25
1 Space Radiation Effects Space Radiation Effects Tutorial Tutorial E. De Donder (BIRA) E. De Donder (BIRA) 23/03/2012 at ROB 23/03/2012 at ROB www.spenvis.oma.be www.spenvis.oma.be

1 Space Radiation Effects Tutorial E. De Donder (BIRA) 23/03/2012 at ROB

Embed Size (px)

Citation preview

11

Space Radiation EffectsSpace Radiation Effects

TutorialTutorialE. De Donder (BIRA)E. De Donder (BIRA)

23/03/2012 at ROB23/03/2012 at ROB

www.spenvis.oma.bewww.spenvis.oma.be

22

OutlineOutline

1.1. General overview pictureGeneral overview picture

2.2. Radiation environmentRadiation environment GCR particlesGCR particles Solar particlesSolar particles Trapped particlesTrapped particles Secondary particlesSecondary particles

3.3. Radiation effectsRadiation effects Total Ionizing Dose (TID)Total Ionizing Dose (TID) Displacement Damage (DDD)Displacement Damage (DDD) Single Event Effects (SEE)Single Event Effects (SEE) S/c chargingS/c charging

4.4. Solar storm threat-matrixSolar storm threat-matrix

33

Radiation environment

Plasma environment

Neutral environment

Microparticle environment

+ drag

44

Radiation environment (1/4): Radiation environment (1/4): GCR particlesGCR particles

protons and heavy ions (Z>1, mostly fully ionized)protons and heavy ions (Z>1, mostly fully ionized) E ~ 0.01 – 10E ~ 0.01 – 1033 GeV/n GeV/n modulated by solar cycle, Forbush decrease due to CME modulated by solar cycle, Forbush decrease due to CME anomalous component : 1x ionised He, N, O, Ne, Ar with 10 < E < 100 MeV/n → only anomalous component : 1x ionised He, N, O, Ne, Ar with 10 < E < 100 MeV/n → only

during sol.min.during sol.min.

Energy required to penetrate Earth’s magnetic field (Stassinopoulos et al., 2003)

GCR H & Fe fluxes at LEO, MEO, GEO and GTO (model: ISO 15390 sol. min.)

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1 10 100 1000 10000 100000

E (MeV/n)

Diff

ere

ntial fl

ux

(/m

2/s

r/s/

(MeV

/n))

LEOMEOGEOGTO

Fe

H

SPENVIS-4.5

Magnetic rigidity = momentum per charge

55

Radiation environment (2/4): Radiation environment (2/4): Solar particlesSolar particlesSolar windSolar wind: : electrons, protons, heavy ions (single ionised)electrons, protons, heavy ions (single ionised)

~0.5 – 2.0 keV/n~0.5 – 2.0 keV/n

→ → acceleration to high energies (up to 500 MeV/n and higher) acceleration to high energies (up to 500 MeV/n and higher)

- during solar flares (impulsive SEP event, heavy ion rich) - during solar flares (impulsive SEP event, heavy ion rich)

- by shocks associated to CMEs (gradual SEP event, proton rich)- by shocks associated to CMEs (gradual SEP event, proton rich)

CREME-96 Solar Flare "Worst Day" model (Oct. 1989)

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0.1 1 10 100 1000

E (MeV/n)

Diff

ere

ntial F

lux

(/m

2/s

r/s/

(MeV

/n))

LEO

MEO

GEO

GTO

H

Fe

SPENVIS -4.5

66

Radiation environment (3/4): Radiation environment (3/4): Trapped particlesTrapped particles Electrons : Electrons :

-- 0.04 – 7 MeV 0.04 – 7 MeV - L = ~ 1.5 (inner zone) and 2.8 < L < 12 (outer zone) → highly dynamicL = ~ 1.5 (inner zone) and 2.8 < L < 12 (outer zone) → highly dynamic- solar wind, ionospheresolar wind, ionosphere

Protons : Protons : - - 0.04 – 500 MeV 0.04 – 500 MeV - 1.5 < L < 2.5 1.5 < L < 2.5 - cosmic ray albedo neutron decaycosmic ray albedo neutron decay

SAA: South Atlantic Anomaly / Southeast Asian AnomalySAA: South Atlantic Anomaly / Southeast Asian Anomaly

Polar horns

E.J. Daly, 1996

SPENVIS – 4.5

77

AP-8 proton fluxes (full lines) and AE-8 electron fluxes (dotted lines) at sol. maximum

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

0.01 0.1 1 10 100 1000

E (MeV)

Diff

ere

ntial fl

ux

(/m

2/s

/sr/

MeV

)

LEOMEOGEOGTO

SPENVIS -4.5

88

Radiation environment (4/4): Radiation environment (4/4): Secondary particlesSecondary particles

→ interaction with s/c shielding material

Secondary particle fluence energy spectra after 20-mm aluminum shield for an incident trapped proton spectrum accumulated over one year. The spectra are from a 10 incident protons simulation.

99

GCR and SEP flux satellite (GOES/ACE) data, observed during Halloween event 2003) propagated (with NAIRAS model) to top level atmosphere and cruise altitude (10-12 km). (from C. Mertens, 2010)

→ interaction with atmosphere

1010

MIT OpenCourseWare

1111

Radiation Effects

Energy deposition → Dose in rads (M) or Gy: dE/dm

Space environment dose rate ~10-4 – 10-2 rad/s → low

Long-term effects→ degradation of performance

Short-term effects→ soft and hard errors

Ionisation Dose LET (linear energy

transfer)

Non-ionisation DoseNIEL (non-ionising energy loss)

X fluence

1212

(Adams et al., 1987)

E

MZf(E)LET

2

Summers, 1993.

1313

▪▪ cumulativecumulative long term ionizing damage due to the production of electron – hole pairs long term ionizing damage due to the production of electron – hole pairs

effects: effects: - build up of charges/defects → device degradation- build up of charges/defects → device degradation (e.g. V(e.g. Vthth shift and increasing leakage currents) shift and increasing leakage currents)- DNA damage- DNA damage

▪▪ mainmain source:source: > 0.1 MeV protons (trapped & solar), electrons (trapped)> 0.1 MeV protons (trapped & solar), electrons (trapped)

Radiation Effects (1/4): Total Ionizing Dose (TID)

1414

▪▪ cumulativecumulative long term non-ionizing damage due to the production of Frenkel pairs (vacancies long term non-ionizing damage due to the production of Frenkel pairs (vacancies and interstitials)and interstitials)

effects: effects: lattice defects → parametric degradation (optical devices) like Plattice defects → parametric degradation (optical devices) like Poutout decrease of solar cellsdecrease of solar cells

▪▪ main source: main source: > 150 keV (0.3 – 5 MeV for solar cells) electrons (trapped)> 150 keV (0.3 – 5 MeV for solar cells) electrons (trapped)> 1 MeV (1 – 10 MeV for solar cells) protons (trapped and solar)> 1 MeV (1 – 10 MeV for solar cells) protons (trapped and solar)neutronsneutrons

Radiation Effects (2/4): Displacement Damage Dose (DDD)

1515

SOHO’s Solar Array Degradation History SOHO’s Solar Array Degradation History Solar array degradation: Net loss in two week period 1.1%Solar array degradation: Net loss in two week period 1.1%

1616

▪▪ stochasticstochastic effect caused by the production of effect caused by the production of small, spurious charge pulses within small, spurious charge pulses within electronicselectronics

▪▪ processes: processes: - direct ionization by single particle (heavy ion)- direct ionization by single particle (heavy ion)- induced ionization via nucl. reaction (proton & neutron) - induced ionization via nucl. reaction (proton & neutron)

▪ ▪ effects:effects: → → errorserrors in memory devices like logic change (soft) and burn-out (hard) in memory devices like logic change (soft) and burn-out (hard)

→ lit up of pixels of CCD by creation of free charge→ lit up of pixels of CCD by creation of free charge→ → DNA damageDNA damage

main source: main source: > 10 MeV/n protons (trapped & solar), heavy ions (GCR & > 10 MeV/n protons (trapped & solar), heavy ions (GCR & solar), neutronssolar), neutrons

Radiation Effects (3/4): Single Event Effect (SEE)

H. Becker, et al, IEEE Trans. Nucl. Sci., 49(3082), 2002

charge ~Z2

1717

SOHO image: “snowing on 14 July 2000

October 1989 event

UoSAT-2 ( polar orbit of altitude about 700km)

1818

Radiation Effects (4/4): Radiation Effects (4/4): S/c chargingS/c charging

▪▪ accumulation of electric charge on s/c surface from natural space plasma → accumulation of electric charge on s/c surface from natural space plasma → surface surface chargingcharging

– Main source : Main source : 0.01 – 100 keV electrons0.01 – 100 keV electrons

▪▪ accumulation of electric charge on internal dielectrics from penetrating high-energy accumulation of electric charge on internal dielectrics from penetrating high-energy electrons → electrons → internal dielectric charginginternal dielectric charging

– Main source: Main source: > 100 keV electrons (trapped) - “Killer electrons” > 100 keV electrons (trapped) - “Killer electrons”

▪ ▪ effects: effects: (breakdown) discharges(breakdown) discharges

1919

During substorms, a hot plasma is injected fromthe magnetotail into the nightside high-altitudeequatorial regions. The electrons gradient- curvature drift towardsdawn and can dominate the charge balance on avehicle The hazard arises when adjacent surfaces rise todifferent enough potentials to drive a discharge A discharge can introduce unintended signals oftens of volts amplitude in command and powerlines

High speed solar wind and killer electrons

Surface damage in a C2 MOS Capacitor (Image from JPL)

2020

Summary: Radiation Effects in Space Summary: Radiation Effects in Space

Radiation EffectRadiation Effect Impact on MissionImpact on Mission Space EnvironmentSpace EnvironmentNatural Variation in Natural Variation in

EnvironmentEnvironment

           

surface chargingsurface charging biasing of instrument readingsbiasing of instrument readingspower drainpower drain

physical damagephysical damage

0.01 - 100 keV: electrons0.01 - 100 keV: electrons minutesminutes

surface dosesurface dose changes in thermal, electrical, and optical changes in thermal, electrical, and optical propertiesproperties

UV, atomic oxygen, particle UV, atomic oxygen, particle radiationradiation

minutesminutes

deep-dielectric deep-dielectric chargingcharging

electrical discharges causing physical damageelectrical discharges causing physical damage >100 keV electrons>100 keV electrons hourshours

total ionizing dosetotal ionizing dose performance degradationperformance degradationloss of functionloss of functionloss of missionloss of mission

>100 keV: trapped protons and >100 keV: trapped protons and electrons, solar protonselectrons, solar protons

hourshours

non-ionizing dosenon-ionizing dose degradation of optical components and solar degradation of optical components and solar cellscells

> 1 MeV: trapped protons, solar > 1 MeV: trapped protons, solar protons, neutronsprotons, neutrons

daysdays

single event effectssingle event effects data corruptiondata corruptionnoise on imagesnoise on images

interruption of serviceinterruption of serviceloss of s/closs of s/c

> 10 MeV/n: trapped protons, > 10 MeV/n: trapped protons, solar protons, solar heavy ions, solar protons, solar heavy ions,

GCR heavy ions, neutronsGCR heavy ions, neutrons

daysdays

2121http://www.aero.org/publications/crosslink/summer2003/02_table1.html

2222

Solar Storm: flare, SPE, CME

Enhanced EM Radiation(X, EUV, radio, )

Arrival time: 8 min Effect duration: 1-2 hrs

High Energy Charged Particles

(p+: 10 MeV – 20 GeV)Arrival time: 15 min – few

hoursEffect duration: hours - days

Enhanced B Field/ Plasma Clouds

Arrival time: 2 – 4 daysEffect duration: days

• high-altitude hf radio blackout• high-altitude aircraft radiation• satellite desorientation• s/c electronics damage• s/c solar panel degradation• false sensor readings• launch payload failure• human cell damage • ozon layer depletion

• hf radio blackout• satcom inteference• radar interference• image interference• satellite drag

• hf radio blackout• shift of outer radiation belt• s/c charging• radar false targets• satcom interference• oil and gas pipeline corrosion• electrical power blackouts

→ induced currents→ geomagnetic field distortion

→ increased radiation exposure→ e- density in ionosphere→ expansion atmosphere

2323

Threat Flare SPE CME

Induced currentpower plant outageoil and gas pipelineslong distant communication lines

Geomagnetic field distortionstransient distortionmagnetic pulses

Radiation exposurehumanss/c electronicsair and ground based electronics

Ionospheric Reflectivity and Scintillationscommunicationradarnavigation

Other atmospheric effectsaurora atmospheric envelope expansionshifting radiation beltsozon layer depletion

‘Solar storm threat analysis’  by J.A. Marusek (http://www.breadandbutterscience.com/SSTA.pdf)

Threat matrix

2424

References.References. E.G. Stassinopoulos et al., “A systematical global mapping of the radiation field at aviation altitudes, E.G. Stassinopoulos et al., “A systematical global mapping of the radiation field at aviation altitudes,

Space Weather, Vol. 1, No. 1, 1005, 2003.Space Weather, Vol. 1, No. 1, 1005, 2003. Adams, Jr., et al., “A comprehensive table of ion stopping powers and ranges”, NRL Memorandum Adams, Jr., et al., “A comprehensive table of ion stopping powers and ranges”, NRL Memorandum

Report, 1987.Report, 1987. June, I., et al., “Proton Nonionising Enegy Loss (NIEL) for Device applications”, June, I., et al., “Proton Nonionising Enegy Loss (NIEL) for Device applications”, IEEE Transactions on IEEE Transactions on

Nuclear Science, Vol. 50, No. 6, Dec. 2003Nuclear Science, Vol. 50, No. 6, Dec. 2003 June, I., et al., “Electron Nonionising Enegy Loss (NIEL) for Device applications”, June, I., et al., “Electron Nonionising Enegy Loss (NIEL) for Device applications”, IEEE Transactions on IEEE Transactions on

Nuclear Science, Vol. 56, No. 6, Dec. 2009Nuclear Science, Vol. 56, No. 6, Dec. 2009 C.J. Mertens et al., “C.J. Mertens et al., “Geomagnetic influence on aircraft radiation exposure during a solar energetic Geomagnetic influence on aircraft radiation exposure during a solar energetic

particle event in october 2003, Space Weather 8(S03006): doi:10.1029/2009SW000487 (2010a)particle event in october 2003, Space Weather 8(S03006): doi:10.1029/2009SW000487 (2010a) G. P. Summers, Damage Correlation in Semiconductors Exposed to Gamma, Electron, and Proton G. P. Summers, Damage Correlation in Semiconductors Exposed to Gamma, Electron, and Proton

Radiations, IEEE Trans. Nuc. Sci. 40, pp. 1300, 1993. Radiations, IEEE Trans. Nuc. Sci. 40, pp. 1300, 1993.

2525