx.doi.org/10.1016/j.molliq.2014.09.040

    0167-7322/ 2014 Published by Elsevier B.V.

    Contents lists available atScienceDirect

    Journal of Molecular Liquids

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m o l l i q

    http://dx.doi.org/10.1016/j.molliq.2014.09.040http://dx.doi.org/10.1016/j.molliq.2014.09.040http://dx.doi.org/10.1016/j.molliq.2014.09.040mailto:[email protected]://dx.doi.org/10.1016/j.molliq.2014.09.040http://www.sciencedirect.com/science/journal/01677322http://www.elsevier.com/locate/molliqhttp://www.elsevier.com/locate/molliqhttp://www.sciencedirect.com/science/journal/01677322http://localhost/var/www/apps/conversion/tmp/scratch_3/Unlabelled%20imagehttp://dx.doi.org/10.1016/j.molliq.2014.09.040http://localhost/var/www/apps/conversion/tmp/scratch_3/Unlabelled%20imagemailto:[email protected]://dx.doi.org/10.1016/j.molliq.2014.09.040http://crossmark.crossref.org/dialog/?doi=10.1016/j.molliq.2014.09.040&domain=pdf
  • 7/24/2019 1-s2.0-S0167732214004462-main

    2/4

  • 7/24/2019 1-s2.0-S0167732214004462-main

    3/4

    a temperature range of 2 K is shown. As shown in Fig. 3, on both

    sides ofTNA, there is a signicant pretransitional change innon ap-

    proaching the phase transition. This type of pretransitional behavior

    near TNAhas been clearly observed for the other mixtures also. For

    all the mixtures studied, the change in birefringence(n), between

    the nematic and smectic A phases near the transition temperature

    (TNA) varies from 0.0008 to 0.0184. A plot of(n) against the mole

    fraction of 10OCB is shown in the inset ofFig. 3which evidently indi-

    cates that the effect of NSmA coupling increases as the nematic range

    is reduced.

    3.3. Critical behavior at the nematic

    smectic A (N

    SmA) phase transition

    The high resolution birefringence (n) data have beenusedto inves-

    tigate the critical behavior at theNSmA phase transition. At the transi-

    tion temperatureTNA,nvalue do not exhibit a sharp discontinuity, so

    to identify the exact transition temperature we have used theminimum

    value of the temperature derivative of birefringence (n). In order to

    extract the critical exponent () from the birefringence data, a new pa-

    rameter have been dened with the following form[13,14]:

    Q T n T n TNA

    TTNA1

    where n(TNA) is the birefringence value at the transition temperature

    TNAas obtained by differentiating n. An overview of the temperature

    dependence ofQ(T) as determined from Eq. (1), in the immediate vicin-

    ity ofTNAfor different mixtures are shown inFig. 4. It should be noted

    that the peak height ofQ(T) near the transition temperature gradually

    increases with an enhancement in mole fraction of 10OCB. This is obvi-

    ously due to an increase in(n) near the NSmA phase transitiontem-

    perature, which again is induced by an enhancement in strength of the

    coupling between the nematic and smectic order parameters. To deter-

    mine the critical exponent (), a systematic analysis of theQ(T) data

    have been performed by using a simple power law expression with

    the following form[13]:

    Q T A tj j

    B 2

    whereA+and Aare the critical amplitudes and B+and Bare the

    background terms above and below the nematicsmectic A phase tran-sition temperature (TNA), is the critical exponent similar to the specic

    heat critical exponent[13,14]and t= |(TTNA)/(TNA)| is the reduced

    temperature. For all the mixtures under study, the Q(T) values are

    well portrayed by Eq.(2)as indicated by the solid lines in Fig. 4with

    thet parameters listed inTable 1. It should be mentioned that some

    data points very close to the transition temperature (TNA) have been ex-

    cluded from thetting in order to obtain thebestt value of the critical

    exponent ().

    The qualities of thets have been tested by calculating the 2 value

    on either sides of the transition temperature. The2 is determined by

    323 324

    0.155

    0.160

    0.165

    T/ K

    0.2 0.4 0.60.00

    0.01

    0.02

    n)

    (

    x10OCB

    x10OCB= 0.387

    n

    (n)

    Fig. 3. Birefringence (n) as a functionof temperaturein thevicinity ofnematicsmecticA

    phase transition (TNA) temperature forx10OCB= 0.387. The solid lines are lineart to the

    birefringence (n) data. Vertical arrow indicates the change in the birefringence value at

    the transition temperatureTNA. In the inset the change in birefringence (n) at TNAis

    plotted against the mole fraction of 10OCB.

    300 310 320 330 3400.00

    0.02

    0.04

    0.06

    0.08

    T / K

    0.701

    0.587

    0.502

    0.3870.300

    0.255

    Q(T)

    0.205

    Fig. 4.Temperature variation of the parameter Q(T) near the NSmA phase transition at

    different mole fractions of 10OCB. Solid lines are t to Eq.(2)for different mixtures near

    the NSmA phase transition. The tting parameters are given inTable 1.

    Table 1

    The besttted parameter values forQ(T) near NSmA phase transition obtained from t to Eq.(2)and the corresponding 2 associated with the t.

    x10OCB or+ or+ 2 No. of data points

    0.205 Tb TNA 0.00025 0.00002 0.263 0.018 0.00040 0.00001 1.53 107

    T NTNA 0.00034 0.00001 0.266 0.012 0.00030 0.00002 1.47 101

    0.255 T bTNA 0.00043 0.00004 0.330 0.022 0.00095 0.00006 1.17 102

    T NTNA 0.0005 0.00003 0.331 0.006 0.00065 0.00003 1.26 105

    0.300 T bTNA 0.00023 0.00001 0.371 0.028 0.00157 0.00004 1.21 137

    T NTNA 0.00026 0.00003 0.372 0.013 0.00162 0.00008 1.15 127

    0.387 T bTNA 0.00043 0.00001 0.420 0.004 0.00012 0.00001 1.16 201

    T NTNA 0.00023 0.00002 0.422 0.008 0.00269 0.00007 1.22 120

    0.502 T bTNA 0.00049 0.00004 0.467 0.045 0.00031 0.00001 1.20 160

    T NTNA 0.00036 0.00003 0.477 0.008 0.00442 0.00013 1.12 80

    0.587 T bTNA 0.00062 0.00004 0.498 0.014 0.00012 0.00001 1.17 207

    T NTNA 0.00039 0.00004 0.501 0.016 0.0080 0.0007 1.16 61

    0.701 T bTNA 0.00144 0.00002 0.511 0.023 0.0029 0.00008 1.19 214

    T NTNA 0.00136 0.00007 0.511a

    0.00146 0.00008 1.46 40

    a

    was keptxed at 0.511.

    417S.K. Sarkar, M.K. Das / Journal of Molecular Liquids 199 (2014) 415418

    http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B4%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B3%80
  • 7/24/2019 1-s2.0-S0167732214004462-main

    4/4

    the ratio of variance of the t (s2) and the variance of the experimental

    data (2), and can be written as follows[15]:

    2

    s2

    2

    1

    Np

    2

    X

    i

    yifi 2

    3

    where Nis thetotal numberof data points,p is thenumber of adjustable

    parameter andfiis theitht value corresponding to the measurement

    yi. The2 value equal to unity yields an ideal t but values lying be-

    tween 1 and 1.5 correspond to good ts. For our present ts, the2

    value lies between 1.12 and 1.53 which indicates a good t to theQ(T)

    data. The values of the ratio of critical amplitudes (A

    /A+) is in the

    range 0.73

    1.86, while the critical exponentvaries from 0.263 to0.511 within the error limit. The critical exponent was adjusted freely

    in thetting procedure on either sides of the NSmA phase transition

    temperature except forx10OCB= 0.701, for which the value was

    kept xed to 0.511 for TNTNAin order to obtain best t to the data

    points. It is seen that the ts yield nearly equal value ofon both

    sides of the transition temperatureTNA. An average value of the critical

    exponent when plotted against the McMillan ratio (TNA/TNI) shows a

    denite pattern as shown inFig. 5. For the mixturesx10OCB= 0.205 to

    0.502, values are less than that for the tricritical limit (0.5) indicating

    a second order nature of the nematicsmectic A (NSmA) phase transi-

    tion. On the other hand, for the mixture x10OCB= 0.587 a very careful

    analysis yields 0.5 withinthe error limit,whichindeed thetricritical

    limit of NSmA phase transition. An inspection ofFig. 5reveals that as

    the McMillan ratio increases or the nematic range of the mixtures de-creases the critical exponent increases due to the strong coupling be-

    tween the nematic and smectic A order parameters and the narrowing

    of the nematic range results in a crossover behavior at a tricritical

    point (TCP) from second order to rst order transition. In this work,

    the nematicsmectic A (NSmA) phase transition approaches the

    tricritical point (TCP) almost linearly. Therefore, the tricritical point

    (TCP) for this binary system is found to observe atx10OCB= 0.587 for

    the McMillan ratio equal to 0.993. An extrapolation of the polynomial

    t to thevalues (shown by the dashed line in Fig. 5) towards the

    lower end of McMillan ratio yields a TNA/TNI of about 0.937 correspond-

    ing to the 3D-XYlimit (= 0.007) of the NSmA phase transition.

    4. Summary and conclusions

    In this paper a detailed investigation of optical birefringence in the

    nematic and smectic A phases of a binary system were performed by

    means of a high resolution temperature scanning technique. Particular

    emphasis was given to study the pretransitional behavior of birefrin-

    gence in the vicinity of NSmA phase transition. Near the NSmA

    phase transition all the mixtures under study shows a strong

    pretransitional effect which gets enhanced as the nematic region is de-

    creased. Moreover, the high resolution birefringence data have been

    used to assess the order of the NSmA phase transition. The nature of

    nematicsmectic A (NSmA) phase transition remains continuous up

    tox10OCB= 0.502, but it becomesrst order atx10OCB= 0.587. The en-

    hanced coupling between the nematic and smectic order parameters

    change the nature of the N

    SmA phase transition from second orderto rst order with a tricritical point (TCP) atx10OCB= 0.587 for the Mc-

    Millan ratio 0.993. The 3D-XYlimit of the nematicsmectic A (NSmA)

    phase transition for thisbinary system would hypothetically be reached

    at the McMillan ratio equal to 0.937. Therefore, it can be concluded that

    like adiabatic scanning calorimetry and volume thermal expansion coef-

    cient our high resolution optical birefringence data can also be suc-

    cessfully applied to study the order character of the NSmA phase

    transition in liquid crystals.

    Acknowledgement

    We gratefully acknowledge nancial support from Department of

    Science and Technology, New Delhi (Project No: SB/EMEQ-290/2013).

    References

    [1] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. Clarendon, Oxford,1993.

    [2] K.K. Kobayashi, Phys. Lett. A 31 (1970) 125126.[3] W.L. McMillan, Phys. Rev. A 4 (1971) 12381246.[4] P.G. de Gennes, Mol. Cryst. Liq. Cryst. 21 (1973) 4976.[5] B.I. Halperin, T.C. Lubenski, S.K. Ma, Phys. Rev. Lett. 32 (1974) 292295.[6] R. Alben, Solid State Commun. 13 (1973) 17831785.[7] H. Marynissen, J. Thoen, W. van Dael, Mol. Cryst. Liq. Cryst. 97 (1983) 149161.[8] M.E. Huster, K.J. Stine, C.W. Garland, Phys. Rev. A 36 (1987) 23642371.[9] H. Marynissen, J. Thoen, W. van Dael, Mol. Cryst. Liq. Cryst. 124 (1985) 195203.

    [10] K.J. Stine, C.W. Garland, Phys. Rev. A 39 (1989) 31483156.[11] A. Prasad, M.K. Das, J. Phys. Condens. Matter 22 (2010) 195106(1)195106(7).[12] G. Sarkar, B. Das, M.K. Das, U. Baumeister, W. Weissog, Mol. Cryst. Liq. Cryst. 540

    (2011) 188195.[13] S. Erkan, M. Cetinkaya, S. Yildiz, H. Ozbek, Phys. Rev. E. 86 (2012)

    041705(1)

    041705(14).[14] M.C. Cetinkaya, S. Yildiz, H. Ozbek, P. Losada-Perez, J. Leys, J. Thoen, Phys. Rev. E. 88

    (2013) 042502(1)042502(7).[15] P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, 1st ed.

    McGraw-Hill, New York, 1969.

    0.90 0.92 0.94 0.96 0.98 1.00-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    3D-XYUniversality

    1st

    order

    Critica

    lexponent()

    McMillan ratio (TNA/TNI)

    TCP

    Fig. 5.The critical exponent is plotted against the McMillan ratio (TNA/TNI). () repre-

    sents the values averaged over the two values obtained from tting above and below

    the transition temperatureTNA. The vertical bars indicate the error associated with the

    values. Dashed line represents a polynomialt to the values. Upper and lower head ar-

    rows denote the tricritical point (TCP) and the 3D-XYlimit of NSmA phase transition

    respectively.

    418 S.K. Sarkar, M.K. Das / Journal of Molecular Liquids 199 (2014) 415418

    http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0005http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0005http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0010http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0010http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0010http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0015http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0015http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0015http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0020http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0020http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0020http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0025http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0025http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0025http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0030http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0030http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0030http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0035http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0035http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0035http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0040http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0040http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0040http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0045http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0045http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0045http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0050http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0050http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0050http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0055http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0055http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0055http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0065http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0065http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0065http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0065http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0070http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0070http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0070http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0070http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0075http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0075http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_3/image%20of%20Fig.%E0%B5%80http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0075http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0075http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0070http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0070http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0065http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0065http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0060http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0055http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0050http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0045http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0040http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0035http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0030http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0025http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0020http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0015http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0010http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0005http://refhub.elsevier.com/S0167-7322(14)00446-2/rf0005