43
1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus 2 Khalina Abdan 2 1 Faculty of Engineering, Universitas Negeri Jakarta, Indonesia 2 Faculty of Engineering, Universiti Putra Malaysia. SugarAsia 2012 Bangkok, 16-17 ay 2012

1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

Embed Size (px)

Citation preview

Page 1: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

1

Sugarcane bagasse- filled poly (vinyl chloride) composites:

An alternative use of sugarcane bagasse

Riza Wirawan1

Mohd. Sapuan Salit2

Robiah Yunus2

Khalina Abdan2

1Faculty of Engineering, Universitas Negeri Jakarta, Indonesia2Faculty of Engineering, Universiti Putra Malaysia.

SugarAsia 2012

Bangkok, 16-17 ay 2012

Page 2: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

2

What is poly (vinyl chloride) PVC?Source:

– Chlorine (56.8%): NaCl– Hydrocarbon: ethylene

less affected by the cost of petroleum and natural gas than other polymer

Atomic mass: Cl=35.5; H=1; C=12

Page 3: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

3

Why (PVC)?• Advantages

– low cost– easy to fabricate – high durability– outstanding chemical resistance to wide range of corrosive

fluids – offer more strength and rigidity than most of the other

thermoplastics

Widely used!

Page 4: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

4

HDPE LDPE PS PP PVC PET0

200

400

600

800

1000

1200

955 970

825855

670

1000

Materials

Pric

e (U

SD/M

T)

Why (PVC)? Price of Thermoplastics (March 2009)*

*http://www.plastemart.com

Page 5: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

5

• Disadvantages: Safety and environmental issues– Vinyl chloride (VC) is reported can make serious

health problem – When PVC is processed, it produces hydrogen

chloride and dioxins => damage the atmosphere The issues have provoked environmental

groups to criticize concerning its mass utilization!

Page 6: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

6

Ban PVC?– many factories will be closed– many labours will loose their jobGenerates many social problems*

*especially in developing countries

PVC

Page 7: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

7

An alternative: Mixing PVC with natural fibre, as natural fibre/PVC composites:

– reduce the utilization of PVC– reduce its inconveniences while conserving its

advantages

Page 8: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

8

What is sugarcane bagasse (SB)?Chemical contents of bagasse:

– cellulose (35-40%)– natural rubber (20-30%)– lignin (15-20%)– sucrose (10-15%)

Fibre can be found in two parts of bagasse: – inner (pith)– outer (rind)

Vilay V., Mariatti M., Taib R., and Todo M. (2008). Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Composites Science and Technology , 68(3-4), 633–638.

Page 9: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

9

Why SB?– One of the natural fibres: environmental friendly– It is a residue (low cost)– the availability of it, as a waste, is high– Worldwide production of sugarcane: Over 1.4 billion (109) tonnes

per year**

Utilization of sugarcane bagasse may contributes to environmental and economic development.

*Lee, S.C and Mariatti, M. (2008). The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites. Materials Letters. 62, 2253–2256* * FAO. Food and Agricultural Commodities Production. http://ww.fao.org, retrieved on 23 January 2010.

Page 10: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

10

Potential applicationTrend of natural fibre composites: thermoset thermoplastics

Demand:

• window/door profiles, • fencing/siding/railings, • furniture, • flooring, • automotive interior parts, • pallets/crates/boxes, • marine components,• electrical plugs,• wiring ducts.

Kline & Company, inc. (2000). Opportunities for Natural Fibers in Plastic Composites, 2000, http://www.marketresearch.com., retrieved on October 14th 2008.

Page 11: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

11

The challenges• Pith or Rind? • Compatibility?• Effect of thermal history & recyclability?

Page 12: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

12

Fibre TreatmentFibre Content

Reinforcement Effect* Source

s E

Wood Nontreated - + Djidjelli et al. 2002; Ge et al (2004)

Wood PMPPIC + + Kokta et al. 1990;

Bamboo Silane - + Ge et al. 2004

SisalMaleic

Anhydride - + Djidjelli et al. 2007

Oil Palm Nontreated - + Abu Bakar et al. 2005

Oil Palm Acrylic - + Abu Bakar et al. 2005Rice Straw NaOH - N/A Kamel 2004Sugarcane Bagasse Benzoic Acid + + Zheng et al. 2007

* + represents increasing of the property with the increasing of fibre content - represents decreasing of the property with the increasing of fibre content

Effect of fibre content to mechanical properties of natural fibre PVC composites

Abu Bakar, A., A., H., and A.F.M., Y. (2005). Mechanical and thermal properties of oil palm empty fruit bunch-filled unplasticized poly (vinyl chloride) composites. Polymers and Polymer Composites , 13 (6), 607-617.

Djidjelli H., Vega J.J.M., Farenc J., Benachour D. (2002). Effect of wood flour content on the thermal, mechanical and dielectric properties of poly(vinyl chloride). Macromolecular Materials and Engineering, 287(9), 611–618.

Kamel S. (2004). Preparation and properties of composites made from rice straw and poly (vinyl chloride) (PVC). Polymers for Advanced Technologies , 15(10), 612-616Kokta B.V., Maldas D., Daneault C., and Beland, P. (1990). Composites of polyvinyl chloride-wood fibers. I. effect of isocyanate as a bonding agent. Polymer-plastics Technology and Engineering, 29 (1-2), 87-118.Zheng Y.-T., Cao D.R., Wang D.S., and Chen, J.-J. (2007). Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC. Composites: Part A , 38 (1), 20-25.

Page 13: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

13

Thermal HistoryThermal history affects the morphology of polymer (i.e. degree of crystallinity). In SB/PVC composites?

RecyclabilityOne of the thermoplastic’s advantages against thermoset is the recyclability. In SB/PVC composites?

Page 14: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

14

• to investigate the effect of fibre loading and fibre source (pith and rind) on the mechanical properties of SB/PVC composite.

• to investigate the effect of fibre loading and fibre source (pith and rind) on the thermal properties of SB/PVC composite.

• to determine the influence of various chemical treatments on the tensile properties of SB/PVC.

• to examine the influence of thermal history on the tensile properties of SB/PVC composite.

Objectives

Page 15: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

15

Materials• PVC: unplasticised poly (vinyl chloride)

compound (PVC) IR045A supplied by Polymer Resources Sdn. Bhd., Kelang, Selangor, Malaysia.

• SB: residue of the sugarcane milling process gathered from sugarcane juice makers in Malaysia

Page 16: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

16

Start

specimen preparation

fibre preparation PVC preparation

material characterizations

Conclusion

literature study

composite processing

Heat Treatment

recycling

data analysis

GeneralFlow Chart

Page 17: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

17

Pith RindPVC

Pith/PVC Rind/PVC

10 20 30 40 10 20 30 40

• Tensil

e•

Density

• Tensile• Impact• Flexural

• DMTA• Water absorption

• Thickness swelling

• Density

• Tensil

e•

Density

Page 18: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

18

Single fibre tensile test

Page 19: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

19

Single fibre tensile test:Weibull distribution

0,exp1)(0

m

F

s0 is Weibull scale parameter or the characteristic stress value

m is Weibull parameter that measures the variability of the fibre

strength. Larger value of m means smaller scatter in strength value.

The cumulative failure probability,

Page 20: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

20

Single fibre tensile test:Weibull distribution

Where n is the number of fibres that failed at or below a certain value of stress.

N is the total number of fibres measured

N

nPi

5,0

The cumulative failure probability, Pi, under a particular strength was approximated by

Li, Y., Hu, C., and Y. Yu. 2008. Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites. Composites: Part A , 39, 570-578.

Page 21: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

21

Single fibre tensile test:Weibull distribution

Failure probability distribution of SBF at certain tensile stress

0,lnln1lnln ommP

m = 2.6028 and s0 = 187.32 MPa

Page 22: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

22

    Weibull Parameter

Value Variability

Tensile Strength (Mpa)    

Pith 52.35 2.56

Rind 187.32 2.60

Young's Modulus (Mpa)  

Pith 2147.42 4.16

Rind   10174.49 2.68

Maximum Strain (%)

Pith 3.80 2.79

Rind   3.28 4.12

Page 23: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

23

Tensile test of PVC and composites

Page 24: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

24

Impact test of PVC and composites

0 10 20 30 400

1

2

3

4

Pith

Rind

Impa

ct E

nerg

y (k

J/m

2)

Fibre Content (%)

Page 25: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

25

Flexural test of PVC and composites

0% 10% 20% 30% 40%0

10

20

30

40

50

60

70

PithRind

Flex

ural

str

engt

h (M

Pa)

Fibre Content

0% 10% 20% 30% 40% 50% 60%0

500

1000

1500

2000

2500

3000

3500

4000

PithRind

Flex

ural

mod

ulus

(M

Pa)

Fibre Content

Page 26: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

26

Fibre loading & fibre source vs thermal properties

Pith RindPVC

Pith/PVC Rind/PVC

10 20 30 40 10 20 30 40

DMTA

Page 27: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

27

20 30 40 50 60 70 80 90 100 110 1200

2000

4000

6000

8000

10000

12000

14000

Temperature (oC)

Stor

age

Mod

ulus

(MPa

)

0

1020

30

40

DMTA of PVC and composites

20 30 40 50 60 70 80 90 100 110 1200

2000

4000

6000

8000

10000

12000

14000

Temperature (oC)

Stor

age

Mod

ulus

(MPa

)10020

30

40

pith

rind

Page 28: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

28

C coefficient

matrix'

'composite

''

REGE

REGE

C

the effectiveness of fillers on the modulus of the composites*

measured E’ values at 60 and 100 oC were employed as E’G and E’R, respectively

*L. A. Pothan, Z. Oommen and S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites, Composites Science and Technology (2) 63 (2003), 283-293

Lower value=more effective

Page 29: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

29

DMTA of PVC and composites

pith

rind

Page 30: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

30

Peak width of loss modulus

matrix

Interface layerFibre

Volume of interface layer.

Page 31: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

Bagasse

Washing (sugar removal)

Alkali treatment

Untreated

Benzoic acid treatment

PMPPIC treatment

PMPPICAlkaliBenzoic Acid Washed

Composite processing

Page 32: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

32

Untreated Benzoic Acid

Alkali PMPPIC Untreated05

101520253035404550

0

200

400

600

800

1000

1200

1400

16 17

2528

44

957858

980 1013

1318Tensile strengthTe

nsile

str

engt

h (M

Pa)

Tensile modulus (M

Pa)

UnwashedSugar-free

Tensile test of composites after various treatments

Page 33: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

33

SEMa: washed

b: unwashed

Page 34: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

34

SEM

SEM micrograph of (a) unwashed, (b) untreated sugar-free, (c) benzoic acid treated, (d) alkali treated, and (d) PMPPIC treated SB/PVC composites

Page 35: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

Material preparation

Melt mixing Hot pressing

AnnealingQuenching

Tempering at 60 oC (30 min)

Quenching Annealing

HP-Q HP-A

T-AT-Q

Page 36: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

36

HP-Q HP-A T-Q T-A0

5

10

15

20

25

30

35

40

45

50

39.27 39.6338.27 38.81

47.44938

26.89955

44.11516

36.44446

PVC Composites

Ten

sile

str

engt

h (M

Pa)

Tensile strength of heat-treated PVC and composites

• No effect to the tensile strength of PVC• Significant effect to the tensile strength of composite (especially for HP-A)

Page 37: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

37

HP-Q HP-A T-Q T-A0

200

400

600

800

1000

1200

1400

884 885 880 874

1,318

888

1,2851,219

PVC Composite

Ten

sile

Mod

ulus

(M

Pa)

• No effect to the tensile modulus of PVC• Significant effect to tensile modulusof composite (especially for HP-A)

Tensile modulus of heat-treated PVC and composites

Page 38: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

38

HP-Q HP-A T-Q T-A0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.552

0.402

0.738

0.534

Stra

in a

t bre

ak (

mm

/mm

)

HP-Q HP-A T-Q T-A0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.054

0.0600.056

0.060

Stra

in a

t bre

ak (

mm

/mm

)

Strain at break of heat-treated PVC and composites

•Significant effect to the strain at break of PVC•No significant effect to strain at break of composite.

Page 39: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

39

Recycling

T-Q-R

T-A-R

HP-A-R

HP-Q-R

T-Q T-AHP-A

HP-Q

Melt mixing

Hot pressing

Quenching

Page 40: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

40

HP-Q HP-A T-Q T-A0

5

10

15

20

25

30

35

40

45

50

Composite Recycled

Ten

sile

str

engt

h (M

Pa)

HP-Q HP-A T-Q T-A0

200

400

600

800

1000

1200

1400

Composite Recycled

Ten

sile

mod

ulus

(M

Pa)

Page 41: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

41

HP-Q HP-A T-Q T-A0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.054

0.0600.056

0.060

0.0490.054

0.0550.056

Composite Recycled

Stra

in a

t bre

ak (

mm

/mm

)

Page 42: 1 Sugarcane bagasse- filled poly (vinyl chloride) composites: An alternative use of sugarcane bagasse Riza Wirawan 1 Mohd. Sapuan Salit 2 Robiah Yunus

42

• Best tensile strength and modulus: 40% rind/PVC. However, its impact strength is lower than that of unfilled PVC.

• Pith/PVC offers higher thermal stability. Thermal stability of pith/PVC composites increased with the increase of fibre content.

•Best treatment: no treatment• Among all of the studied thermal histories, quenching process offers the

highest tensile properties of SB/PVC composites. Cooling of PVC at a lower rate resulted in lower strain at break, while low-rate cooling on SB/PVC composite resulted in lower tensile strength and modulus.

Conclusions