58
1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/ OmicsModule1415.html [email protected]

1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html [email protected]

Embed Size (px)

Citation preview

Page 1: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

1

StatisticsAchim Tresch

UoC / MPIPZ Cologne

treschgroup.de/[email protected]

Page 2: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

2

Page 3: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

3

Franziskus, Pope

Andrej Kolmogoroff,Mathematician

Two ways of dealing with uncertainty

Page 4: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

4

Topics

I. Descriptive Statistics

II. Testing

III. Clustering

IV. Regression

Page 5: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

5

What is „data“?

Cases (Samples, Observations)

Endpoints (Variables)Only one item per column!

Meaningful variable names!

Values, instances

of a variable

…Th

e s

am

ple

/ th

e s

am

ple

pop

ula

tion

⊆ p

op

ula

tion

A collection of observationsof a similar structure

Page 6: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

6

Different Scales of a Variable

Categorial VariablesHave only a finite number of instances:Male/female; Mon/Tue/…/Sun

Continuous VariablesCan take values in an interval of the real numbersE.g. blood pressure [mmHg], costs [€]

Nominal data: Categorial variables without a given orderE.g. eye color [brown, blue, green, grey]Special Case: Binary (=dichotomic) variables (yes/no, 0/1…)Ordinal data: Instances are ordered in a natural wayE.g. tumor grade [I, II, III, IV], rank in a contest (1,2,3,…)

Page 7: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

785% shinier hair!

I. Description

Problem:

It is often difficult to map a variable to an appropriate scale:

E.g. metabolic activity, evolutionary success, pain, social status, customer satisfaction, anger

-> Check whether your choice of scale is meaningful!

Page 8: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

8

Value A B AB 0 (absolute) frequency 83 20 10 75 188

relative frequency 44% 11% 5% 40% 100%

Always list absolute frequencies!• Do not list relative frequencies in percent if the

sample size is small (n < 20)• Do not use decimal digits in percent numbers for

n<300• Rule of thumb: Use ca. (log10n) - 2 digits

„Side effects were observed in 14,2857% of all cases“Nonsense, we conclude that n=7!

Description of a categorial variable: Tables

Example: Blood antigens (ABO), n = 188 samples

I. Description

Page 9: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

9

0

5

10

15

20

25

30

35

40

45

A B AB 0

%

Description of a categorial variable: Barplot

I. Description

Rel. fre-

quency

Abs. fre-

quency

10

20

40

80

Page 10: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

10Merkmalsausprägung

Za

hl d

er

lle

-3 -2 -1 0 1 2 3

02

04

06

0

Description of continuous data: Histogram

I. Description

Page 11: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

11

Merkmalsausprägung

Za

hl d

er

lle

-3 -2 -1 0 1 2 3

02

04

06

0

Merkmalsausprägung

Za

hl d

er

lle

-3 -2 -1 0 1 2 3

05

10

15

20

Merkmalsausprägung

Za

hl d

er

lle

-4 -2 0 2 4

05

01

00

15

02

00

The size of the bins (= width of the bars) is a matter of choice and has to be

determined sensibly!

50 bins 4 Balken12 bins

I. Description

Page 12: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Merkmalsausprägung

rela

tive

ufig

keit

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Merkmalsausprägung

rela

tive

ufig

keit

12

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Merkmalsausprägung

rela

tive

ufig

keit

Caution: Data will be smoothed automatically. This is very suggestive and blurs discontinuities in a distribution.

I. Description

Description of continuous data: Density plot

Page 13: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

13

Most important: The Gaussian (=normal) distribution

Expectation value

Standard-deviation

I. Description

C.F Gauss (1777-1855):Roughly speaking, continuous variables that are the (additive) result of a lot of other random variables follow a Gaussian distribution.-> It is often sensible to assume a gaussian distribution for continuous variables.

Page 14: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

14

Measures of Location, Scale and Scatter

Mean: sum of all observations / number of samples

Ex.: observations: 2, 3, 7, 9, 14sum: 2+3+7+9+14 = 35

# observations: 5Mean: 35/5 = 7

Median: A number M such that 50% of all observations are less than or equal to M, and 50% are greater than or equal to M. (Q: What if #observations is even?)

|| | ||| ||| || | || || ||| || | || | || ||| |||| ||| || | || || | || |||| || ||| | || || || || || || | |||| || || ||| | ||| | || || | || | || || || ||||| | || |||| || || || || | || | | | || |||| || || ||| ||| ||| || ||| |||| || | || || | | ||| | || ||||| || ||| | ||| | ||| || || | | | | || |||

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

d

rep

(0, le

ng

th(d

))

50% 50%

I. Description

Page 15: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

rel. H

äu

fig

ke

it

0 1 2 3 4

02

00

04

00

06

00

08

00

01

00

00 Mode: A value for which the

density of the variable reaches a local maximum. If there is only one such value, the distribution is called unimodal, otherwise multimodal. Special case: bimodal)

The mode usually is an unstable description of a sample.

15MeanMedian

I. Description

Description of Location, Scale and Scatter

Mode

Page 16: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

16

Distribution Shapes

SymmetricMean Median

Skewed to the rightMedian << Mean

Skewed to the leftMean << Median

I. Description

Page 17: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

17

The median should be preferred to the mean if• the ditribution is very asymmetric• there are extreme outliers

The skewness g of the distribution ranges between–1 und +1, i.e. the distribution is approx. symmetric.

skewness g > 0

skewness g < 0

0 1 2 3 4 5

-2

-1

01

2

d

rep(0, length(d))

The mean is more „precise“ than the median if the distribution is approximately normal

Rule of thumb:

Right skew:

Left skew:

I. Description

Page 18: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

18

How would you describe this distribution?

I. Description

Page 19: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

19

„…it showed a giant boa swallowing an elephant. I painted the inside of the boa to make it visible to the adults. They always need explanations.“

Antoine de Saint-Exupéry, Le petit prince

Unexpected distributionshave unexpected causes!

I. Description

Page 20: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

20

More measures of location

Quantile: A q-quantile Q (0≤q≤1) splits the data into a fraction of q points below or equal to Q and a fraction of 1-q points above or equal to Q.

|| | ||| ||| || | || || ||| || | || | || ||| |||| ||| || | || || | || |||| || ||| | || || || || || || | |||| || || ||| | ||| | || || | || | || || || ||||| | || |||| || || || || | || | | | || |||| || || ||| ||| ||| || ||| |||| || | || || | | ||| | || ||||| || ||| | ||| | ||| || || | | | | || |||

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

d

rep

(0, le

ng

th(d

))

50% 50%Median = 50%-quantile

|| | ||| ||| || | || || ||| || | || | || ||| |||| ||| || | || || | || |||| || ||| | || || || || || || | |||| || || ||| | ||| | || || | || | || || || ||||| | || |||| || || || || | || | | | || |||| || || ||| ||| ||| || ||| |||| || | || || | | ||| | || ||||| || ||| | ||| | ||| || || | | | | || |||

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

d

rep

(0, le

ng

th(d

))

25% 25%1.quartile =

25%-quantile

25% 25%3.quartile =

75%-quantile

1-quantile =

maximum

0-quantile =

minimum

I. Description

Page 21: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

21

The five-point Summary and the Boxplot

|| | ||| ||| || | || || ||| || | || | || ||| |||| ||| || | || || | || |||| || ||| | || || || || || || | |||| || || ||| | ||| | || || | || | || || || ||||| | || |||| || || || || | || | | | || |||| || || ||| ||| ||| || ||| |||| || | || || | | ||| | || ||||| || ||| | ||| | ||| || || | | | | || |||

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

d

rep(

0, le

ngth

(d))

I. Description

Page 22: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

22

How far do the observations scatter around their „center“(=measure of location)?

Measures of Variation

large variationsmall variation

Location measure

e.g.: location = Median variation = 3.quartile – 1.quartile

= Interquartile range (IQR)

I. Description

Page 23: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

23

Measures of Variation

x~ jx

|~| xx j

e.g.: location = median variation = mean deviation (MD) from

=

x~

n

jj xx

n 1

|~|1

x~

e.g.: location = median variation = median absolute deviation,MAD

from njxx j ,...,1 , |~| Median

x~

I. Description

x~

Page 24: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

24

Mean ± s contains ~68% of the data

Mean ± 2s ´´ ~95% ´´

Mean ± 3s ´´ ~99.7% ´´ x-s x x+s

Measures of Variation

Numbers for Gaussian variables:

z.B.: location = mean variation = mean squared deviation

from

=

= varianceOr: variation = square root of the variance

= standard deviation (s, std.dev)

x

n

jj xx

n 1

2)(1

x

I. Description

Page 25: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

25

Histogram/Density Plot vs. Boxplot

Boxplot contains less information, but it is easier to interpret.

I. Description

1

3

2

4

Page 26: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

26

Multiple Boxplots I. Description

Sample: 2769 schoolchildren

Page 27: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

27

Always report the sample size!

a) numericalMedian, Q1, Q3, Min., Max. (5-summary) for symmetric distr. alternatively: mean, standard deviation

b) graphical

Boxplots, histograms, density plots

c) textuale.g. „Blood pressure was reduced by 12 mmHg (Interquartile range: 8 to 18 mmHg = 10mmHg), whereas the reduction in the placebo group was only3 mmHg (IQR: –2 to 4 mmHg = 6mmHg).“

SummaryI. Description

Page 28: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

28

Cross Table

Person Medication Response

A Verum yes

B Placebo no

Two categorial variables: Cross Tables

Data

I. Description

Page 29: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

29

Cross Tablevalues of variable 2

values of variable 1(potential causes)

(potential effects)

I. Description

Two categorial variables: Cross tables

Person Medication Response

A Verum yes

B Placebo no

Data

Page 30: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

30

Cross TableResponse

yes no

Medi-cation

Verum

Placebo

values of variable 2

values of variable 1(potential causes)

(potential effects)

Each case is one count in the table

I. Description

Two categorial variables: Cross tables

Person Medication Response

A Verum yes

B Placebo no

Data

Page 31: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

31

Cross TableResponse

yes no

Medi-cation

Verum 1 0

Placebo 0 1

values of variable 2

values of variable 1(potential causes)

(potential effects)

I. Description

Two categorial variables: Cross tables

Each case is one count in the table

Person Medication Response

A Verum yes

B Placebo no

Data

Page 32: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

32

Cross TableResponse

yes no

Medi-cation

Verum 1 0

Placebo 0 1

values of variable 2

values of variable 1(potential causes)

(potential effects)

The most common question is:Are there differences between █ and

█ ?

I. Description

Two categorial variables: Cross tables

Page 33: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

33

Absolute number, row-, column percent

ResponseTotal

yes no

Medi-cation

Verum20

50%, 67%20

50%, 40%40

50%

Placebo10

25%, 33%30

75%, 60%40

50%

Total 30, 37% 50, 63% 80, 100%

Cross Table: n = 80 cases

I. Description

Two categorial variables: Cross tables

Page 34: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

34

What‘s bad about this table?

I. Description

Two categorial variables: Cross tables

Page 35: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

35

Cross tables:Independent vs. paired data

independent data

paired data

Person Medication Response

A Verum yes

B Placebo no

Person Medic.: VerumMedic.: Placebo

A yes yes

B yes no

Paired data: One object (or two closely related objects) serves for the measurement of two variables of the same kind.Exercise: The influence of diet on body height is assessed in 1) a study with 100 randomly picked subjects. 2) a study with 50 identical twins that grew up separately. Write down the cross tables. Which study is probably more informative?

I. Description

Page 36: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

36

Cross TableMedic.: Placebo

yes no

Medic.: Verum

yes 1 1

no 0 0

values of variable 2

values of variable 1

I. Description

Cross tables:Paired data

paired data

Person Medic.: VerumMedic.: Placebo

A yes yes

B yes no

Page 37: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

37

Cross tableMedic.: Placebo

yes no

Medic.: Verum

yes 1 1

no 0 0

values of variable 2

values of variable 1

A typical question is:

concordant observations

discordant observations

Are the observations concordant or discordant?Is there a particularly large number in █ or █ ?

I. Description

Cross tables:Paired data

Page 38: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Comparison of two global gene expression measurements

Absolute scale Double logarithmic scale

y = ½ x

y = ¼ x

y = 2x

y = 4x

y = ½ x

y = ¼ x

y = 2x

y = 4x

Advantages of double log scale:

• Skewed distributions appear more evenly spread across the plot• Loci of fixed expression folds are lines parallel to the main diagonal

Scatterplot I. Description

Two continuous variables: Scatter Plots

Page 39: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Advantages of the MA-Plot:• Lines of constant expression folds are parallel to the x-axis.• Differences between channel 1 and channel 2 can easily be read off

the plot. Intensity-dependent systematic errors can be detected.

1 10 100 1000 10000

11

01

00

10

00

10

00

0

x

y

0 2 4 6 8 10

-4-2

02

4

log(x * y)/2

log

(y/x

)

turn by 45o

log

(fo

ld r

atio

of y

an

d x

)

log (geometr. Mean of x and y)

Scatterplot vs. M-A-plot I. Description> x = log(exprs[,1])> y = log(exprs[,2])> plot(x,y)

> xMA =(x+y)/2> yMA = y - x> plot(xMA,yMA)

log (x)

log

(y)

There is a mistake in these plots (compare left and right plot)!

Page 40: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

No visible bias (=systematic error)

Channel 2 differs from channel 1 by a

constant factor

multiplicative bias

M-A-plot I. Description

Page 41: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

How to quantify such a relation between x and y?

Example

Korrelation I. Description

Dependence of two continuous variables

Page 42: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

The Pearson correlation coefficient r

measures the degree of linear dependence of two variables

Properties:

-1 ≤ r ≤ +1

r = ± 1: perfect linear dependence

the sign of r indicates the direction of the dependence

r is symmetric, i.e., rxy=ryx

Pearson Korrelation I. Description

r=1

r=1

r= -1

Page 43: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Pearson Korrelation I. Description

The smaller the absolute value of r, the weaker the linear dependence

Page 44: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Pearson Korrelation I. Description

The smaller the absolute value of r, the weaker the linear dependence

Page 45: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Pearson Korrelation I. Description

The smaller the absolute value of r, the weaker the linear dependence

Page 46: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Pearson Korrelation I. Description

The smaller the absolute value of r, the weaker the linear dependence

Page 47: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Pearson Korrelation I. Description

The smaller the absolute value of r, the weaker the linear dependence

Page 48: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Pearson Korrelation I. Description

The smaller the absolute value of r, the weaker the linear dependence

Page 49: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

rxy = 0,38 rxy = 0,84

Example: Relation between height and weight resp. Arm length

The closer the points scatter around a line, the larger the absolute value of r.

Pearson Korrelation I. Description

Page 50: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

What is the value of r in these cases?

Pearson correlation has difficulties in recognizing non-linear dependencies.

r ≈ 0

r ≈ 0r ≈ 0

Pearson Korrelation I. Description

Page 51: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Spearman correlation measures monotonic dependencies.X

Y

Rang(X)

Ra

ng

(Y)

Idea: Calculate the pearson correlation coefficient of the rank transformed data Spearman-Korrelation s

X

Y

rank

(Y)

rank(X)

r = 0,88 s = 0,95

Korrelation

Pearson correlation Spearman correlation

I. Description

Page 52: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Raw

dat

a

Pearson vs. Spearman Korrelation I. Description

Page 53: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Pearson correlation

NM_001767NM_001767 NM_000734NM_000734 NM_001049NM_001049 NM_006205NM_006205

NM_001767NM_001767 1.00000000 0.94918522 -0.04559766 0.04341766

NM_000734NM_000734 0.94918522 1.00000000 -0.02659545 0.01229839

NM_001049NM_001049 -0.04559766 -0.02659545 1.00000000 -0.85043885

NM_006205NM_006205 0.04341766 0.01229839 -0.85043885 1.00000000

Pearson vs. Spearman Korrelation I. Description

Page 54: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Ran

k tr

ansf

orm

ed d

ata

Pearson vs. Spearman Korrelation I. Description

Page 55: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

NM_001767NM_001767 NM_000734NM_000734 NM_001049NM_001049 NM_006205NM_006205

NM_001767NM_001767 1.00000000 0.9529094 -0.10869080 -0.17821449

NM_000734NM_000734 0.9529094 1.00000000 -0.11247013 -0.20515650

NM_001049NM_001049 -0.10869080 -0.11247013 1.00000000 0.03386758

NM_006205NM_006205 -0.17821449 -0.20515650 0.03386758 1.00000000

Spearman correlation

Pearson vs. Spearman Korrelation I. Description

Page 56: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Conclusion: Spearman correlation is more robust against outliers. However in case of linear dependence, it is less sensitive than Pearsion correlation.

Pearson vs. Spearman Korrelation

Raw data Rank transformed data

I. Description

Page 57: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Quantile-Quantile plot (qq-plot). For the comparison of two distributions (of x and y), plot the quantiles of the x distribution against the corresponding quantiles of the y distribution.

QQ-plot

Q(uantile)-Q(uantile) Plots I. Description

Page 58: 1 Statistics Achim Tresch UoC / MPIPZ Cologne treschgroup.de/OmicsModule1415.html tresch@mpipz.mpg.de

Interpretation:

Unsimilar distributions:qq-plot is not linear, in

particular not in the center of the qq-line.

Similar Distributions except for the tails,

the tails of the y distribution are

“heavier”

Q(uantile)-Q(uantile) Plots I. Description

Similar Distributions except for the tails,

the tails of the x distribution are

“heavier”