1-Thermoanalytical Mehtods in Clay Studies

Embed Size (px)

Citation preview

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    1/25

    5

    Chapter

    1

    THERMOANALYTICAL METHODS

    IN

    CLAY STUDIES

    Robert C. MACKENZIE

    The Macaulay Institute for Soi

    1.1 INTRODUCTION

    There is nothing new in the

    315 BC, Theophrastus refers to

    Research,

    Craigiebuc l er

    ,

    Aberdeen

    ,

    Scot1 nd

    , UK.

    thermal study of clays. Indeed, as early as about

    the effect of fire

    (i.e.

    heat) on talc

    (as

    steatite) and on palygorskite (as mountain wood ) (Eichholz, 1965) and

    development in the use

    of

    heat as a discriminator can be traced from that time

    on (Mackenzie, 1981a).

    some as a relatively recent technique for clays, has its roots in the eighteenth

    century, when the Rev. Stephen Hales

    (1727) found that a cubick inch of fresh

    un t r i e

    earth

    (his italics) yielded 43 cubick inches of air on heating and

    Josiah Wedgwood

    (1782)

    detected

    only

    carbon dioxide

    on

    firing china clay in a

    closed system, the evolved water having condensed and gone unnoticed.

    The first thermoanalytical

    study of clays was performed in 1887,when Henri

    Le Chatelier recorded what were essentially heating-rate curves for halloysite,

    allophane, kaolinite, pyrophyllite and montmoril lonite, over the approximate

    temperature range 20-llOO°C, in an attempt to use their behaviour on heating as

    a classificational criterion.

    remarkably authentic - surely

    a

    tribute to the mineralogists o f the time who had

    none of the modern methods of diagnosis available to them.

    differences observed, ittle advance, apart from the pub1 ication of some so-called

    dehydration curves (Samoilov,

    1909

    and some heating curves (e.g. Mellor and

    Holdcroft,

    1911;

    Ashley, 1911; Brown and Montgomery, 1912), occurred until Wallach

    in

    1913

    first applied differential thermal analysis (DTA) to clays.

    however, seems to have elicited little response and, although the OTA studies

    o f

    Satoh 1918,1921) aroused more attention, it was not until the early 19405,

    subsequent to the detailed studies of Norton

    (1939)

    and Hendricks and Alexander

    (1939),

    that DTA blossomed forth as an investigational technique.

    simple:

    at that period clays excited much interest as the general structure of

    the clay minerals had been establisned and the species collected into groups, with

    the reLult that methods of identification and estimation additional or complementary

    to X-ray diffraction were being sought.

    application of DTA to problems that it could not possible solve,and even the use

    of

    unsuitable equipment and technique, led to the method being discarded by some

    as useless in clay mineralogy.

    However, by no means all clay mineralogists were

    Even evolved gas analysis, which would be considered by

    His results suggest that the samples used were

    Despite the

    Even this,

    The reason is

    Unfortunately, the indiscriminate

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    2/25

    6

    so d i s i l l u s i o n e d a nd much p a i n s t a k in g wo rk o ve r t h e ye a rs (by e.g. R a lph

    E .

    G r i m ,

    Paul F . Kerr , To sh io Sudo and o t he rs ) g ra d u a l l y demonstra ted t h a t DTA d i d have a

    p la ce i n c l a y m i n e r a l o g i c a l s t u di e s .

    i n t h e p a rag rap h a b ove )

    s h o u ld be s e p a r at e d f r o m p u r e l y t he r m a l s t u d i e s ( r e f e r r e d

    t o i n t he

    f i r s t

    p a rag rap h ) . The re aso n i s t h a t th e rm a l m eth od s h ave t o s a t i s f y

    c e r t a i n c r i t e r i a b e f or e t h e y c an be t er me d t h e rm o a n a ly t ic a l .

    some o f t h e t h e r m o an a ly t ic a l t ec h n iq u es c u r r e n t l y a v a i l a b l e and t h e i r a p p l i c a t i o n

    an d/or a p p l i c a b i l i t y i n c l a y i n v e s t i g a t i o n s a r e th e s u b je c t o f t h e re ma in de r o f

    t h i s p a p e r .

    A t t h i s p o i n t t h e r ea d er m i g h t w e l l a sk why t h e r m o a n a l y t i c a l s t u d i e s ( d is c u ss e d

    T h e s e c r i t e r i a ,

    1.2 THERMAL A N A L Y S I S

    O ver t h e p a s t f i f t e e n ye a rs m uch a t t e n t i o n h as b een d e vote d t o n o m e n c la ture ,

    d e f i n i t i o n and c l a s s i f i c a t i o n o f t he rm o an al yt ic a l te ch niq ue s w i t h t h e r e s u l t t h a t

    the methods inc luded can now be c lear ly recogn ized and named.

    A c co rd in g t o t h e I n t e r n a t i o n a l C o n f e d e r a t io n f o r T he rm al A n a l y s i s ( IC T A) ,

    t h e r m a l a n a l y s i s cov ers (Lombard i , 1980):

    A g ro up o f t e ch n iq u es i n w hic h a p h y s i c a l p r o p e r t y o f a s u bs ta nc e a nd /o r i t s

    r e a c t i o n p r o du c t s i s mea sured as a f u n c t i o n o f t e m pe ra tu re , w h i l s t t h e s u bs ta nc e

    i s su b je c te d t o a c o n t r o l l e d t e m pe ratu re program me .

    The t h r e e c r i t e r i a t h a t d i s t i n g u i s h a t h e r m o a n a l y t i c a l m ethod a r e, t h e r e f o r e ,

    t h a t a p h y s i c a l p r o p e r t y i s measured as a f u n c t i o n of t e m p e ra t ure under a

    cont ro l l ed t empera ture programme. Thus, a s i n g l e i s o t h e rm a l d e t e r m i n a t i o n i s n o t

    t h e rm o a n a ly t ic a l b u t ass ess ment o f t h e r e s u l t s o f a s e r i e s o f i s o t h e rm a l

    d e t er m i na t io n s a t d i f f e r e n t t em p er at ur es as a f u n c t i o n o f t em p e ra tu r e i s .

    S i m i l a r l y , n o n -th erm a l me th od s, such as X- ra y d i f f r a c t i o n , p e rform e d u n de r a

    co n t ro l e d t e m p e ra tu re program me become th e rm o a n a l y t i ca l d e te rm in a t i o n s . I n t h e

    a ccou n t t h a t f o l l o w s , h ow ever, o n l y t h o se m eth od s n o rm a l l y i n c l u d e d i n t h e rm a l

    a n a l y s i s

    w i l l

    be considered:

    i t

    s h ou l d be o bs erv ed t h a t c l a s s i c a l c a l o r i m e t r y i s

    exc luded , desp i te

    i t s

    c lo se re l a t i o n s h i p t o some th e rm o a n a l y t i ca l m eth od s.

    1.2.1 A v a i l a b l e t h e r m o a n a l y t i c a l t e ch n iq u es .

    A

    g e ne r al c l a s s i f i c a t i o n o f methods c u r r e n t l y r e co g ni z ed as t h e r m o a n a l y t i c a l

    i s g iv e n i n T a bl e 1.1 a lo n g w i th t h e p h ys i ca l p ro p e r t y o n w h i ch t h e y d e p e n d a n d ,

    'fo r common metho ds where i t s g e n e r a l l y i n use, t h e a c c ep t ab le a b b r e v i a t i o n

    (Lombard i, 1980) . Most o f the techn ique s can be de f in ed

    i n

    exact ly the same way

    as th er m al an a l y s is , t h e p h y s ic a l p r o p er t y i t s e l f - mass f o r the rmograv ime t ry ,

    an e l e c t r i c a l c h a r a c t e r i s t i c f o r t he rm o el ec tr om e tr y': e t c .

    -

    r e p l a c i n g t h e w o r d s

    a p h y s ic a l p r o p e r t y i n t h e d e f i n i t i o n . I n some i ns t an c e s,

    however, more p re c is e

    w o rdin g i s ne cessary . F o r e xa mp le , s i x m eth od s a r e l i s t e d a s b e in g d e pe n de n t o n

    change i n mass,

    b u t o n l y two a re so d ep en de nt d i r e c t l y : i s o b a r i c mass-change

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    3/25

    7

    TABLE 1.1

    Classification of thermoanalytical techniques

    Physical property Derived techniques Abbreviation

    Mass

    Temp ra t r e

    Entha py

    Dimensions

    Mechanical characteristics

    Acoustic characteristics

    Optical characteristics

    Electrical characteristics

    Magnetic characteristics

    Isobaric mass-change determination

    Thermogravimetry

    Evolved gas detection

    Evolved gas analysis

    Emanation thermal analysis

    Thermoparticulate analysis

    Heating-curve determination*

    Differential thermal analysis

    Differential scanning calorimetry?

    Thermodi atometry

    Thermomechanical measurement+

    Thermosonimetry5

    Thermoacoustimetryg

    Thermoptometry

    Thermoel ectrometry

    Thermomagnetometry

    TG

    EGD

    EGA

    DTA

    osc

    *

    I n t h e c o o l i n g mode t h i s beco mes Cooling-curve determination.

    t Two types Power-compensation DSC and Heat-flux DSC, c a n b e d i s t i n g u i s h e d .

    ?

    T e s t s u nd er o s c i l l a t o r y l o a d come u n d er t h e h e a d in g Dynamic thermomechanical

    5

    Thermosonimetry r e f e r s t o so un d e m i t t e d by t h e s a m ple w h er ea s

    measurement.

    Thermoacoustimetry i nv o l v e s m e a s ur e m e nt o f ch an ges i n t h e c h a r a c t e r i s t i c s o f

    im po se d a c o u s t i c w av es p a s s i n g t h r o u g h t h e s a m p l e.

    determination, which covers equilibrium techniques, such as the once common

    dehydration curves under a constant partial pressure of water vapour, and

    thermogravimetry- TG), which uses a dynamic temperature programme. Evolved gas

    detection (EGO) and evolved gas analysis (EGA) are secondary techniques whereby

    materials evolved during heating are detected or analysed, respectively, and the

    remaining two, emanation thermal analysis and thermoparticulate analysis, are

    tertiary techniques, being special instances of EGA related to radioactive

    emanation and particulate matter, respectively.

    listed

    i n

    Table

    1.1

    is derivative thermogravimetry

    ( D T G ) ,

    the reason being that

    derivative curves can be calculated for most measurements and it would be invidious

    to include only one. Attention should also be drawn to the distinction between

    derivative

    and

    differential,

    the former applying to the mathematical process and

    the latter being used only as the adjectival form of difference (Lombardi,

    1980).

    Thus, in differential thermal analysis (and differential scanning calorimetry )

    the difference in temperature between (and the difference in energy inputs

    into ), a substance and a reference material is measured .

    A common method that is not

    Moreover, heating

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    4/25

    a

    curves - i . e . cu rves f o r sample tempera tu re aga ins t t lm e - g i v e r i s e t o t w o

    d e r i v a t i v e s

    -

    hea t ing - ra te cu rves , where d T / d t i s p l o t t e d a g a in s t t em p er at ur e

    T )

    o r t im e t), nd inv e rs e hea t ing - ra te cu rves where d t / d T i s p l o t t e d a g a i ns t

    T

    o r t: b o th t h e se have bee n e x te n s i v e l y used i n t h e p a s t .

    The i n f o r m a t i o n g iv e n above, t o g e t h e r w i t h t h a t i n T a b le 1.1, i s p ro ba bl y

    adequate to a l l o w ap pre c ia t ion o f t he enormous s t r i d e s t h a t have been made over

    the past decade o r

    so

    i n ob t a i n i ng in te rn a t io na l agreement on a genera l nomen-

    c l a t u r e and c l a s s i f i c a t i o n s ys te m f o r t h er m oa n al yt ic a l t ec hn iq ue s. T h i s e f f o r t ,

    however, has covered no t on l y nomenc la ture o f methods b u t a l so t h a t

    o f

    components

    o f e qu ip me nt, o f a sp e c ts o f e xp e r ime n ta l t e ch n iq ue , o f c r i t i c a l p o i n t s on cu rve s

    and o f symbols (Lombard i, 1980) and has been fo r t un at e enough t o re c e i v e the

    backing o f na t io na l and in te rn a t io na l s tandards in s t i t u t i o n s , such as AFNOR,

    ASTM

    and

    I S O ,

    as we l l as o f ma j o r i n t e r n a t i o n a l b o d ie s such as

    I U P A C

    (1974, 1980).

    Moreover, th e recommenda tions i n Eng l i sh have been conver ted i n t o fo rms accep tab le

    i n many ot he r language-speaking areas (Lombardi, 1980; Mackenzie, 1981b), s in ce

    d i r e c t t r a n s l a t i o n i s n o t alw ay s p o s s i b l e because

    o f

    a l ready accep ted conven t ions

    i n o the r languages.

    1.2.2 Simultaneous tech niqu es

    same tim e, le a d in g t o si m ul ta ne ou s de te rm in at io ns such as DTA-EGA, TG-EGA,

    DTA-TG-DTG, et c . Th is has advantages and disad vanta ges, and one has t o stud y no t

    o n l y t h e bases o f t h e t e ch ni q u es t h e mse lve s b u t a l so t h e n a tu re o f t h e samples

    i n vo l v e d b e fo re d e c i d i n g on t h e i r u se.

    employed i n co n ju nc t io n wi t h DTA or TG, as one can then r e l a t e the ev o lved

    v o l a t i l e s t o s p e c i f i c changes

    i n

    th e sample ; s im i l a r l y , by comparing s imu l taneous

    DTA and DTG curves one can r e a d i l y r e la t e rea ct io ns i nv o l v i ng mass change w i t h

    spec i f i c en tha lpy changes.

    b o th t i me and ma te r i a l . T he ma j o r d i sa dva n tag e i s t h a t o ptimum co n d i t i o n s f o r

    one techn ique may no t nece ss ar i l y be those f o r ano ther .

    m i n i m i ze d b y ca re fu l

    s e l e c t i o n o f e x p e r im e n ta l c o n d i t i o n s - f o r example, i n

    simultaneous DTA-TG, by

    using a smal l sample and/or employing a s low heat ing ra te .

    I t s o f te n con venient t o make two o r more measurements on one sample a t th e

    For example, EGA i s m ost p r o f i t a b l y

    And, o f co urse , t h e re i s a co n s i d e ra b l e sa v i n g

    i n

    However, t h i s can be

    1 .2 .3 S tandard iza t ion o f techn iques

    S i nc e t h e r m o a n a l y t i c a l r e s u l t s c a n v a r y w i t h e x p e ri m en t al t ec h n iq u e, t h e

    Sta nda rd iz a t io n Commit tee

    o f

    ICTA hav e p u b li s h ed a code o f p r a c t i c e l i s t i n g t h e

    i n f o r m a t i o n t h a t s h o ul d be s u p p l i e d w i t h e v er y c u r v e p u bl is h e d : t h e y h ave a l s o

    been i n s t ru m e n t a l i n p r o v i d i n g m a t e r i a l s f o r t em p er at ur e c a l i b r a t i o n o f a p pa ra tu s

    (Lombardi, 1980).

    a p p l i c a t i o n o f t h er m al a n a l y s is .

    These aspects should be thoroughly stud ied by anyone consider ing

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    5/25

    9

    1 3 APPLICATIONS TO CLAYS

    Emphasis in this article

    I s ,

    quite deliberately, on the applications or

    potential applications of the various techniques now available to clays.

    therefore, impossible to deal adequately with Instrumentation, experimental

    technique, or even with some basic principles, although all

    these are critical in

    determining the quality of thermoanalytical results. To overcome this deficiency

    the reader is referred to the books of Daniels (1973) and Wendlandt (1974) and to

    the excellent reviews that have appeared biennially in A n a l y t i c a l C h e m i s t r y

    Fundamental Reviews (e.g. Murphy,

    1978)

    for a considerable period.

    In the account that follows, clay mineralogical applications take priority,

    but due consideration must also be given to the wider field of applications to

    clays and clay rocks of technological or industrial importance and to accessory

    minerals, since the presence or absence of these may well determine the suitability

    of a clay for a particular application. With this wide field in mind, it will be

    appreciated that the references given are illustrative only: an exhaustive study

    of all published work would be inordinately long.

    It is,

    1 3 1 IIsobaric) mass-change determination

    temperature until there is no further mass change and the eq u i l i b r i u m m as s is

    plotted against the temperature: the partial pressure

    o f

    the evolved volatile

    (e.g. water or carbon dioxide) is maintained constant throughout the determination

    An excellent description of the technique has been given by Weiser and Milligan

    (1939).

    widely applied to clays in the derivation

    of

    so-called dehydration curves . An

    excellent collection of these was given by Nutting (1943) and the technique was

    still

    employed for characterization purposes in the 1950s (see e.g., Mackenzie,

    1957a).

    seems to have fallen into disuse. However, families of isothermal mass-change

    curves, particularly in their isobaric mode, can probably yield more reliable

    information on the kinetics of reactions than the TG curves so commonly in use

    (see below).

    In isobaric mass-change determination the sample is heated at each selected

    In the past this technique, although not perhaps in an isobaric mode, was

    It is rather time-consuming and with the advent of thermogravimetry

    1 3 2 Thermogravirnetry (TG)

    Although DTA has been the most widely used technique in clay mineralogy, the

    use

    o f

    TG and DTG has grown markedly, particularly since the introduction of the

    Derivatograph, which provided simultaneous DTA-TG-DTG curves, and its commercial

    production in Hungary in the mid-1950s.

    most widely used, and apparently the only one comnercially produced in eastern

    Europe, has been upgraded several times and now has various optional additional

    This instrument, which is by far the

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    6/25

    i 0

    a t ta ch m e nts f o r t h e rm o d i l a to m e t r y , EGA, e t c . ( P a u l i k a nd P a u l i k , 1 97 8) . I t s v a l u e

    i n c l a y m i ne ra lo gy i s r e a d i l y as se ss ed f r o m t h e s i m u lt an e ou s c u r v e s f o r a l a r g e

    number o f c la ys and c l a y m ine ra ls pub l i sh ed by Lang ie r-Kuzn ia rowa (1967) . Ou t -

    s i d e e a s te rn E uro pe , t h e rm o g ra v im e t r y was s t im u la t e d b y t h e co m m erc ia l p ro d u c t i o n

    o f t h e r o b u s t S ta n to n th erm ob a la n ce i n 1 95 4 a nd s im ul ta n e ou s te ch n iq u e s b y t h e

    in t r o d u c t i o n o f t h e M e t t l e r T h e rm o a na lyzer (W iedem ann, 1 9 64 ). A w id e ra n g e o f

    thermobalances and s imu l taneous DTA-TG in s t ru me n ts s u i t a b le f o r c l a y s t ud ies can

    now be pu rchased (e.g. Dunn, 1980) . th e number o f the l a t t e r tend ing t o incr eas e

    as a v a i l a b l e s e n s i t i v i t y has in c re a s ed . O f the va r ious types o f ba lance sys tem

    used (Kea t tch and Do l l im ore , 1975), th e nu l l -p o in t e le c t ro ba lan ce now seems the

    most common.

    between DTA and DTG cu rves, g r ea t ca re must be taken t o ensu re th a t a l l e xpe r im en ta l

    v a r i a b l e s a r e i d e n t i c a l f o r b o t h d e t er m i na t io n s

    -

    f o r exam ple, u se o f a d i f f e r e n t

    h e a t i n g r a t e c an d i s p l a c e p ea ks and ev en a l t e r p eak s hape a p p r e c i a b l y ( A l i e t t i ,

    B r i g a t t i an d P o pp i, 1 97 9) .

    The main uses o f TG add DTG (w hich must be con side red to ge th er ) i n c l a y

    mine ra log y have been i n de te rm in ing t he reasons f o r DTA peaks, asses s ing th e range

    o v er w h ic h r e a c t i o n s o c cu r an d o b t a i n i n g q u a n t i t a t i v e i n f o r m a t i o n . The m etho ds

    a r e n ot p a r t i c u l a r l y s u i t a b l e f o r i d e n t i f i c a t i o n s t ud ie s, a lt ho ug h t h e oc cu rr en ce

    o f one o r two peaks on a

    DTG

    cu rve , and th e r e l a t i v e s i z e s o f t h e two p ea ks when

    t h e y a pp ea r, c an a p p a r e n tl y b e em ploy ed i n c h a r a c t e r i z i n g s e r p e n t i n e m i n e r a l s

    (Morand i and F e l i c e , 1979) and the d isappearance o f th e hyg rosc op ic mo is tu r e peak

    a f t e r K - s a t u ra t i o n c an be used t o d i s t i n g u i s h h y d r o b i o t i t e f r om m o n t m o r i l l o n i t e

    i n some s o i l s (Ryzhova, 1980).

    and th e m ain u se o f t h e t e ch n iq u e s has u n d o u b te d ly b ee n t o o b t a i n q u a n t i t a t i ve

    i n f o r m a t i o n on e v o lv e d v o l a t i l e s , e t c . I n suc h a p p l i c a t i o n s , h ow ever, g r e a t c a r e

    must be exe rc is ed, as th e mass change, du r in g, f o r example , a de hy dr ox yl a t io n

    r e a c t i o n , c o u l d be s e r i o u s l y a f f e c t e d

    if

    e r r ou s i r o n i n t h e l a t t i c e were

    s im u lt an e ou s ly o x i d i z e d t o f e r r i c . F o r t h i s r ea so n

    t oo ,

    q u a n t i t a t i v e d e t e r m i n a -

    t i o n o f m i n e ra l s by

    DTG

    (Sma l ley and X idak is , 1979) sh ou ld be under taken on l y

    when s u f f i c i e n t c o n fi rm a t o ry e vid enc e t h a t n o th i ng l i k e l y t o i n t e r f e r e w i t h t h e

    DTG peak area i s pr es en t and when comparison can be made w i t h a mi ne ra l

    t h a t i s

    i d e n t ic a l w i t h t h a t i n th e c la y .

    It

    s n o te w o rt hy i n t h i s r e s p ec t t h a t even t h e

    s a t u r a t i n g c a t i o n o f m o n t m o r i l l o n i t e a f f e c t s t h e c h a r a c t e r and t em pe ra tu re o f

    th e DTG de hy dr ox yl at io n peak (Schomburg and S tb rr , 1978a).

    v a l ua b l e i n e l u c i d a t i n g t h e n a t u re of DTA peaks f o r p a l y g o r s k i t e and s e p i o l i t e

    (F erna n de z A l va re z , 1 97 8) and f o r m o n t m o r i l l o n i t e ( I l i u t a , D rim us an d P re da , 1 9 78 )

    a nd OTG i n re ve a l i n g m u l t i p l e re a c t i o n s n o t o b v io u s o n th e TG cu rve (e.g. M i fsu d ,

    Rau tureau and Forn es, 1978). Changes

    i n t h e t e m p e ra tu re ra n g e an d m a g ni tu d e o f

    the s te p on the TG, o r peak on th e DTG, cu rv e can p rov ide va lua b le co n f i rm a to ry

    ev idence fo r a p a r t i c u l a r phenomenon, such as th e occu r re nce o f NH,+ i n some

    When s imul taneous equ ipment i s n o t used and a compar ison i s made

    T he se m us t b e re g a rd e d as r a t h e r i s o l a t e d i n s ta n ce s

    TG has pro ve d

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    7/25

    1 1

    Japanese d ioc tah edr a l micas (H igash i , 1978) : the presence o f th i s i o n no t on ly

    moves t h e d e h yd ro xy l a t i o n re a c t i o n t o a l o we r t e mpe ra tu re b u t a l s o i n c re a se s t h e

    mass l o s s b ecause o f t h e e vo l u t i o n o f NH,.

    TG and DTG a ls o y i e l d us efu l in fo rm at io n on accessory mine ra ls. Thus, th e

    d e h yd ro xy l a t io n o r d e ca rb o n a ti o n o f a cce sso ry h y d ro x i d e o r ca rbo n a te m i n e ra l s i s

    u s u a l ly obv ious on TG and DTG curv es (e.g. Iwasa, 1978) and, pro vid ed c a re fu l

    c a l i b ra t i o n i s pe r fo rmed i n advance , even sa l t s , such as sodium carbona te and

    sod iu m ch l o r i d e ,

    can be q u a n t i t a t i v e l y d eterm in ed i n sa l i n e c l a ys (Asomoza

    et ai.,

    1978).

    TG has been e x te n s i v e l y i n ve s t i g a te d as a means f o r s t u d y i n g t h e k i n e t i c s o f

    re ac t io ns because (a ) de te rm ina t ions a re le ss t ime-consuming than i so the rma l

    i n v e s t i g a t i o n s , ( b ) w i t h i so th erma l methods , some re a c t i o n o ccu rs b e fo re t h e

    temp e ra tu re o f i n t e re s t i s r e ach ed an d ( c ) t h e who le t e mp e ra tu re ra n ge

    i s

    covered

    w i t ho ut any mis sing reg ion s (see Sharp, 1972) . Whi le these comments are c or re ct ,

    a c t u a l l i m i t a t i o n s on t he d e r i v a t i o n o f k i n e t i c pa ra me te rs a r e f or m id a bl e, n o t

    o n l y b ecau se o f t h e o ccu r re n ce of t e mp e ra tu re g ra d i e n t s w i t h i n t h e sample b u t

    a l so because o f o t he r more fundamenta l asp ects d e a l t w i t h be low. Most methods

    f o r i n t e r p r e t i n g

    TG

    cu rve s a re b ased on t h e s i mp l e r a te e q u a t i o n

    d a / d t k ( 1

    -

    a)

    (where

    a

    i s t h e f r a c t i o n decomposed i n t i m e t

    n

    t he o r d e r o f r e a c t i o n and k t h e

    ra te co n s ta n t ) combined w i t h t h e A r rh e n i u s e q u a ti o n

    k = Aexp (-E/RT) ( 2 )

    (where

    A

    i s t h e p r e- e xp o ne n ti al f a c t o r , E t h e a c t i v a t i o n e ne rg y and R the gas

    constan t ) , th e tempera tu re T b e i n g d e f i n e d b y

    (where T~ i s t he i n i t i a l t em pe ra tu re and 8

    = d T / d t

    t he h e a t in g r a t e ) : n ot e t h a t

    t h e h e a t i n g r a t e i s assumed t o be c o n s t a i t .

    e i t h e r t o f o l l o w t h e d i f f e r e n t i a t i o n m ethod o f Freeman and C a r r o l l ( 19 58 ) o r t h e

    i n te g ra t i o n meth od o f Co ats a nd Re dfern (19 63 ). The l a t t e r i s g e n e ra l l y r e ga rd e d

    as y i e l d i n g m ost r e l i a b l e r e s u l t s - see, fo r example, th e rece nt study o f Boy and

    BMhme (19 79 ) and compare t h e i r r e s u l t s f o r t h e d e h y d ro xy l a t i o n o f k a o l i n i t e w i t h

    those determined by a v a r ie t y o f exper im enta l methods (Sharp, 1972) .

    inh er en t i n de a l i ng wi t h a dynamic system (see Sharp, 1972) are imnense, o t he r

    more fundamental aspects must also be remembered.

    The two usual procedures are then

    I n a l l t h es e s t u d i es a p p ro x im a ti on s a r e i n v o lv e d and, a lt h ou g h th e d i f f i c u l t i e s

    One need only consider the

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    8/25

    1 2

    equat ions above.

    they wou ld app ly t o a so l i d : moreover,

    o n e c o u l d j u s t i f i a b l y q u e r y t h e p h y s i c a l

    s i g n i f i c a n c e o f t h e d e r i v e d o r d er o f r e a c t i o n and a c t i v a t i o n e ne rg y when

    so

    app l ied .

    n o t unexp ecte dly, change mechanism du ri ng th e re a c t i o n (Garn, Kawalec and Chang,

    1978; Pr ice

    e t

    al., 1980). Moreover,

    many

    so l i d - s t a te d e co mpo s it io ns i n powder

    system s a r e d i f f u s i o n c o n t r o l l e d ( s e n s u l a t o c o v e r i n g b o t h i n t e r - and

    i n t r a -

    p a r t i c l e d i f f u s i o n ) , o r f o l l o w some o t h e r l aw,

    so

    t h a t t h e o rd e r o f r e a c t i o n i s

    ra th e r mean ing less (Sharp , 1972) . Consequent ly , Garn (1979) has q u i t e r i g h t l y

    suggested t h a t th e te rm ac t i va t i on energy shou ld be rep laced by tempera tu re

    c o e f f i c i e n t o f r e a c t io n . W h il e t h e use o f sm a ll

    samples and/o r o f a co nst an t

    tempera tu re regime over the decompos i t i on in te r v a l (Rouquerol , 1970; Pa u l i k and

    P a u l ik , 1972) wo uld r ed uc e t e m pe r at u re g r a d i e n ts t h a t i n t e r f e r e w i t h i n t e r -

    p r e t a t io n , these va r ia n t s do no t ob v i a t e th e more fundamenta l ob je c t io ns and much

    s tu dy i s s t i l l r e q u i r e d d e s p i t e t h e l a r g e numbers o f p ape rs t o b e f ou nd i n t h e

    Journal of Thermal Analysis, Thermochimica Ac t a and Thermal A n a l y s i s A b s t r a c t s

    over the past decade.

    It

    shou ld be noted , however, th a t the bas ic ob je c t io ns

    ra i se d a bo ve do n o t n e ce ss a r i l y mean t h a t t h e n ume r i cal va i u e s o b ta i n e d f o r c e r t a i n

    kinet ic parameters have no p r a c t i c a l value.

    The f i r s t two a r e gas-phase equa t ions and the re i s no guaran tee

    Indeed , recen t

    EGA

    stud ies have shown tha t decompos i t i on react ions can ,

    1.3.2 .1 Evolv-d

    gas d e t e c t i o n

    (EGD)

    I n

    EGD

    one d e te rm i ne s wh ethe r o r n o t gas e v o l u t i o n i s a sso c i a te d w i t h a t h erma l

    e f f e c t .

    b e i ng ad eq ua te i n d i c a t i o n o f gas e v o l u t i o n i n TG) and t h e s i m p l e s t method i s t o

    i n s e r t a th er ma l c o n d u c t i v i t y c e l l i n t he c a r r i e r gas

    st ream coming f rom the

    equipment ( Ingraham, 1967) , a l tho ugh seve ra l o th er methods ar e a l so a v a i l a b le

    (Daniels, 1973).

    An

    EGD

    t e ch n iq u e t h a t h as p ro ve d ve ry u se fu l i n s t u d y i n g p o lyme r d e g ra d a t io n

    on h e a t in g i s t he rm a l v o l a t i l i z a t i o n a n a l y s i s ( M c N ei ll , 1 97 7). I n t h i s t h e sam ple

    i s heated i n a h ig h vacuum chamber connected t o a vacuum pump though a t r a p co oled

    i n l i q u i d n i t r o g e n , t h e p re ssu re be twee n t h e sample a nd t h e t r a p b e i n g measure d

    by a P i r a n i gauge. Whenever t h e sample decomposes, th e pr es su re inc rea se s and

    the decompos i t i on o f the polymer can thus be fo l l owed . The method i n t h i s fo rm

    does n o t g i v e a ny i n d i c a t i o n o f t h e v o l a t i l e p r o d uc t s fo rm ed b u t t h e eq uip me nt

    has been modi f ied so t h a t t h e condensed v o l a t i l e s i n t h e c o l d t r a p b o i l o f f as

    t h e t r a p i s a l lo w e d t o h e a t up.

    t o b e i d e n t i f i e d (McNe i l l , 1 98 0), t h e method i s up gra de d t o EGA

    -

    always assuming

    t h e r e i s no i n t e r a c t i o n betw een condensed v o l a t i l e s .

    A

    method f o r s imulta neous DTA and EGD by m ea su rin g t h e i n t e n s i t y o f a l a s e r

    It i s cus to mary, t h e re fo re , t o use i t i n c o n ju n c ti o n w i t h DTA (mass los s

    S i n c e t h e b o i l i n g p o i n t p e r m i t s

    each component

    beam t r av er s i ng th e sample c e l l above the samp le has re c en t l y been descr ibed i n

    Net s u s o k u t e i

    (1980).

    A l t h o u g h a p p l i e d t o d e r i ve t h e p h a se d i a g ra m o f a known

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    9/25

    1 3

    b i n a r y l i q u i d sys tem , t h e method i s c l e a r l y n o n - s p e c i f i c and c o u l d p r o ba b ly be

    a d ap te d t o DTA-EGD o f c l a y s o r c l a y -o rg a n i c comple xe s: i t s a d va ntag e l i e s i n t h e

    f a c t t h a t i t g iv es a ve ry sharp i n f l e c t i o n immed ia te l y vapour ev o l u t io n commences

    e ve n w i t h ve ry s l o w h e a t i n g ra te s .

    1 .3 .2 .2 Evolved

    g a s

    a n a l y s i s

    (EGA)

    EGA i s much more us ef u l , and indeed usual , than

    EGD,

    s i n c e i t enables

    d e t e r m in a t io n o f t h e i d e n t i t y an d/ or amount o f t h e e v o lv ed v o l a t i l e m a t e r i a l . It

    i s norm al ly employed a long w i t h DTA, TG o r DTA-TG-DTG, thu s en ab l i ng q u a n t i t a t i v e

    e v a l u a t i o n q f t he e f f e c t s on t h e c ur ve s i n term s o f s p e c i f i c v o l a t i l e s .

    Ba s i c i n f o r ma t i o n o n va r i o u s me thods o f EGA, such as mass spectrometry, gas

    chroma to grap hy , i n f r a - re d a b s o rp t i o n and se l e c t i v e so rp t i o n , w i l l be fo un d i n t h e

    books o f Lodding (1967), Mackenzie (1970-72), Da nie ls (1973) and Wendlandt (1974),

    i n t h e P ro cee d in g s o f t h e v a r i o u s I n te rn a t i o n a l Co n fe re nces o n T hermal An a l ys i s

    (R ed fer n, 1965; Schwenker and Garn, 1968; Wiedemann, 1972,

    1980; B U Z ~ S ,

    1975;

    Chihara, 1977) , i n the Proceedings o f the F i r s t European Symposium on Thermal

    A n a l y s is ( D ol li m or e , 1 97 6) and i n v a ri ou s s c i e n t i f i c j o u r n a l s .

    B r i e f l y ,

    the methods of

    EGA

    f a l l i n t o tw o c la s se s : ( a ) t ho s e f o r w hic h

    p r i o r k now ledge of t h e n a t u r e o f t h e v o l a t i l i z e d m a t e r i a l i s u nn ec es sa ry and

    (b ) those fo r wh ich such knowledge i s ess en t ia l . Wh i le the fo rmer , wh ich

    in c lu de mass spect ro metry and gas chromatography, ar e by fa r the most ge ne ra l ly

    u se ful , t h e l a t t e r have a d e f i n i t e p l a ce i n s t u d i e s , such as t ho se o n c l a ys , whe re

    a l i m i t e d number of v o l a t i l e ma te r i a l s a re t o b e e xp ec te d.

    ap p l ie d i n c la y s tud ies : f o r examp le , Mhlle r-Vonmoos and M h l le r (1975) have

    demonstrated how mass spe ctr om etr y combined w i t h DTA can revea l the presence o f

    organ ic carbon,

    p y r i t e and va r ious ca rbona te minera ls i n a c lay , whereas Morgan

    (1977) has

    used DTA and se pa rat e d et ec to rs t o de ter mi ne when and how much water,

    c ar bo n d i o x i d e a nd- s u l ph u r d i o x i d e ( f ro m o x i d a t i o n o f p y r i t e ) a r e e v o lv e d fr o m

    clays, sha les and sc h i s t s and Pa u l i k and Pa u l i k (1978) have used t h e i r techn ique

    o f th erm al gas t i t r i m e t r y ( i. e. s o r p t i o n o f t h e v o l a t i l e i n a s u i t a b l e s o l u t io n

    o r s o lv en t fo l l o we d by t i t r a t i o n ) a long w i th DTA-TG-DTG t o de te rmine the amounts

    o f c on ta m in at in g a l u n i t e and c a l c i t e i n b a ux it es .

    The opt imum technique depends on ci rcumstances

    -

    and, no t i n f requen t l y ,on

    f inance.

    and r e l a t i v e l y c he a pl y p ur ch as ed and a t ta c h e d i n s e r i e s t o a s u i t a b l e t he rm a l

    a n a l y s i s i n s t r u me n t , t h e more f l e x i b l e a nd u n i ve rs a l sys te m u s in g mass sp e c t ro -

    me t r y i s e xp en si ve .

    asp ects must be kept i n mind: fo r example, t h e free, volume around th e sample must

    be r e l a t i v e l y sm a ll t o a v o i d undue d i l u t i o n o f e vo lv e d m a t e r i a l w i t h c a r r i e r gas,

    th e i n t e r fa ce between a mass spect romete r and t he the rma l a na ly s i s i ns t rument

    must be chosen wi th care

    so

    t h a t o ne v o l a t i l e i s n o t p r e f e r e n t i a l l y e nr ic he d a t

    Both have indeed been

    W h ile a s e r i e s o f d e t ec t or s s p e c i f i c f o r one v o l a t i l e o n l y c an be r e a d i l y

    I n se t t i n g up eq ui pme nt a nd a sse ss in g re s u l t s se ve ra l i mp o r ta n t

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    10/25

    1 4

    t h e expense o f a n ot h er , and th e l i k e l i h o o d o f two v o l a t i l e s r e a c t i n g b e f o r e

    measurement must be assessed.

    A

    v a r i a n t o f

    EGA

    py ro l ys is- gas chromatography-mass s pec trom etry , wh ich was

    d ev el op ed m a i n l y f o r t h e s t u d y o f s y n t h e t i c p o ly m er s, h as p ro v ed e x t r e m e l y u s e f u l

    i n t h e i n v e s t i g a t i o n and c h a r a c t e r i z a t i o n o f s o i l o r ga n ic m a t t e r ( B ra ce w el l

    and

    Robertson, 1977)

    and s h ou ld a l s o b e a p p l i c a b l e t o o r g a n i c m a t t e r i n c l a y d e p os i ts .

    I n t h i s m ethod th e s am ple i s v e r y r a p i d l y p y r o ly s e d i n an i n e r t atm os phere, t h e

    p roduc ts be ing sepa ra ted by gas ch romatog raphy and i d e n t i f i e d by mass spect rome t ry .

    Such a p ro ce du re y i e l d s f a i r l y l a r g e fr ag m en ts o f t h e o r i g i n a l m o l e cu le s , t h u s

    g i v i n g an i n s i g h t i n t o t h e n a t u r e o f t h e or g a ni c p oly me rs p r es e nt .

    c ir c um s ta n ce s , and p a r t i c u l a r l y when i n t e r a c t i o n be tw ee n p r o d uc t s

    i s

    l i k e l y t o

    o ccu r, a p r e f e r a b le system i s p y ro l ys i s -m a ss sp e c t ro m e t r y (B ra ce w e l l a nd R o b e rt son ,

    1 9 8 0 ) , d e s p i t e

    i t s

    h i g h e r c o s t b ec au se o f t h e m ore e l a b o r a t e d a t a h a n d l i n g s y s te m

    re q u i re d .

    I n some

    1.3.2.2.1

    E m a n a t i o n t h e r m a l a n a l y s i s T h i s i s e s s e n t i a l l y a v a r i a n t

    o f

    E G A where

    t h e r a d i o a c t i v e e ma na tio n e v ol v ed d u r i n g h e a t i n g o f the sample i s measured. While

    t h i s d e f i n i t i o n w ou ld n o r m a l l y i n c l u d e o n l y r ad on i so t op e s, i n p r a c t i c e t h e method

    has been ex tended t o non - rad ioac t i ve i n e r t gases,

    such as argon, kr yp to n o r xenon,

    and t h e i r r a d i o a c t i v e i s o to p e s : t h e r e i s th u s a g r a d a t i o n i n t o n or ma l

    EGA.

    M a t e r i a l s

    n o t c o n t a in i n g i n e r t gas c an be l a b e l l e d b y d i f f u s i n g gas i n t o t h e s o l i d a t h i g h

    p ressu res and tempera tu res , by inc lu d i ng th e gas du r ing s yn th es is o r by bombard -

    i n g t h e s u r f a c e o f t h e s am ple w i t h a c c e l e r a t e d i o n s o f i n e r t gas. Changes i n gas

    r e l e a s e r a t e o n h e a t i n g c an t h e n be c o r r e l a t e d w i t h d e h y d r at i on , d e co m p os it io n ,

    r e c r y s t a l l i z a t i o n ,

    phase t r a n s i t i o n , s o l i d - s t a t e r e a c t i o n s and changes i n s u r f a c e

    p r o p e r t i e s . D ev elo pm en t o f em a na ti on th e r m a l a n a l y s i s i n c o n j u n c t i o n w i t h DTA i s

    due m a i n ly t o B a le k and h i s c o l l a b o r a t o r s i n C z ec h os lo v ak ia a nd i n f o r m a t i o n o n

    t h e or y , i n s t r u m e n t a t i o n and a p p l i c a t i o n s

    i s b e s t o b t a in e d f r o m a r e c e n t e x h au s t iv e

    rev iew (Ba lek, 1977). A l th oug h no se r i ou s st ud ie s seem y e t to have been made on

    c l a y s , a c ce s so ry m i n e r a ls s u ch as i r o n o x i d es , q u a r t z a nd z e o l i t e s hav e r e c e i v e d

    a t t e n t i o n . S ev er al p o s s i b l e a p p l i c a t i o n s t o c l a y m i ne ra ls , p a r t i c u l a r l y h o l lo w

    f i b r o u s and h i g h l y d i s o r de r e d s p ec i es , s p r i n g t o mind, b u t

    i t

    h a s y e t t o b e

    e s t a b l i s h e d w he th er t h e i n f o r m a t i o n o b t ai n e d w ou ld b e s u p e r i o r t o t h a t f r o m more

    convent iona l methods.

    So- ca l le d tempera tu re -p rogrammed de so rp t io n cu rves m igh t we1 1 be rega rded

    a s r e l a t e d t o t h e abov e, e ve n a l t h o u g h t h e ga ses i n v o l v e d a r e n o t i n e r t .

    w ork w i t h t h e s e ( C r i a d o

    et

    ai., 1980)

    has c l e a r l y shown t h e i r v a l ue i n s t u d y i n g

    t h e k i n e t i c s

    o f

    d e s o rp t i o n o f so rb e d g as.

    Recent

    . _

    1.3.2.2.2

    T h e m o p a r t i c u l a t e a n a l y s i s

    S i n c e t h e d e g r a d a t i o n

    o f

    s y n t h e t i c p o l y m e r s

    y i e l d s c on d e n s a ti o n n u c l e i as w e l l as m o l e c u l a r sp ec ie s , t h e r m o p a r t i c u l a t e a n a l y s i s ,

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    11/25

    1 5

    whereby th e amoun t (and sometimes i d e n t i t y ) o f such n uc le i a re measured as a

    f u n c t i o n o f tem pe ra ture , i s c l e a r l y c l o s e l y r e l a t e d t o EGA. P a r t i c le s o f t he

    o rd e r o f 1 -1 00 nm i n s i z e a re i n vo l ve d a nd an e a r l y re v ie w o f eq uip me nt , t e ch n iq u e

    and ap p l i c a t io ns was g iv en by Murphy (1967) . A more r e c e n t v a r i a n t ( g i v e n v a r io u s

    names by i t s o r i g i n a t o r s ) i s a c l o se r e l a t i v e o f

    EGD,

    s in ce n e i t h e r t h e a m o u n t

    n or i d e n t i t y o f t h e p a r t i c l e s i s m easu red, b u t when c om bin ed w i t h mass s p e c t r o m e tr y

    b e co m e s a g a in e sse n t i a l l y EGA (see Smith , P h i l l i p s and Kaczmarek, 1976; Sm ith ,

    M e ie r an d P h i l l i p s , 1 97 7) .

    a r e p o s s i b i l j t i e s o f a p p l i c a t i o n i n c o n d i t i o n s where c he mic al t r a n s p o r t o cc urs .

    S in c e c h em i ca l t r a n s p o r t ha s r e c e n t l y been ob se rv ed o n h e a t i n g c e r t a i n

    i r o n o x id es

    (E. Pate rson, pe rson a l commun ica tion ) ,

    i t

    s , t h e re f o re , m a r g i n a l l y p o s s i b l e t h a t

    a p p l ic a t i o ns e x i s t i n t he c l a y f i e l d .

    A l t ho u g h t h e t e c h n iq u e h as been a p p l i e d o n l y t o l a r g e o r g a n i c m o le c ul es t h e r e

    1.3.3 H e a t i n g cu rve d e te rm in a t i o n

    Hea t ing cu rves and

    t h e tw o d e r i v a t i v e s , h e a t i n g - r a t e c u r v e s and i n v e r s e h e a t -

    i n g - r a t e c ur ve s, w ere a t one t im e w i d e l y used i n c l a y s t u d i e s : i nd ee d, t h e f i r s t

    t h e rm o a n a l y t i ca l r e co rd s f o r c l a ys w ere , as m e n t io n e d above, h e a t i n g - ra t e cu rves .

    However, h e a t i n g c u rv e s f e l l i n t o d is u s e, as t h e lo w s e n s i t i v i t y o f r e c o r d i n g

    n ec es sa ry t o c o v e r t h e w h ol e t e m p er a t ur e ra n ge o f i n t e r e s t p r e c l u d e d d e t e c t i o n

    o f s m a l l t h e rm a l e f f e c t s , and i n t e r e s t i n t h e t wo d e r i v a t i v e c u r v e s waned as DTA

    became e s ta b l i sh e d , s i n c e e ss e n t i a l l y t h e same i n fo rm a t i o n co u ld be o b ta in e d m ore

    r e a d i l y .

    So

    f a r as t h e a u th o r i s a wa re , no h e a t i n g -cu rv e d e te rm in a t i o n s o n c l a ys

    are now performed.

    1.3.4

    D i f f e r e n t i a l th er ma l a n a l y s i s (DTA)

    i n c l a y s tu d i e s , w h et he r on

    i t s own o r s im u l ta n e o u s l y w i t h o th e r m e th od s su ch as

    TG, EGA, e t c .

    c e r t a i n a cc es so ry m i n e r a l s and a bn orm al s p ec i es o f c l a y m i n e ra l s , i n d e t e c t i n g

    changes i n m i ne r al og y w i t h d e p th o r d i s ta n c e , i n q u a n t i t a t i v e ( o r , more f r e q u e n t l y ,

    s e m i - q u a nt i ta t i v e ) s t u d ie s and i n de te r m in in g h e a t s t a b i l i t y o r t h e oc c ur re nc e o f

    s o l i d - s t a t e r e a c t i o n s . L i m i t a t i o n s im pos ed by i n s t r u m e n t a t i o n , t e c hn i q ue and

    n a t u r a l v a r i a t i o n s i n m i n e r a ls make a c c ur a te q u a n t i t a t i v e w ork d i f f i c u l t and

    p re c lu d e i t s u se d i a g n o s t i c a l l y , e xc e pt i n s pe c i a l c ir cu m st an c es . A s t h e s e d e t a i l s

    and p o s s i b l e m ethods o f m i n i m i z i n g l i m i t a t i o n s a r e

    so

    wel1,known (se e Mackenzie,

    1957b, 1970-72), t h e method w i l l n o t be d e a l t w i t h h e r e a t a ny g r e a t l e n g t h and

    re fe re n ce

    w i l l

    be made on ly t o some r ec en t deve lopments.

    a l tho ugh t he re may n o t be so many i ns t ru me nts on th e mark et now as a few years

    ago, those companies t h a t c u r re n t l y manu fac ture equ ipmen t have in t rod uce d many

    DTA i s b y f a r t h e b e s t known a nd m os t w id e l y u se d th e rm o a n a l y t i ca l t e ch n iq u e

    I t s m ain uses a r e i n f i n g e r - p r i n t i n g specim ens, i n d e t e c t i n g

    Commercia l equipment design has

    improved enormously over the past decade and,

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    12/25

    16

    improvements, Wh i le no ins t r um en t i s un iv e r sa l and th e ins t rum en t must be chosen

    h a v i ng r e g a r d t o t h e p ro po se d a p p l i c a t i o n s , t h e g e n e r a l

    t r e n d t ow a rd s t h e u se o f

    sm a ll sam ple s o f o n l y a fe w m i l l i g ra m s i s t o b e w elcom ed, as

    i t

    m i n i m i z e s e r r o r s

    due t o t h e rm a l g ra d ie n ts a nd,

    p r o v id e d r e c o r d i n g s e n s i t i v i t y i s a dequate, e na bl es

    s im ul ta n e ou s DTA-TG t o be v a l i d l y u sed . The f a c t t h a t tw o m a rked l y d i f f e r e n t DTA

    i n s tr u m e n ts y i e l d e s s e n t i a l l y t h e same c ur v es f o r a d e h y d r o x y l a t i o n r e a c t i o n when

    sam ple s i z e i s l e s s t h a n 30 mg (Broersma

    et ai.

    1978)

    c o n f ir m s t h e v a l u e o f u s i n g

    ve ry sm a l l samp les. Many manu fac tu re rs a ls o p roduce sev e ra l t ypes o f spec imen

    h o l d e r s f o r e a c h i n s t r u m e n t , so t h a t t h e o p t im u m (W i l b u rn ,

    1972) can be se lec ted ,

    and co n t ro l o f a tmosphere a round the Sample i s now un iv e rs a l. These advances i n

    i n s t ru m e n ta t i o n e n a b le DTA t o b e much m ore w id e l y and v a l i d l y u se d i n c l a y s tu d ie s

    than eve r be fo re .

    An ad va nce i n m e th o do lo g y has b ee n th e i o t r o d u c t i o n o f s te p w ise h e a t i n g (S ta ub

    and Perron, 1974; Simonsen and Zaharescu, 1979), by whic h tem pe rat ur e

    i s

    i n c r e a s e d

    i n sm a l l s te p s (0.5-10°C, d e pe n ding o n th e re a c t i o n ) i n s te a d o f co n t i n u o u s l y ,

    e q u i l i b r i u m b e i n g a t t a i n e d a t e ach s t e p.

    o b t a i n i n g a s e r i e s o f i s o t h e r m a l m eas urem ents d u r i n g o ne d e t e r m i n a t i o n w i t h t h e

    r e s u l t t h a t h ea ts o f m e l t i n g , t r a n s i t i o n , e tc ., can be d et er min ed more a c c u r a t e l y .

    To t h e a u t h o r ' s kno wledge, t h i s t e c h n iq u e h as n o t y e t b een a p p l i e d t o c l a y s : t h e r e

    i s no r e a so n

    t o

    suppose

    i t

    s i n a p p li c a b le ,

    a l though any apparen t advan tages wou ld

    have t o be c r i t i c a l l y checked.

    a b l e e f f e c t ( M a r t i n V i v a l d i , G i r e l a V i l c h e z and F e n o l l H a c h- A li ,

    1964 ; Do l l imore

    and Mason, 1 98 1) : t o p r e v e n t c o n t a i n e r e f f e c t s i n m e t a l l u r g y , e l e c t r o m a g n e t ic

    l e v i t a t i o n o f t h e sa mp le has been i n t ro d u ce d ( Jo rd a , F lU k ig e r an d M U l l e r , 1 9 78 )

    b u t t h i s w ou ld u n f o r t u n a t e l y b e i m p o s si b le w i t h c l a y s a nd t h e m a t e r i a l o f t h e

    s pec im en h o l d e r mu st be c a r e f u l l y s e l e c t e d . The n e c e s s i t y f o r c a r e i n s am ple

    pr ep ar at io n has been emphasized by work on q ua rt z (Moore and Rose, 1979), where

    smal l

    e x ot h er m ic p eaks o bs er ve d a f t e r g r i n d i n g i n s t e e l and ag a t e v i b r a t i o n

    m i l l s

    have been a t t r i b u t e d t o o x i d a t i o n o f c o n ta m i n at i ng i r o n and r e l e a s e o f s t o r e d

    e ne rg y, r e sp e c t i v e l y . On th e o th e r hand, t h e d o u b l i n g o f t h e d e h yd ro x y la t i o n

    endotherm o f g o e t h i t e on g r i n d i n g has been a t t r i b u t e d t o p a r t i c l e s i z e e f f e c t s

    (Murad, 1979) . The va lu e o f c o n t r o l l e d atmosphere has been con f i rme d by s t ud ies

    o n ca rb o n a te m in e ra l s , w h i ch show th a t i n a ca rb o n d i o x id e atm osp he re t h e m i n e r a l s

    p res en t can be i d e n t i f i e d and the amounts es t ima ted f o r on ly 0 .125 mg i n a 50 mg

    sample (Warne and

    M i

    c h e l 1 , 1979).

    a d j u n c t t o o t h e r te ch niq ue s i n c h a r a c t e r i z a t i o n s t u d ie s .

    r e v e a l t h e v a lu e o f t he t e ch n iq u e i n i t s own r i g h t , and

    i t

    may be appos i te to

    c i t e some examples.

    Thus, peak tempe ra tu re o f the

    low- tem pera tu re endothe rm f o r

    H -sa tu ra te d a l l o p h a n e a nd th a t o f t h e h i g h - te m p e ra tu re e xothe rm fo r N a -a ll o ph a n e

    i n c re a s e s and d ec re as es , r e s p e c t i v e l y , w i t h i n c r e a s i n g SiO,:Al,O, r a t i o (Henm i,

    T h is i s e s s e n t i a l l y e q u i v a l e nt t o

    The sample conta iner can somet imes have an undesi r -

    T he m a in u se o f DTA i n c l a y s tu d ie s , r e ce n t l y a s i n t h e p a s t , h as b ee n as a n

    Y e t so m e i n ve s t i g a t i o n s

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    13/25

    1 7

    1 98 0). M oreo ve r, t h e e xo th e rm o f a l l o p h a n e i s l o w ere d i n t e m p e ra tu re and

    broadened on admix tu re w i th

    i r o n o x i d e g e l s o r h yd ro us i r o n o x i d e m i n e ra l s ,

    whereas i t i s u n a f fe c te d b y o x id e m in e ra l s such as h e m a t i t e o r m a gh em ite (S u zu k i

    and S ato h, 1 98 0) . F o r d i c k i t e s , i n c re a s in g b re a d th o f t h e d e h yd ro x y la t i o n

    endotherm seems

    t o

    b e a p p r o x i m a t e l y a s s o c i a t e d w i t h

    i n c re a s in g d e gre e o f d i s o rd e r ,

    a lt h ou g h some e xc e p ti on s s ug ge st t h i s r u l e i s n o t r i g i d ( B r i n d l e y and P o r t e r ,

    1978).

    t o i n t e r p r e t - presumab ly because dehydroxy la t ion o f o n e l a y e r n e c e s s a r i l y a f f e c t s

    t h a t o f n e i g h b o u r in g l a y e r s w h et he r o r n o t t h e y a r e o f t h e same t y p e - b u t

    i t

    has

    re ce n t l y b ee n shown th a t t h e sh ap e a nd s i z e of t h e h yg ro sco p i c m o i s tu re pe ak fo r

    S r - sa tu ra te d m ica -m o n tm o r i l l o n i t e s ca n b e u se d t o a sse ss th e p ro p o r t i o n o f expa ns -

    i b l e la ye rs p resen t ( Inoue , M ina to and U tada , 1978) .

    t h a t o ccu r b e tw e e n ca rb o n a te m in e ra l s , s o l u b l e s a l t s a nd m ic a on h e a t i n g a l s o t a k e

    p l a ce w i t h m i c a - m o n t m o r i l l o n i t e b u t n o t w i t h p a l y g o r s k i t e (Mashhady et al., 1980)

    and manganese o x id e s r e a c t w i t h k a o l i n i t e i n t h e s o l i d s t a t e a t e l e v a t e d t em p er at ur es

    ( H o l l a n d and S e g n it , 1 97 6), c a r e m us t be t a ke n i n i n t e r p r e t i n g c u r v e s f o r sy stem s

    co n ta in i n g su ch m ix tu re s . I n p o l l u t i o n s tu d i es ,

    t h e a r e a o f t h e d e h y d r o x yl a ti o n

    e nd othe rm o f c h y so t i l e can a p p a re n t l y b e u se d to a sse ss a sb es tos co n te n t (Me nis ,

    Mackey and Garn, 197 8).

    f o r c l a y m in e r a ls have been examined by, i n t e r alia, Hl lbner (1927) and E l tantawy

    (19 7 9) , w h i l e c l a y -o r g a n i c re a c t i o n p ro d u c ts h ave b ee n i n ve s t i g a t e d b y Kuroda an d

    Kato (1979).

    A l t h o u g h DTA has bee n w i d e l y u sed i n s t u d y i n g t h e k i n e t i c s o f r e a c t i o n s , t h e r e

    i s no do u bt t h a t t h e t e ch n iq u es u sed a r e f r a u g h t w i t h e ven m ore d i f f i c u l t i e s t h a n

    mentioned above f o r TG (Sharp, 1972).

    t h e r m o a n a l y t ic a l p ap er s do d e a l w i t h t h i s s u b j e c t and a t r e a t i s e on n o n -e q u i l ib r i u m

    k i n e t i c s has appeared (Koch , 1977) .

    t h a t d ec o m p o s it i on o f s o l i d s f o l l o w s t h e same k i n e t i c s t hr o u g ho u t t h e w h ol e ra ng e

    from

    a

    =

    0

    t o

    a

    = 100 (where a i s t h e f r a c t i o n r ea c te d ) a nd th us t h e b e s t t h a t

    ca n b e e xp ec ted w ou ld b e to d ed uce va lu e s f o r a l i m i t e d a range.

    It i s w e l l k no wn th at DTA cu rv es o f i n t e r s t r a t i f i e d m i n er a ls a r e d i f f i c u l t

    S in ce s o l i d - s t a t e r e a c t io n s

    T he e f f e c t s o f so rbe d o rg a n i c m a t e r i a l s on DTA cu rve s

    H ow ever, a co n s id e ra b le p r o p o r t i o n o f

    As mentioned above under TG, i t i s u n l i k e l y

    1.3.5

    D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y ( D S C )

    Two type s o f DSC a re recogn ized, power-compensat ion DSC a n d h e a t - f l u x

    DSC

    ( T a b l e

    1.1 .

    The re la t ionsh ips be tween these and DTA have recen t ly been d iscussed

    i n d e t a i l (Mackenz ie , 1980) and need no t be repea ted he re.

    m e n t i o n e d t h a t

    DSC

    was o r i g i n a l l y l im i t e d t o a maximum te m p e ra tu re o f a b o u t 450°C

    because o f t h e i n c r e a s i n g i m po r ta n ce above t h a t t e m pe r at u re o f r a d i a t i v e h e a t

    t r an s f e r : however , re ce n t tech no log ica l advances have enab led th e tempera tu re

    range t o be extended t o ab out 750-800°C so t h a t a l i m i t e d a p p l i c a t i o n i n c l a y

    m in e ra lo g y

    i s

    now possib le.

    It

    need only be

    The main advantage o f

    DSC

    o ve r DTA i s t h a t i t i s i n h e r e n t l y q u a n t i t a t i v e f o r

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    14/25

    1 8

    cha ng e i n e n th a lp y , h e a t ca p a c i t y , e t c . C o nse qu e nt ly ,

    i t

    can, f o r example, be

    used t o d e t er m in e n o t o n l y t h e e n t ha l p y c hange o c c u r r i n g d u r i n g a r e a c t

    a l s o t h e t o t a l e ne rg y r e q u i r e d t o f i r e a c l a y o v e r any s p e c i f i c tem pera tur,

    up t o abou t 750°C. The method has, however, n o t been w id e l y used i n th e study 0 ,

    c lay s , a l tho ugh in ve s t i ga t i on s on m on tm or i l l o n i te (Homshaw and Chauss idon , 1979) ,

    on sm e c t i t e s , z e o l i t e s , h a l l o y s i t e a nd o p a l (Eg er , C ruz -Cu m p li do and F r i p i a t , 1 97 9)

    a nd o n sy n t h e t i c g o e t h i t e (P a terso n, 1 98 0)

    suggest

    i t

    can y i e l d v a lu a b le r e s u l t s ,

    b o th q u a l i t a t i v e and q u a n t i t a t i v e ,

    i n c o n ne c t io n w i t h s o l v a t i o n p ro ble ms . I t has

    a l s o been u s e f u l i n d e t e c t i n g d i f f e r e n t t y p es o f s u r f ac e h y d r o x y l g ro up s on s y n t h e t i c

    g o e t h i t e ( P at e rs o n and S w a f f i e l d , 1980) and i n r e v e a l i n g m aj or d i f f e r e n c e s i n s o i l

    and ro ck q u ar tz samples (Barwood and Hajek, 1979).

    I n vie w o f t he s e i n d i c a t i o n s , it wou ld appear tha t

    DSC

    i s l i k e l y t o be i n cre as -

    i n g l y used i n c l a y s t ud i es o v er t h e n e x t few ye ar s, p a r t i c u l a r l y i n q u a n t i t a t i v e

    and s u r f ac e i n v e s t i g a t i o n s . An e x t e n s i o n o f t h e c u r r e n t up pe r t e m p e ra t u re l i m i t

    w ou ld open ev en g r e a t e r p r o s p ec t s , b u t t h i s do es n o t seem l i k e l y i n t h e n e ar f u t u r e .

    1.3 .6

    T h e rm o d i l a to m e t r y

    I n t h e r m o d i la t o m e t r y t h e v olu me or , m ore u s u a l l y , t h e l i n e a r d im e n s i on s a l

    c hange o n h e a t i n g i s s t u d i e d as a f u n c t i o n o f t e m p e r a tu r e un de r n e g l i g i b l e lo a d.

    The method i s a n o l d one and i n d ee d t h e o b s e r v a t i o n o f s h r i n k a g e o f c h i n a c l a y

    on f i r i n g gave Wedgwood (1782) th e idea f o r h is famous pyrometer , wh ich, a l tho ugh

    g r o s s l y i n a c c u r a t e i n a b s o l u t e t er ms , was t h e o n l y means a v a i l a b l e f o r a c c u r a t e l y

    comparing h ig h te m p e ratu re s f o r 50 ye a rs o r m ore fr o m t h e 1 78 0s .

    knowledge o f t h e f i r i n g s h ri nk a g e o f c l a y i s e s s e n t i a l and where b l e n d i n g ca n be

    used to m in im ize such sh r inkage .

    It

    has a l s o b een a p p l i e d t o c l a y m in e r al s , b u t

    t h e d e t e r m i n a t i o n

    i s so

    s e n s i t i v e

    t o

    degree o f o r i e n t a t i o n o f p l a t y m in er al s, t h e

    n a tu re and am ounts o f a cce sso r i e s , e tc . , t h a t t h e re s u l t s ha ve n o t b ee n co n s id e re d

    o f g r e a t v a l ue f o r i d e n t i f i c a t i o n , T h er e hav e been r e c e n t i n d i c a t i o n s , how ever,

    t h a t t h e method can ha ve some l i m i t e d d i a g n o s t i c u se s, s i n ce

    i t

    w o u ld a p p e a r t h a t

    s m all amounts o f d i c k i t e o c c u r r i n g i n a k a o l i n c a n be i d e n t i f i e d by a n ex pa ns io n

    e f f e c t a t a b ou t 650°C t h a t i s p a r t i c u l a r l y s t r o n g f o r d i c k i t e (Schomberg a nd

    Schtlrr, 1978b).

    t i o n on t h e mechanism o f i n i t i a t i o n o f t h e d e h y d ro x y la t io n and m u l l i t i z a t i o n

    r e a c t i o n s o f k a o l i n i t e ( F la n k, 1979) and t h e r e i s no d o ub t t h a t , bec ause o f i t s

    s e n s i t i v i t y t o o r i e n t a t io n e f f e c t s ,

    i t

    has p o t e n t i a l a p p l i c a t i o n i n a ss e ss in g t he

    degree o f o r i e n t a t i o n o f p l a t y p a r t i c l e s i n c l a y s t r a t a .

    T he rm o dil at om e te rs and d i f f e r e n t i a l t he r m od il at o m et e rs a r e r e a d i l y a v a i l a b l e

    c o m m e r c i al ly an d d e r i v a t i v e t h e r m o d i la t o m e t r i c c u r v e s ca n b e e a s i l y r e c o r d ed f ro m

    the rmod i la tomet r i c measuremen ts .

    t he r m od il at o m et ry and d e r i v a t i v e t he r m od i l at om e tr y c a n y i e l d r e s u l t s t h a t h e l p t o

    Therm od i la tome t ry i s a ve ry common method i n ce ramic techno log y, where a

    T h e r m o d i l a t o m e t r y h a s a l s o r e c e n t l y b e e n u s e d t o o b t a i n i n f o r m a -

    When perfo rmed si m ul ta ne ou sl y w i t h DTA-TG,

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    15/25

    1 9

    ex pl ai n fea tur es on DTA and TG curv es ( P a u l i k and Pa ul ik , 1978). Such simultaneous

    measurements may, the r e fo re , be wor thy o f fu r t h e r s tudy by c l ay min era log is ts .

    1.3 .7 Thermomechanical measurements

    n o n - o s c i l l a t o r y ( i. e . s t a t i c ) o r w i t h an o s c i l l a t o r y ( i . e . dy na mic ) l oa d. The

    fo rme r, wh ich a re c u r r e n t l y commonly r e f e r r e d t o as

    thermomechanica l ana lysis

    o r

    TMA

    ( d e s p i t e t h e e r r o r o f u s in g a n a l y s i s i n suc h a c o n n ot a ti o n) c an hav e

    var io us modes depending on whether the st re s s a pp l ie d to th e sample i s compression,

    t en s io n , f l e x u r e o r t o r s i o n and o n w he th er d e f o rm a t io n o r p e n e t r a t i o n

    i s

    measured

    (Daniels, 1973).

    t h e d i f f e r e n c e b e in g i n th e u se o f a f i n i t e l oa d, w he th er p o s i t i v e o r n e g at iv e:

    indeed, th e same equipment can be used f o r b o th measurements (s ee Flank , 1979)

    and the re

    i s

    some argument as t o whether therm odi la t om etry should be separa te ly

    recognized. Dynamic thermomechanica l measurements enable a d i f f e r e n t se t o f

    parameters, such as the. shear modulus, th e mechanical damping inde x, th e lo ss

    t a n g e n t ( t a n 6 , etc., t o be measured as a fu n c t i o n o f temperature .

    b e n o te d t h a t i n d i v i d u a l i so th e rma l me a su re me n ts a re n o t i n c l u d e d .

    Thermomechanical measurements, both s t a t i c and dynamic, f i n d ex te ns iv e use i n

    p oly me r s ci en ce , b u t t h e p o t e n t i a l f o r t h e i r us e i n c l a y m i n er a lo g y appears s l i g h t -

    a l though

    i t

    i s f a s c i n a t i n g t o s pe cu la te on t h e p o s s i b l e r e s u l t o f a p p ly i ng t h e

    t o r s i o n a l pendulum ( s o - c a l l e d t o r s i o n a l b r a i d a n a l y s i s

    -

    see Danie ls, 1973) t o

    clay samples.

    a re , i n f a c t , a p p l i e d , o f t e n i so th e rm a l l y b u t sometimes, as when t e s t i n g h i g h -

    temperatu re r e f ra c t o r ie s , us ing a co n t ro l e d tempera tu re programme. I n ce ramic

    and re f r a c t o r y stud ies , measurements may be made o f de form at ion under loa d, shear

    modu lus , mo du lu s o f e l a s t i c i t y , c ru s h i n g s t r e n g th , r e f r a c to r i n e ss u nd er lo a d ,

    c re ep , s t r e s s re l a x a t i o n an d to ug hn ess a nd o f t h e i r va r i a t i o n w i t h t emp erature.

    I n c i v i l e n g i n e e ri n g , l o a d b e a r i n g p ro p e r t i e s , p e n e t ra t i o n measurements , e tc .,

    a re us ua l l y ca r r ie d o u t a t room tempera tu re bu t may have t o be made over a l i m i t e d

    temperature range.

    p r ov i nc e o f t h i s r ev ie w - o r in de ed o f t h e f i e l d o f e xp er ie nc e o f t he a ut ho r -

    and w i l l n o t b e f u r t h e r co n s i d e re d .

    i n ve s t i g a t i o n o f o i l sh a le s , whe re th ermo mecha ni ca l p ro p e r t i e s , such as d e fo rma t io n

    on h e a t i n g , a n i so t ro p y o f comp re ssi ve s t r e n g th , e tc ., a re i mp o r ta n t i n d e te rm i n in g

    t h e r e l e a s e

    o f

    th e o i l p roduct i n the r e t o r t (Rajeshwar, No t tenburg and DuBow,

    1979).

    A t

    present , the re for e , thermomcchanica l measurements ar e o f use ma in ly

    i n t e ch no lo gy and i n d u s t r y r a t h e r t ha n i n m in er al og y.

    AS n o te d i n T a b le

    1.1

    thermomechanical measurements can be carr ied out

    w i t h

    a

    C l e a r ly , t h i s t ec hn iq ue i s c l o s e l y r e l a t e d t o t h er m od il at om e tr y,

    It shou ld

    I n c i v i l e n g i n e e r in g a nd ce ra mic t e ch no l o gy many o f t h e t ech ni qu e s

    D es pi t e t h e i r p r a c t i c a l

    i mp or ta nc e, t he se a sp ec ts a r e n o t s t r i c t l y w i t h i n th e

    A much more r e l e v a n t a p p l i c a t i o n i s i n t h e

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    16/25

    2 0

    1.3.8

    Thermosonimetry and thermoacoust imetr,y

    sound em it te d by a sample on he at in g, whereas i n ther mo aco ust im etry one measures

    th e changes i n th e ch ar ac te r i s t i c s o f imposed sound waves caused by passage

    through the sample.

    As

    w i t h t h e t w o t y p e s

    o f

    thermomechanical measurement, there-

    f o re , t h e t y p e o f i n f o r m a t i o n g a in e d

    i s

    d i f f e r e n t .

    Sound emission f rom, o r d e c re p i t a t i on o f , rock s was st ud ied by Smi th and Peach

    i n 1949 a nd a sso c i a te d b y Smith ( 1 95 7) w i t h t h e i r p h y l l o s i l i c a te components .

    le d to a su rvey o f micas (Hu tch ison , 1966) t h a t de tec ted two tempera tu re ranges

    o f

    sound emission - a t 305-340°C ass ocia ted w i t h t rap ped wa ter and a t 600-1000°C

    a sso c i a te d w i t h p a r t i a l d e h yd ro xy l a t i o n . The a p pa ra tu s used i n t h e se s tu d i e s was

    v e ry s i m p le and l i t t l e f u r t h e r e nsued u n t i l L $ n v i k i n 1972 ( se e L l n v i k , 1974)

    devised a much more re f in ed sound-measurement ar rangement usin g a s p e c ia l l y designed

    wave-guide system: sound emiss ion was record ed e i t h e r as r a t e o r as am pl i tud e

    aga ins t tempera tu re.

    i t i s r a th e r more d i f f i c u l t t o p er fo rm. The meth od has more re ce n t l y been t a ke n

    up by C la rk (1978) and co -workers i n the

    UK

    who have developed a concurrent (not

    simultaneous, as two samples ar e used) thermosonimetry-DTA app ara tus (C la rk and

    Gar l ick, 1979) . A l e s s el a b ora te, b u t a l s o l e ss ve rs a t i l e , sys te m ha s been

    desc r ibed by Poulou and Bau drac co-G r i t t i (1978) and a S ov ie t inst ru me nt , whereby

    pressu re changes i n h i gh vacuum ar e measured as th e sample de cr ep i ta tes ,

    i s

    co m n e rc i a l l y a v a i l a b l e (Pa w l i ko wsk i , 1 97 9) .

    f o r m easurem ent o f r e l e a s e o f m a t e r i a l f r o m i n c l u s i o n s and i t i s d o u b t f u l w he th er

    i t would p i c k up o t he r causes o f sound emiss ion such as s t r a i n re lease , microcra ck

    propaga t ion , e tc .

    LBnvik (1974, 1978) has ap p l ie d th e techn ique to , i n t e r alia, q u a r t z i t e s a n d

    b oe h mite a nd h as n o te d ve ry s t r o n g so un d e mi ssi o n a sso c i a te d w i t h p ha se t r a n s i t i o n s

    and w i t h de comp o si ti on re a c t i o n s . C l a r k a nd G a r l i c k ( 19 7 9) , w i t h t h e i r co mb in ed

    equipment, have come t o th e c onc lusion t h a t maximum sound emission occu rs a t t h e

    ext rap o la ted onse t o f t he DTA peak assoc ia ted w i t h such p rocesses - i.e. sound

    e m is s io n i s v i r t u a l l y c om p le te a t t h e p o i n t a t w hi ch m ea su ra ble e n t h al p y c hanges

    occur

    -

    and have r e l e a t e d t h e e m i s s i o n o f s ound e s s e n t i a l l y t o t h e r e l e a s e o f s t r a i n :

    once the s t r a i n i s re leased, through th e commencement o f a phase change o r a

    decomposi tion re ac t io n, sound emiss ion ceases.

    A

    simi lar mechanism would presumably

    app ly

    t o

    m i c ro c ra c k p ro p ag a ti on b u t o t h e r r e l a t i o n s h i p s c o u l d w e l l h o l d f o r o t h e r

    phenomena such as t he re lea se o f i nc lus ion s.

    t im e i s now r i p e t o a p pl y

    i t

    o c l a y m in e r a ls : i n i t s m os t advanced f o rm

    i t

    mi g h t

    we l l h e l p t o e l u c i d a te t h e me ch a n i sms

    o f

    some r e a c t i o n s s t i l l i l l - u n d e r s t o o d .

    Thermoacoust imetry has so f a r been a p p l i e d m a in ly t o p oly me rs a nd, l i k e a l l

    measure ments i n vo l v i n g o s c i l l a t i o n o r waves, wh ethe r sou nd o r e l e c t ro ma g n e t ic ,

    These techn iques a re q u i t e d i s t i n c t . I n thermoson imet ry one measures th e

    T h i s

    A l t ho u g h f re q u e n cy a n a l ys i s o f t h e e m i t t e d sou nd i s p o ss i b l e ,

    The l a s t i s s p e c i f i c a l l y d es ign ed

    The r a p i d de ve lo pm en t i n t h i s f i e l d o v e r t h e l a s t few y e ar s s ug ge sts t h a t t h e

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    17/25

    2 1

    g i v e s i n f o r m a t i o n

    on

    t h e sh ea r mo du lu s, t h e mod ulu s o f e l a s t i c i t y , t h e l o s s ta n g e n t

    and such l i k e . An ex c e l le nt de s c r i p t i o n has been g iv en by Perepechko (1975) .

    I t s a p p l i c a t i o n t o c l a y s a t t h e moment

    i s

    u n ce r t ai n: i t s most l i k e l y f i e l d w ould

    be i n r e l a t i o n t o f i r e d c l a y p ro d uc t s b u t , l i k e dynamic t h ermo mecha ni ca l measure-

    men ts and a l t e rn a t i n g e l e c t r i c a l measurements ,

    i t

    h a s a l r e a d y f o u n d a p p l i ca t i o n

    i n o i l - s h a le tech nolo gy (Mraz, Rajeshwar and DuBow, 1980).

    1.3.9 Therrnoptornetry

    thermophotometry (measurement o f t o t a l 1 g h t ) , thermospect rometry (measurement o f

    l i g h t o f a s p e c i f i c wa ve le ng th ), t h e rm o r e fr a c to m e t ry (m easurem ent o f r e f r a c t i v e

    i nd e x ) and th er mo mic ro sc op y f o r e i t h e r e m i t t e d o r r e f l e c t e d l i g h t .

    l um in esce nce i s a sp e c i a l case o f t he rmo ph otome tr y whe re e m i t t e d l i g h t o n l y

    i s

    measured a t temperatures below re d hea t.

    Thermoluminescence i s p robab ly th e most w ide l y used lo f the se techn iqu es,

    hav ing been w id e ly ap p l ie d t o lu na r and me te or i te samples (Nambi, Bhas in and

    Bapat, 1978) as w e l l as t o ch ar ac te r i za t io n o f marb les and l imestones (A fo rdakos,

    Alexopoulous and M i l i o t i s , 1974; Nambi and M itr a, 1978; Chistyakova, 1979). It

    i s

    a l s o used f o r age d e t e r m i n a t i o n i n g eo lo g y

    -

    f o r e xample, t o d a te t h e b a k in g

    o f a sediment (H uxta ble, A i t k e n and Bonhommet, 1978) - and i n a,rchaeology - t o

    d a t e c e r a m i c s a n d o t h e r a r t i f a c t s ( C ai rn s, 1 97 6). I t s r e l a t i o n s h i p t o

    DTA,

    DTG

    and ot he r techn ique s has been disc uss ed by Chen (1976). Bas ic equipment fo r

    simultaneous thermoluminescence-DTA has been de sc r ibe d by Dav id (1972) and the

    more s en s i t i v e and e lab ora te equipment used i n achaeo log ic a l

    and chemica l stud ies

    by Cai r ns (1976) and Wendlandt (1980), re sp ec t i ve ly . David (1972) reproduces a

    g lo w c u r v e f o r a c l a y ( w h ic h f r om i t s DTA c u r v e i s a g i b b s i t i c b a u x i t e ) and

    C a ir n s (1 97 6) d is c u ss e s i n d e t a i l t h e o r i g i n o f th er mo lu min es ce i n c lays and i n

    ceramic and o the r mate r ia l s .

    Thermomicroscopy has been w id e ly a pp l i ed i n s tu d ies on g lasses, re f ra c t o r i e s

    Thermoptometry i s a wide term co ve r in g a whole range o f techn iques, such as

    Thermo-

    and ceramics, and ne at inst rum ents f o r s imul taneous DTA, o r

    DSC,

    and thermo-

    microscopy have been des cr i be d and su cc es sf ul ly used (M i l l e r and Sommer, 1966;

    Sommer and Jochens, 1971; K un ihi sa , 1979). Sev eral stan da rd ho t-s tag e microsco pes

    w i t h t e m p e ra t ur e c o n t r o l a r e a l s o c o m m e rc i al ly a v a i l a b l e b u t c l a y s as such,

    p re su mab ly be ca use o f t h e i r sma l l p a r t i c l e s i ze , have be en ra th e r n e g l e c ted .

    found (b ut no t ne ce ss ar i ly under th e same names) i n standard te xt s (e .g . Wendlandt

    and Hech t, 1966; We ndlandt, 197 4).

    methods have as ye t un tapped po te n t ia l i-n s tudy ing , f o r examp le , changes i n th e

    co l o u r o f sm e c t i t e s on sa tu ra t i o n w i t h n o n-ch ro mop ho ri c i o n s a nd mo de ra te h e a t in g .

    Equ ip me nt f o r u se w i t h some o f t h e o th e r t e ch ni q u e s re f e r re d t o a bo ve

    w i l l

    be

    I t seems t o th e autho r t h a t some o f thes e

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    18/25

    2 2

    1.3 .10 Therrnoelectrometry

    Like thermoptometry, thermo electrom etry i s e ss e n ti a ll y a portmanteau term

    covering measurement of any electr ical

    proper ty as a funct ion of temperature .

    Thus i t covers va r ia t ion s in r es i s ta nc e , conduc tance , inductance and capac i tance ,

    for both d.c.

    and

    a . c . , a s w ell a s v a r i a t i o n s i n d i e l e c t r i c c o n s t a n t s , t he rm o-

    e l e c t r i c i t y , t h e r m a l l y s t i m u l a t e d c u r r e n t , e t c .

    r ea c t io ns , so l id - s t a t e t r an s i t io ns , e t c . , was f i r s t apprec ia ted by Berg and

    Burmistrova

    (1960) ,

    wh o

    con struc ted an instrum ent f o r s imul taneous d.c. conductance

    measurement and DTA.

    Developments in :equipment and a p p li c a ti o n s up t o 1974 have

    been dis cu sse d by Wendlandt (19 74 ): more r e c e n t ly , a.c . conductance measurements

    have been favoured (Wendlandt, 1979). The terms therm ally s tim ulate d cond uctiv ity

    and

    therma l ly s t imulated c ur re nt have come in to very widespread use, p ar t i cu la r l y

    i n r e l a t i o n t o semi-conduc to r r esearch : unfo r tuna te ly , the f a c t th a t bo th a r e

    g iven th e abb rev ia t ion TSC has led t o widespread confusion in indexing

    -

    even

    in h e m i c a l A b s t r a c t s .

    The value of d.c.

    conductance (o r res i s ta nc e) in showing up decomposition

    Freund and co-workers, in t h e i r fundamental

    study of proton tunneling i n

    hydroxides, have rec en tly used d.c. conductance and therm ally s timu lated dep olar-

    ization measurements t o provide evidence of th e occurren ce o f pro ton conduc t iv i ty

    and t r a n s i t o r y HOH s p e c ie s i n g i b b s i t e ,

    b r u c i t e a n d p o r t l a n d i t e b e f o r e t h e

    comnencement of dehydroxylation (Freund and Wengeler, 1980; Wengeler, Martens and

    Freund, 1980). In th es e s t u di es , they observed th a t the d.c. conductance depends

    on the nature of the e lectrodes used and that thermopotent ia l measurements are

    s e n s i t i v e t o e l e c t r o n a c c e p t o r s or donors sorbed on p a r t i c l e s u r f a c e s . D c

    conductance has a ls o been used t o inv es t iga te wate r so rbed on goe th i t e

    (Kaneko

    and Inouye, 1979) . S im ilar ap pl ic at io ns ar e l ik el y with c la ys . In o i l s h a l e s ,

    the d . c . r es i s ta nc e decreases exponen t ia l ly

    w i t h

    inc reas ing tempera tu re - an

    o b s e rv a t io n a t t r i b u t e d t o c a r b o n a te i o ns b ein g t h e t r a n s p o r t i n g s p e c i e s o r t o

    breakdown of hydrocarbon units

    i n

    the trapped kerogen (Rajeshwar, Nottenburg and

    DuBow

    1979) .

    s e p a r a t e t h e e f f e c t s d u e t o the c lay mat r ix from thos e due to th e kerogen. Attempts

    have been made t o solv e th e problem using a.c. measurements inv olving co nductance -

    i .e . t h a t i n vo lv e d i e l e c t r i c c o n s ta n t , d i e l e c t r i c l o s s f a c t o r and l o s s ta n g en t

    and equipment for s imultaneous and concurrent a.c. capacitance measurement a n d

    DTA

    has been described

    (Rajeshwar, Nottenburg and

    DUBOW

    1978; Nottenburg e t

    ai.,

    1979).

    DTA and fo r capac i tance measurement i s qu i te d i f f e re n t . I t seems t o the au thor

    th at examinat ion of non-oi l -bear ing sha les of s im ila r mineralogical composi tion

    c ou ld a s s i s t i n r e so l v in g some o f t h e d i f f i c u l t i e s of i n t e r p r e t a t i o n e n co u nt er ed ,

    b u t th er e may be pr ac ti ca l

    d i f f i c u l t i e s r e l a t e d t o p a r t i c l e o r i e n t a t i o n , p ore

    space , e tc .

    Such systems a re extremely complicated and i t

    i s

    d i f f i c u l t t o

    The l a t t e r i s cons idered t he more re l i a b le a s the optimum sample s i z e fo r

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    19/25

    2 3

    T h e rm a ll y s t i m u l a t e d c u r r e n t s h ave been r e l a t e d t o v a r i ou s t y pe s o f l a t t i c e

    T h e se cu r re n t s ca n a l so b e re l a te d t o t h e rmo l u mi n e sce n ce e f f e c t s (F i e l d s

    de fec ts i n i o n ic c ry s ta l s and a rev iew has been g iv en by Radhakr ishna and Har idoss

    (1978).

    and Moran, 1974) - as, indeed, can th er m al ly st im ul at ed conductance (Chen, 1976;

    B r ae u nl ic h , K e l l y and F i l l i a r d , 1 97 9)

    -

    b u t no a p p l i c a t i o n t o c l a y s c an be t ra c e d .

    It may be o f i n t e r e s t t o some to n o te t h a t va l u e s o f t h e t h e rm o e l e c t r i c p ower

    ( i n uV/ C ag ai ns t l ea d) have been measured by Lee (1973)

    for a considerab le number

    o f m i n e ra l s , i n c l u d i n g some th a t , l i k e h e ma t it e , ma g n e t i t e and i l me n i t e , can o ccu r

    as a c ce s so ri es i n c la y s: i n d i c a t i o n s a r e g i v e n o f t h e s pre ad o f v a lu es f o r t h e

    samples t e z te d as w e l l as mean values.

    I n c o n c lu s i on , i t would appear that some thermoelect rometr ic techn iques may

    have c o n s id e r ab l e p o t e n t i a l i n c l a y s t u d i e s

    -

    e s p e c i a l ly i n r e l a t i o n t o w ate r-

    l o ss r e a c t i o ns and l a t t i c e d e f e c t i n v e s t i g a ti o n s

    -

    q u i t e a p a r t f ro m t h e i r p o t e n t i a l

    va l u e i n t e ch n o l o g i c a l a ssessmen ts .

    1.3.11 Thermomagnetometry

    t em p er at ur e i s ma gn et ic s u s c e p t i b i l i t y , w i t h co ns eq ue nt d e r i v a t i o n o f t h e C ur i e

    p o i n t - a parameter t h a t has proved ext remely us efu l i n some st ud ies on c lay s and

    s o i l s . Thus, on t h e b a si s t h a t t h e ve r y l a r g e v a r i a t i o n i n t h e C u r i e p o i n t

    o f

    i lmen i te (be low 77

    K

    t o 841 K) c an be c o r r e l a t e d w i t h i t s o r i g i n ,

    it

    has been

    c l a im e d t h a t sam ples w i t h a C u r i e p o i n t i n t h e r e g i o n 1 03-223 K a re l i k e l y t o be

    assoc ia te d w i t h k im be r l i t e dep os i t s (Garanin , Kudryavtseva and Soshk ina , 1979).

    M oreov er, f o r r e d -y e l lo w d e s e r t i c s o i l s , i t has been p o s s i b l e t o i n t e r p r e t C u r i e

    po in ts i n te rms o f the p resence o f h emat i te and maghemite (T imofeev and Smirnov,

    1 98 0) : i n t h i s s tu dy ,

    non-coincidence

    of

    the thermomagnet ic curve on a second

    h e a t in g has b een i n t e r p r e t e d as i n d i c a t i n g t h e p re se nc e o f f e r r i h y d r i t e - a l though

    f o rm a t io n o f i r o n o x i de s f r o m some o t h e r m i n e r a l s p r es e n t c o u l d p o s s i b l y a l s o

    c o n t r i b u t e . Be t h a t as i t may,

    i t

    wou ld seem th a t thermomagnetometry may w e ll

    have s i g n i f i c a n t a p p l i c a t i o n s i n c l a y min er alo gy , e s p e c i a l l y i n th e i n v e s t i g a t i o n

    o f c e r t a i n a cc es so ry m i n e r a ls .

    The most common magnet ic c h a r a c t e r i s t i c to be measured as a f un c t i on o f

    1.4

    C O N C L U S I O N S

    From the above account, i t s ev id en t th a t , a l though TG and DTA a r e b y f a r t h e

    mos t w i d e l y used t h e rm o a n a l y t i ca l t e ch n iq u e s i n c l a y m i n e ra lo g y a t p re se n t , many

    o t h e r m e t h o d s t h a t c a n e l u c i d a t e s p e c i f i c f e a t u r e s o r b e h a v i o u r a r e a v a i l a b l e .

    Thus, EGA and DSC a r e p r e s e n t l y r e c e i v i n g g r e a t e r a t t e n t i o n and t he rm o so ni me tr y

    a long wi t h some thermop tometr ic , therm oele ct rom etr ic and thermomagnet ic methods

    d es er ve c o n s i d e r a t i o n i n t h e f u t u r e . M ethods u s i ng o s c i l l a t i o n s o r waves t h a t

    j i v e i n f o r m a t i o n o n t h e s he ar m odulus , t h e m odulus o f e l a s t i c i t y , e tc ., a r e

    r e l e v a n t e s s e n t i a l l y t o t e c hn ol og y and i n du s t r y , a lt ho u gh t h e i r p o s s i b le uses i n

  • 8/20/2019 1-Thermoanalytical Mehtods in Clay Studies

    20/25

    2 4

    more fundamental

    studies should not be neglected.

    All-in-all

    ,

    however, thermoanalytical methods are not in themselves necessarily

    good

    in

    mineral identification: theirforte is

    in

    yielding information on

    characteristics or detail

    that it would be difficult,

    if not impossible, to obtain

    by any other method.

    REFERENCES

    Afordakos, G. , Alexopoulos, K. and Miliotis, D., 1974. Using artificial

    thermoluminescence to reassemble statues from fragments. Nature, Lond., 250:

    Alietti, A., Brigatti, M.F. and Poppi, L . 1979.

    An

    illite/montmorillonite

    interlayer mineral in porphyritic rock 'Alpe di Siusi' (BZ-Italy): The Chemistry

    of I/M interlayer minerals. Clay Miner., 14: 39-46.

    Ashley, H.E.,

    1911.

    The decomposition of clays and the utilization of smelter

    and

    other smoke

    in

    preparing sulphate from clays.

    J.

    ind.

    Engng

    Chem., 3: 91-95.

    Asomoza, P.M., Razo,

    M.L.,

    Chaidez,

    T.L. and

    Casillas, S.R., 1978. Quantitative

    evaluation of Na,CO, and NaCl content of the clays of the ex-lake of Texcoco

    (Valley of Mexico) by means of thermogravimetry. J. therm. Analysis, 13: 327-339,

    Balek,

    V.,

    1977. Emanation thermal analysis. Thermochim. Acta, 22: 1-156.

    Barwood, H.L. and Hajek, B.F., 1979. Differential thermal characteristics of

    soil and reference quartz. J. Soil Sci. SOC. Am., 43: 626-627.

    Berg, L.G. and Burmistrova, N.P., 1960. [Thermographic analysis of salts with

    simultaneous determination of temperature effects

    and

    electrical

    conductivity.1

    Zh.

    neorg.

    Khim.

    5: 676-683.

    Boy,

    S.

    and BMhme,

    K.

    ,

    1979.

    zur Ermittlunq kinetischer Parameter anhand von Experimentalwerten. Thermochim.

    47-48.

    GegenUberstel

    ung

    verschiedener LBsungsverfahren

    Acta, 28: 2491258.

    drained Scottish soils.

    In

    C.E.R. Jones

    and

    C.A. Cramers [Editors). Analytical

    Bracewell, J.M. and Robertson, G.W., 1977. Pyrolysis studies on humus in freely

    Pyrolysis: Proc. 3rd Int. Symp. Analyt. Pyrol.

    ,

    Amsterdam. Elsevier, Amsterdam,

    pp.

    167-178.

    of humification in a peat and a peaty podzol. J. analyt. appl. Pyrol., 2: 53-62.

    luminescence and conductivity. Top. appl. Phys. . 7: 35-92.

    ordered and disordered varieties. Am. Miner., 63: 554-562.

    and DTG measurements on aluminium oxide monohydroxides.

    J.

    therm. Analysis,

    Ceram. SOC., 14: 709-721.

    London, 3 vols.

    Bracewell, J.M.

    and

    Robertson, G.W. ,

    1980.

    Pyrolysis-mass spectrometry studies

    Braeunlich, P., Kelly,

    P.

    and Filliard, J.P., 1979. Thermally stimulated

    Brindley, G.W.

    and