70
1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models, Factors, and Designs Two-Way Analysis of Variance Blocking Designs Summary and Review of Terms Analysis of Variance 9

1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

Embed Size (px)

Citation preview

Page 1: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

1

• Using Statistics• The Hypothesis Test of Analysis of Variance• The Theory and Computations of ANOVA• The ANOVA Table and Examples• Further Analysis• Models, Factors, and Designs• Two-Way Analysis of Variance• Blocking Designs• Summary and Review of Terms

Analysis of Variance9

Page 2: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

• Explain the purpose of ANOVA

• Describe the model and computations behind ANOVA

• Explain the test statistic F

• Conduct a 1-way ANOVA

• Report ANOVA results in an ANOVA table

• Apply Tukey test for pair-wise analysis

• Conduct a 2-way ANOVA

• Explain blocking designs

• Apply templates to conduct 1-way and 2-way ANOVA

LEARNING OBJECTIVESLEARNING OBJECTIVES99After studying this chapter you should be able to:After studying this chapter you should be able to:

Page 3: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

3

• ANOVA (ANalysis Of VAriance) is a statistical method for determining the existence of differences among several population means.ANOVA is designed to detect differences among

means from populations subject to different treatmentsANOVA is a joint test ( 聯合檢定 )

• The equality of several population means is tested simultaneously or jointly.

ANOVA tests for the equality of several population means by looking at two estimators of the population variance (hence, analysis of variance).

• ANOVA (ANalysis Of VAriance) is a statistical method for determining the existence of differences among several population means.ANOVA is designed to detect differences among

means from populations subject to different treatmentsANOVA is a joint test ( 聯合檢定 )

• The equality of several population means is tested simultaneously or jointly.

ANOVA tests for the equality of several population means by looking at two estimators of the population variance (hence, analysis of variance).

9-1 ANOVA: Using Statistics

Page 4: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

4

• In an analysis of variance:We have r independent random samples, each one corresponding to

a population subject to a different treatment.We have:

• n = n1+ n2+ n3+ ...+nr total observations.

• r sample means: x1, x2 , x3 , ... , xr

– These r sample means can be used to calculate an estimator of the population variance. If the population means are equal, we expect the variance among the sample means to be small.

• r sample variances: s12, s2

2, s32, ...,sr

2

– These sample variances can be used to find a pooled estimator of the population variance.

• In an analysis of variance:We have r independent random samples, each one corresponding to

a population subject to a different treatment.We have:

• n = n1+ n2+ n3+ ...+nr total observations.

• r sample means: x1, x2 , x3 , ... , xr

– These r sample means can be used to calculate an estimator of the population variance. If the population means are equal, we expect the variance among the sample means to be small.

• r sample variances: s12, s2

2, s32, ...,sr

2

– These sample variances can be used to find a pooled estimator of the population variance.

9-2 The Hypothesis Test of Analysis of Variance

Page 5: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

5

• We assume independent random sampling from each of the r populations

• We assume that the r populations under study:– are normally distributed,

– with means i that may or may not be equal,

– but with equal variances, i2.

• We assume independent random sampling from each of the r populations

• We assume that the r populations under study:– are normally distributed,

– with means i that may or may not be equal,

– but with equal variances, i2.

1 2 3

Population 1 Population 2 Population 3

9-2 The Hypothesis Test of Analysis of Variance (continued): Assumptions

Figure 9-1

Page 6: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

6

The test statistic of analysis of variance:

F(r-1, n-r) =Estimate of variance based on means from r samples

Estimate of variance based on all sample observations

That is, the test statistic in an analysis of variance is based on the ratio of two estimators of a population variance, and is therefore based on the F distribution, with (r-1) degrees of freedom in the numerator and (n-r) degrees of freedom in the denominator.

The test statistic of analysis of variance:

F(r-1, n-r) =Estimate of variance based on means from r samples

Estimate of variance based on all sample observations

That is, the test statistic in an analysis of variance is based on the ratio of two estimators of a population variance, and is therefore based on the F distribution, with (r-1) degrees of freedom in the numerator and (n-r) degrees of freedom in the denominator.

The hypothesis test of analysis of variance:

H0: 1 = 2 = 3 = 4 = ... =r

H1: Not all i (i = 1, ..., r) are equal

The hypothesis test of analysis of variance:

H0: 1 = 2 = 3 = 4 = ... =r

H1: Not all i (i = 1, ..., r) are equal

9-2 The Hypothesis Test of Analysis of Variance (continued)

Page 7: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

7

x

x

x

When the null hypothesis is true:

We would expect the sample means to be nearly equal, as in this illustration. And we would expect the variation among the sample means (between sample) to be small, relative to the variation found around the individual sample means (within sample).

If the null hypothesis is true, the numerator in the test statistic is expected to be small, relative to the denominator:

F(r-1, n-r)=Estimate of variance based on means from r samples

Estimate of variance based on all sample observations

When the null hypothesis is true:

We would expect the sample means to be nearly equal, as in this illustration. And we would expect the variation among the sample means (between sample) to be small, relative to the variation found around the individual sample means (within sample).

If the null hypothesis is true, the numerator in the test statistic is expected to be small, relative to the denominator:

F(r-1, n-r)=Estimate of variance based on means from r samples

Estimate of variance based on all sample observations

When the Null Hypothesis Is True

Page 8: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

8

x xx

When the null hypothesis is false: is equal to but not to , is equal to but not to , is equal to but not to , or , , and are all unequal.

In any of these situations, we would not expect the sample means to all be nearly equal. We would expect the variation among the sample means (between sample) to be large, relative to the variation around the individual sample means (within sample).

If the null hypothesis is false, the numerator in the test statistic is expected to be large, relative to the denominator:

F(r-1, n-r)= Estimate of variance based on means from r samples

Estimate of variance based on all sample observations

In any of these situations, we would not expect the sample means to all be nearly equal. We would expect the variation among the sample means (between sample) to be large, relative to the variation around the individual sample means (within sample).

If the null hypothesis is false, the numerator in the test statistic is expected to be large, relative to the denominator:

F(r-1, n-r)= Estimate of variance based on means from r samples

Estimate of variance based on all sample observations

When the Null Hypothesis Is False

Page 9: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

9

•Suppose we have 4 populations, from each of which we draw an independent random sample, with n1 + n2 + n3 + n4 = 54. Then our test statistic is:

• F(4-1, 54-4)= F(3,50) = Estimate of variance based on means from 4 samples

Estimate of variance based on all 54 sample observations

•Suppose we have 4 populations, from each of which we draw an independent random sample, with n1 + n2 + n3 + n4 = 54. Then our test statistic is:

• F(4-1, 54-4)= F(3,50) = Estimate of variance based on means from 4 samples

Estimate of variance based on all 54 sample observations

543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0F(3,50)

f (F)

F Distribution with 3 and 50 Degrees of Freedom

2.79

=0.05

The nonrejection region (for =0.05)in this instance is F 2.79, and the rejection region is F > 2.79. If the test statistic is less than 2.79 we would not reject the null hypothesis, and we would conclude the 4 population means are equal. If the test statistic is greater than 2.79, we would reject the null hypothesis and conclude that the four population means are not equal.

The ANOVA Test Statistic for r = 4 Populations and n = 54 Total Sample Observations

Page 10: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

10

Randomly chosen groups of customers were served different types of coffee and asked to rate the coffee on a scale of 0 to 100: 21 were served pure Brazilian coffee, 20 were served pure Colombian coffee, and 22 were served pure African-grown coffee.

The resulting test statistic was F = 2.02

Randomly chosen groups of customers were served different types of coffee and asked to rate the coffee on a scale of 0 to 100: 21 were served pure Brazilian coffee, 20 were served pure Colombian coffee, and 22 were served pure African-grown coffee.

The resulting test statistic was F = 2.02

others. thefromtly significan differs means population

theofany that concludecannot weand rejected, becannot 0H

15.360,2

02.2

15.360,2363,13-r,1-

:is 0.05=for point critical The3=r

63=22+20+21=n 22=3n 20=2n 21=1n

equal means threeallNot :1H321 :0H

FF

FFnr

F

543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0F

f( F)

F Distribution with 2 and 60 Degrees of Freedom

=0.05

Test Statistic=2.02 F(2,60)=3.15

Example 9-1

Page 11: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

11

The grand mean, x, is the mean of all n = n1+ n2+ n3+...+ nr observations in all r samples. ( 總括平均 )

.j

n to1 from runs j thus,i; population from sample in thepoint with data thedenotes jsubscript The r. to1 from runs and nt,or treatme ,population thedenotes isubscript The

i. population from sample e within thjposition in point data particular theis ij

xwhere

1 =1 ijx

1=

:points data all ofmean themean, grand The

1 ijx

=

:r)1,2,3,...,=(i i sample ofmean The

i

ni

n

in

j

r

iix

in

in

jix

r

ixn

9-3 The Theory and the Computations of ANOVA: The Grand Mean

Page 12: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

12

Using the Grand Mean: Table 9-1

If the r population means are different (that is, at least two of the population means are not equal), then it is likely that the variation of the data points about their respective sample means (within sample variation) will be small relative to the variation of the r sample means about the grand mean (between sample variation).

Distance from data point to its sample mean

Distance from sample mean to grand mean

1050

x3=2

x2=11.5

x1=6

x=6.909

Treatment (i) Sample point(j) Value(xij)I=1 Triangle 1 4Triangle 2 5Triangle 3 7Triangle 4 8

Mean of Triangles 6I=2 Square 1 10Square 2 11Square 3 12Square 4 13

Mean of Squares 11.5I=3 Circle 1 1Circle 2 2Circle 3 3

Mean of Circles 2Grand mean of all data points 6.909

Page 13: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

13

We define an as the di fference between a data pointand its sample mean. Errors are denoted by , and we have:

We define a as the deviation of a sample meanfrom the grand mean. Treatment deviations, t are given by:

i

error deviation

treatment deviation

e

,

The ANOVA principle says:When the population means are not equal, the “average” error(within sample) is relatively small compared with the “average”treatment (between sample) deviation.

The ANOVA principle says:When the population means are not equal, the “average” error(within sample) is relatively small compared with the “average”treatment (between sample) deviation.

The Theory and Computations of ANOVA: Error Deviation and Treatment

Deviation

iijijxxe

iijijxxe

xxtii xxt

ii

Page 14: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

14

Consider data point x24=13 from table 9-1. The mean of sample 2 is 11.5, and the grand mean is 6.909, so:

e x x

t x x

Tot t e

Tot x x

24 24 2 13 11 5 1 5

2 2 11 5 6 909 4 591

24 2 24 1 5 4 591 6 091

24 24 13 6 909 6 091

. .

. . .

. . .

. .

or

1050

x2=11.5

x=6.909

x24=13

Total deviation:Tot24=x24-x=6.091

Treatment deviation:t2=x2-x=4.591

Error deviation:e24=x24-x2=1.5

The total deviation (Totij) is the difference between a data point (xij) and the grand mean (x):

Totij=xij - x

For any data point xij:

Tot = t + e

That is:

Total Deviation = Treatment Deviation + Error Deviation

The total deviation (Totij) is the difference between a data point (xij) and the grand mean (x):

Totij=xij - x

For any data point xij:

Tot = t + e

That is:

Total Deviation = Treatment Deviation + Error Deviation

The Theory and Computations of ANOVA: The Total Deviation

Page 15: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

15

Total Deviation = Treatment Deviation + Error Deviation

Squared Deviations

The total deviation is the sum of the treatment deviation and the error deviation: + = ( ) ( )

Notice that the sample mean term ( ) cancels out in the above addition, which

simplifies the equation.

2 +

2= ( )

2( )

2

ti

eij

xi

x xij xi

xij x Totij

xi

ti

eij

xi

x xij xi

Totij xij x

( )

( )2 2

The Theory and Computations of ANOVA: Squared Deviations

Page 16: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

16

Sums of Squared Deviations

2

+2

= ni( )2 ( )2

SST = SSTR + SSE

Totijj

nj

i

rnitii

reijj

nj

i

r

xij

xj

nj

i

rxi

xi

rxij

xij

nj

i

r

2

11 1 11

2

11 1 11

( )

The Sum of Squares Principle ( 平方和原則 )

The total sum of squares (SST) is the sum of two terms: the sum of squares for treatment (SSTR) and the sum of squares for error (SSE).

SST = SSTR + SSE (9-12)

The Sum of Squares Principle ( 平方和原則 )

The total sum of squares (SST) is the sum of two terms: the sum of squares for treatment (SSTR) and the sum of squares for error (SSE).

SST = SSTR + SSE (9-12)

The Theory and Computations of ANOVA: The Sum of Squares Principle

Page 17: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

17

SST

SSTR SSTE

SST measures the total variation in the data set, the variation of all individual data points from the grand mean.

SSTR measures the explained variation, the variation of individual sample means from the grand mean. It is that part of the variation that is possibly expected, or explained, because the data points are drawn from different populations. It’s the variation between groups of data points.

SSE measures unexplained variation, the variation within each group that cannot be explained by possible differences between the groups.

SST measures the total variation in the data set, the variation of all individual data points from the grand mean.

SSTR measures the explained variation, the variation of individual sample means from the grand mean. It is that part of the variation that is possibly expected, or explained, because the data points are drawn from different populations. It’s the variation between groups of data points.

SSE measures unexplained variation, the variation within each group that cannot be explained by possible differences between the groups.

The Theory and Computations of ANOVA: Picturing The Sum of Squares Principle

Page 18: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

18

The number of degrees of freedom associated with SST is (n - 1).n total observations in all r groups, less one degree of freedom lost with the calculation of the grand mean

The number of degrees of freedom associated with SSTR is (r - 1).r sample means, less one degree of freedom lost with thecalculation of the grand mean

The number of degrees of freedom associated with SSE is (n-r). n total observations in all groups, less one degree of freedomlost with the calculation of the sample mean from each of r groups

The degrees of freedom are additive in the same way as are the sums of squares: df(total) = df(treatment) + df(error) (n - 1) = (r - 1) + (n - r)

The number of degrees of freedom associated with SST is (n - 1).n total observations in all r groups, less one degree of freedom lost with the calculation of the grand mean

The number of degrees of freedom associated with SSTR is (r - 1).r sample means, less one degree of freedom lost with thecalculation of the grand mean

The number of degrees of freedom associated with SSE is (n-r). n total observations in all groups, less one degree of freedomlost with the calculation of the sample mean from each of r groups

The degrees of freedom are additive in the same way as are the sums of squares: df(total) = df(treatment) + df(error) (n - 1) = (r - 1) + (n - r)

The Theory and Computations of ANOVA: Degrees of Freedom

Page 19: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

19

Recall that the calculation of the sample variance involves the division of the sum of squared deviations from the sample mean by the number of degrees of freedom. This principle is applied as well to find the mean squared deviations within the analysis of variance.

Mean square treatment (MSTR, 處理均方 ):

Mean square error (MSE, 誤差均方 ):

Mean square total (MST):

(Note that the additive properties of sums of squares do not extend to the mean squares. MSTMSTR + MSE.

Recall that the calculation of the sample variance involves the division of the sum of squared deviations from the sample mean by the number of degrees of freedom. This principle is applied as well to find the mean squared deviations within the analysis of variance.

Mean square treatment (MSTR, 處理均方 ):

Mean square error (MSE, 誤差均方 ):

Mean square total (MST):

(Note that the additive properties of sums of squares do not extend to the mean squares. MSTMSTR + MSE.

)1(

r

SSTRMSTR

)( rn

SSEMSE

MSTSSTn

( )1

The Theory and Computations of ANOVA: The Mean Squares

Page 20: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

20

E MSE

E MSTRni i

r

i

( )

and

( )( ) when the null hypothesis is true

> when the null hypothesis is false

where is the mean of population i and is the combined mean of all r populations.

2

22

1

2

2

That is, the expected mean square error (MSE) is simply the common population variance (remember the assumption of equal population variances), but the expected treatment sum of squares (MSTR) is the common population variance plus a term related to the variation of the individual population means around the grand population mean.

If the null hypothesis is true so that the population means are all equal, the second term in the E(MSTR) formulation is zero, and E(MSTR) is equal to the common population variance.

The Theory and Computations of ANOVA: The Expected Mean Squares

Page 21: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

21

When the null hypothesis of ANOVA is true and all r population means are equal, MSTR and MSE are two independent, unbiased estimators of the common population variance 2.

On the other hand, when the null hypothesis is false, then MSTR will tend to be larger than MSE.

So the ratio of MSTR and MSE can be used as an indicator of the equality or inequality of the r population means.

This ratio (MSTR/MSE) will tend to be near to 1 if the null hypothesis is true, and greater than 1 if the null hypothesis is false. The ANOVA test, finally, is a test of whether (MSTR/MSE) is equal to, or greater than, 1.

On the other hand, when the null hypothesis is false, then MSTR will tend to be larger than MSE.

So the ratio of MSTR and MSE can be used as an indicator of the equality or inequality of the r population means.

This ratio (MSTR/MSE) will tend to be near to 1 if the null hypothesis is true, and greater than 1 if the null hypothesis is false. The ANOVA test, finally, is a test of whether (MSTR/MSE) is equal to, or greater than, 1.

Expected Mean Squares and the ANOVA Principle

Page 22: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

22

Under the assumptions of ANOVA, the ratio (MSTR/MSE) possess an F distribution with (r-1) degrees of freedom for the numerator and (n-r) degrees of freedom for the denominator when the null hypothesis is true.

The test statistic in analysis of variance:

( - , - )FMSTRMSEr n r1

The Theory and Computations of ANOVA: The F Statistic

Page 23: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

23

( )2

ni

( )2

Critical point ( = 0.01): 8.65

H0

may be rejected at the 0.01 level

of significance.

SSE xij

xij

nj

i

r

SSTR xi

xi

r

MSTRSSTR

r

MSESSTR

n r

FMSTR

MSE

117

1

1159 9

1

159 9

3 179 95

17

82 125

2 8

79 95

2 12537 62

.

.

( ).

.

( , )

.

.. .

Treatment (i) i j Value (x ij ) (xij -xi ) (xij -xi )2

Triangle 1 1 4 -2 4

Triangle 1 2 5 -1 1

Triangle 1 3 7 1 1

Triangle 1 4 8 2 4

Square 2 1 10 -1.5 2.25

Square 2 2 11 -0.5 0.25Square 2 3 12 0.5 0.25Square 2 4 13 1.5 2.25

Circle 3 1 1 -1 1

Circle 3 2 2 0 0

Circle 3 3 3 1 1

73 0 17

Treatment (xi -x) (xi -x)2 ni (xi -x)2

Triangle -0.909 0.826281 3.305124

Square 4.591 21.077281 84.309124

Circle -4.909 124.098281 72.294843

159.909091

9-4 The ANOVA Table and Examples

Page 24: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

24

Source ofVariation

Sum ofSquares

Degrees ofFreedom Mean Square F Ratio

Treatment SSTR=159.9 (r-1)=2 MSTR=79.95 37.62

Error SSE=17.0 (n-r)=8 MSE=2.125

Total SST=176.9 (n-1)=10 MST=17.69

100

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0F(2,8)

f(F

)

F Distribution for 2 and 8 Degrees of Freedom

8.65

0.01

Computed test statistic=37.62

The ANOVA Table summarizes the ANOVA calculations.

In this instance, since the test statistic is greater than the critical point for an =0.01 level of significance, the null hypothesis may be rejected, and we may conclude that the means for triangles, squares, and circles are not all equal.

The ANOVA Table summarizes the ANOVA calculations.

In this instance, since the test statistic is greater than the critical point for an =0.01 level of significance, the null hypothesis may be rejected, and we may conclude that the means for triangles, squares, and circles are not all equal.

ANOVA Table

Page 25: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

Template Output

Decision: Reject theNull Hypothesis

Decision: Reject theNull Hypothesis

Page 26: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

26

• Formula: (p.349)

• Exercise: p.349

Formulas and Exercise, p.349, 10min

SSTRSSTSSE

n

x

n

x

SSTR

n

x

xSST

i

i jij

i

jij

i j

i jij

ij

22

2

2

)(

]

)(

[

)(

)(

Page 27: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

27

Formulas and Exercise, p.349, 10min

17

909.15911

76]

3

6

4

46

4

24[

)(

]

)(

[

909.17611

76702

)(

)(

702941...492516)(

2222

22

2

2

2

2

SSTRSSTSSE

n

x

n

x

SSTR

n

x

xSST

x

i

i jij

i

jij

i j

i jij

ij

i jij

Page 28: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

28

Club Med has conducted a test to determine whether its Caribbean resorts are equally well liked by vacationing club members. The analysis was based on a survey questionnaire (general satisfaction, on a scale from 0 to 100) filled out by a random sample of 40 respondents from each of 5 resorts.

Source ofVariation

Sum ofSquares

Degrees ofFreedom Mean Square F Ratio

Treatment SSTR= 14208 (r-1)= 4 MSTR= 3552 7.04

Error SSE=98356 (n-r)= 195 MSE= 504.39

Total SST=112564 (n-1)= 199 MST= 565.65

Resort Mean Response (x )i

Guadeloupe 89

Martinique 75

Eleuthra 73

Paradise Island 91

St. Lucia 85

SST=112564 SSE=98356

F(4,200)

F Distribution with 4 and 200 Degrees of Freedom

0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

f(F

)

3.41

0.01

Computed test statistic=7.04

The resultant F ratio is larger than the critical point for = 0.01, so the null hypothesis may be rejected.

The resultant F ratio is larger than the critical point for = 0.01, so the null hypothesis may be rejected.

Example 9-2: Club Med

Page 29: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

29

Source ofVariation

Sum ofSquares

Degrees ofFreedom Mean Square F Ratio

Treatment SSTR= 879.3 (r-1)=3 MSTR= 293.1 8.52

Error SSE= 18541.6 (n-r)= 539 MSE=34.4

Total SST= 19420.9 (n-1)=542 MST= 35.83

Given the total number of observations (n = 543), the number of groups (r = 4), the MSE (34. 4), and the F ratio (8.52), the remainder of the ANOVA table can be completed. The critical point of the F distribution for = 0.01 and (3, 400) degrees of freedom is 3.83. The test statistic in this example is much larger than this critical point, so the p value associated with this test statistic is less than 0.01, and the null hypothesis may be rejected.

Given the total number of observations (n = 543), the number of groups (r = 4), the MSE (34. 4), and the F ratio (8.52), the remainder of the ANOVA table can be completed. The critical point of the F distribution for = 0.01 and (3, 400) degrees of freedom is 3.83. The test statistic in this example is much larger than this critical point, so the p value associated with this test statistic is less than 0.01, and the null hypothesis may be rejected.

Example 9-3: Job InvolvementSalespeople: exploration, establishment, maintenance,

disengagement

Page 30: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

30

Class Exercise, 15min

利用下列資訊,檢定處理平均全等的假設。給定 α=0.05

處理一 處理二 處理三9 12 107 20 9

11 14 159 13 14

12 1510

Page 31: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

31

1. 寫出虛無與對立假設2. 寫下決策法則3. 處理平方和、誤差平方和與總平方和各

是多少?4. 製作 ANOVA 表5. 陳述檢定結果

Class Exercise, 15min

Page 32: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

32

Class Exercise (continued)

處理一 平方 處理二 平方 處理三 平方9 81 12 144 10 1007 49 20 400 9 81

11 121 14 196 15 2259 81 13 169 14 196

12 144 15 22510 10058 59 63

Page 33: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

3328.87

72.6415

180]

5

63

4

59

6

58[

)(

]

)(

[

15215

1802312

)(

)(

2312225196...4981)(

180

2222

22

2

2

2

2

SSTRSSTSSE

n

x

n

x

SSTR

n

x

xSST

x

x

i

i jij

i

jij

i j

i jij

ij

i jij

ij

Class Exercise (continued)

Page 34: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

34

ANOVA Table

變異源 平方和 自由度 均方 F 比例

處理 64.72 2 32.36 4.4493

誤差 87.28 12 7.273

總和 152 14

Class Exercise (continued)

Page 35: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

35

1. 寫出虛無與對立假設 (Ho:μ1=μ2=μ3, H1: 平均數不全相等 )

2. 寫下決策法則 ( F(2,12,0.05)=3.89 )

3. 處理平方和、誤差平方和與總平方和各是多少?

4. 製作 ANOVA 表5. 陳述檢定結果 ( F=4.4493>3.89, reject Ho)

Class Exercise (continued)

Page 36: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

36

Exercise, p.353, 15min

• Exercise 9-10

(Ans. F=11.494>F(3,28,0.01)=4.57, reject Ho )• Exercise 9-11

(Ans. F=12.31>F(2,38,0.01)=3.24, reject Ho )• Exercise 9-12

(Ans. 四種投資組合的表現都顯著不同 )

Page 37: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

37

Data ANOVADo Not Reject H0 Stop

Reject H0

The sample means are unbiased estimators of the population means.

The mean square error (MSE) is an unbiased estimator of the common population variance.

Further Analysis

Confidence Intervals for Population Means

Tukey Pairwise Comparisons Test

The ANOVA Diagram

9-5 Further Analysis

Page 38: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

38

A (1 - ) 100% confidence interval for , the mean of population i: i

where t is the value of the distribution with ) degrees of

freedom that cuts off a right - tailed area of2

.2

x tMSE

ni

i

2

t (n - r

x tMSE

nx xi

i

i i

2

1 96504 39

406 96

89 6 96 82 04 95 96]75 6 96 68 04 81 96]73 6 96 66 04 79 96]91 6 96 84 04 97 96]85 6 96 78 04 91 96]

..

.

. [ . , .

. [ . , .

. [ . , .

. [ . , .

. [ . , .

Resort Mean Response (x i)

Guadeloupe 89

Martinique 75

Eleuthra 73

Paradise Island 91

St. Lucia 85

SST = 112564 SSE = 98356

ni = 40 n = (5)(40) = 200

MSE = 504.39

Confidence Intervals for Population Means

df=195

Page 39: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

39

The Tukey Pairwise Comparison test, or Honestly Significant Differences (MSD) test, allows us to compare every pair of population means with a single level of significance.

It is based on the studentized range distribution, q, with r and (n-r) degrees of freedom.

The critical point in a Tukey Pairwise Comparisons test is the Tukey Criterion:

where ni is the smallest of the r sample sizes.

The test statistic is the absolute value of the difference between the appropriate sample means, and the null hypothesis is rejected if the test statistic is greater than the critical point of the Tukey Criterion

T qMSE

ni

32:1H 31:1H 21:1H

32:0H 31:0H 21:0H

:3 =r if example,For compare. tomeans population of pairs )!2(!2

!2

k are e that therNote

kk

The Tukey Pairwise Comparison Test

Page 40: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

40

The test statistic for each pairwise test is the absolute difference between the appropriate sample means. i Resort Mean I. H0: 1 2 VI. H0: 2 4

1 Guadeloupe 89 H1: 1 2 H1: 2 4

2 Martinique 75 |89-75|=14>13.7* |75-91|=16>13.7*3 Eleuthra 73 II. H0: 1 3 VII. H0: 2 5

4 Paradise Is. 91 H1: 1 3 H1: 2 5

5 St. Lucia 85 |89-73|=16>13.7* |75-85|=10<13.7 III. H0: 1 4 VIII. H0: 3 4

The critical point T0.05 for H1: 1 4 H1: 3 4

r=5 and (n-r)=195 |89-91|=2<13.7 |73-91|=18>13.7*degrees of freedom is: IV. H0: 1 5 IX. H0: 3 5

H1: 1 5 H1: 3 5

|89-85|=4<13.7 |73-85|=12<13.7 V. H0: 2 3 X. H0: 4 5

H1: 2 3 H1: 4 5

|75-73|=2<13.7 |91-85|= 6<13.7Reject the null hypothesis if the absolute value of the difference between the sample means is greater than the critical value of T. (The hypotheses marked with * are rejected.)

The test statistic for each pairwise test is the absolute difference between the appropriate sample means. i Resort Mean I. H0: 1 2 VI. H0: 2 4

1 Guadeloupe 89 H1: 1 2 H1: 2 4

2 Martinique 75 |89-75|=14>13.7* |75-91|=16>13.7*3 Eleuthra 73 II. H0: 1 3 VII. H0: 2 5

4 Paradise Is. 91 H1: 1 3 H1: 2 5

5 St. Lucia 85 |89-73|=16>13.7* |75-85|=10<13.7 III. H0: 1 4 VIII. H0: 3 4

The critical point T0.05 for H1: 1 4 H1: 3 4

r=5 and (n-r)=195 |89-91|=2<13.7 |73-91|=18>13.7*degrees of freedom is: IV. H0: 1 5 IX. H0: 3 5

H1: 1 5 H1: 3 5

|89-85|=4<13.7 |73-85|=12<13.7 V. H0: 2 3 X. H0: 4 5

H1: 2 3 H1: 4 5

|75-73|=2<13.7 |91-85|= 6<13.7Reject the null hypothesis if the absolute value of the difference between the sample means is greater than the critical value of T. (The hypotheses marked with * are rejected.)

T qMSE

ni

3 86504 4

4013 7.

..

The Tukey Pairwise Comparison Test: The Club Med Example

Page 41: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

41

We rejected the null hypothesis which compared the means of populations 1 and 2, 1 and 3, 2 and 4, and 3 and 4. On the other hand, we accepted the null hypotheses of the equality of the means of populations 1 and 4, 1 and 5, 2 and 3, 2 and 5, 3 and 5, and 4 and 5.

The bars indicate the three groupings of populations with possibly equal means: 2 and 3; 2, 3, and 5; and 1, 4, and 5.

We rejected the null hypothesis which compared the means of populations 1 and 2, 1 and 3, 2 and 4, and 3 and 4. On the other hand, we accepted the null hypotheses of the equality of the means of populations 1 and 4, 1 and 5, 2 and 3, 2 and 5, 3 and 5, and 4 and 5.

The bars indicate the three groupings of populations with possibly equal means: 2 and 3; 2, 3, and 5; and 1, 4, and 5.

123 45

Picturing the Results of a Tukey Pairwise Comparisons Test: The Club Med Example

Page 42: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

Picturing the Results of a Tukey Pairwise Comparisons Test: The Club Med Example

Page 43: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

• A statistical model is a set of equations and assumptions that capture the essential characteristics of a real-world situationThe one-factor ANOVA model:

xij=i+ij=+i+ij

where ij is the error associated with the jth member of the ith population. The errors are assumed to be normally distributed with mean 0 and variance 2.

• A statistical model is a set of equations and assumptions that capture the essential characteristics of a real-world situationThe one-factor ANOVA model:

xij=i+ij=+i+ij

where ij is the error associated with the jth member of the ith population. The errors are assumed to be normally distributed with mean 0 and variance 2.

9-6 Models, Factors and Designs

Page 44: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

• A factor is a set of populations or treatments of a single kind. For example:One factor models based on sets of resorts, types of airplanes, or

kinds of sweatersTwo factor models based on firm and locationThree factor models based on color and shape and size of an ad.

• Fixed-Effects and Random EffectsA fixed-effects model is one in which the levels of the factor

under study (the treatments) are fixed in advance. Inference is valid only for the levels under study.

A random-effects model is one in which the levels of the factor under study are randomly chosen from an entire population of levels (treatments). Inference is valid for the entire population of levels.

• A factor is a set of populations or treatments of a single kind. For example:One factor models based on sets of resorts, types of airplanes, or

kinds of sweatersTwo factor models based on firm and locationThree factor models based on color and shape and size of an ad.

• Fixed-Effects and Random EffectsA fixed-effects model is one in which the levels of the factor

under study (the treatments) are fixed in advance. Inference is valid only for the levels under study.

A random-effects model is one in which the levels of the factor under study are randomly chosen from an entire population of levels (treatments). Inference is valid for the entire population of levels.

9-6 Models, Factors and Designs (Continued)

Page 45: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

• A completely-randomized design is one in which the elements are assigned to treatments completely at random. That is, any element chosen for the study has an equal chance of being assigned to any treatment.

• In a blocking design, elements are assigned to treatments after first being collected into homogeneous groups. In a completely randomized block design, all

members of each block (homogeneous group) are randomly assigned to the treatment levels.

In a repeated measures design, each member of each block is assigned to all treatment levels.

• A completely-randomized design is one in which the elements are assigned to treatments completely at random. That is, any element chosen for the study has an equal chance of being assigned to any treatment.

• In a blocking design, elements are assigned to treatments after first being collected into homogeneous groups. In a completely randomized block design, all

members of each block (homogeneous group) are randomly assigned to the treatment levels.

In a repeated measures design, each member of each block is assigned to all treatment levels.

Experimental Design

Page 46: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

46

• In a two-way ANOVA, the effects of two factors or treatments can be investigated simultaneously. Two-way ANOVA also permits the investigation of the effects of either factor alone and of the two factors together. The effect on the population mean that can be attributed to the levels of either factor alone is

called a main effect. An interaction effect between two factors occurs if the total effect at some pair of levels of

the two factors or treatments differs significantly from the simple addition of the two main effects. Factors that do not interact are called additive( 可加的 ).

• Three questions answerable by two-way ANOVA: Are there any factor A main effects? Are there any factor B main effects? Are there any interaction effects between factors A and B?

• For example, we might investigate the effects on vacationers’ ratings of resorts( 渡假勝地 ) by looking at five different resorts (factor A) and four different resort attributes (factor B). In addition to the five main factor A treatment levels and the four main factor B treatment levels, there are (5*4=20) interaction treatment levels.3

• In a two-way ANOVA, the effects of two factors or treatments can be investigated simultaneously. Two-way ANOVA also permits the investigation of the effects of either factor alone and of the two factors together. The effect on the population mean that can be attributed to the levels of either factor alone is

called a main effect. An interaction effect between two factors occurs if the total effect at some pair of levels of

the two factors or treatments differs significantly from the simple addition of the two main effects. Factors that do not interact are called additive( 可加的 ).

• Three questions answerable by two-way ANOVA: Are there any factor A main effects? Are there any factor B main effects? Are there any interaction effects between factors A and B?

• For example, we might investigate the effects on vacationers’ ratings of resorts( 渡假勝地 ) by looking at five different resorts (factor A) and four different resort attributes (factor B). In addition to the five main factor A treatment levels and the four main factor B treatment levels, there are (5*4=20) interaction treatment levels.3

9-7 Two-Way Analysis of Variance

Page 47: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

47

• xijk=+i+ j + (ij + ijk

– where is the overall mean;

– i is the effect of level i(i=1,...,a) of factor A;

– j is the effect of level j(j=1,...,b) of factor B;

– ij is the interaction effect of levels i and j;

– ijk is the error associated with the kth data point from level i of factor A and level j of factor B.

– ijk is assumed to be distributed normally with mean zero and variance 2 for all i, j, and k.

• xijk=+i+ j + (ij + ijk

– where is the overall mean;

– i is the effect of level i(i=1,...,a) of factor A;

– j is the effect of level j(j=1,...,b) of factor B;

– ij is the interaction effect of levels i and j;

– ijk is the error associated with the kth data point from level i of factor A and level j of factor B.

– ijk is assumed to be distributed normally with mean zero and variance 2 for all i, j, and k.

The Two-Way ANOVA Model

Page 48: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

48

Guadeloupe Martinique EleuthraParadiseIsland St. Lucia

Friendship n11 n21 n31 n41 n51

Sports n12 n22 n32 n42 n52

Culture n13 n23 n33 n43 n53

Excitement n14 n24 n34 n44 n54

Factor A: Resort

Fac

tor

B:

Attr

ibut

e

Resort

Ra

tin

g

Graphical Display of Effects

EleuthraMartinique

St. LuciaGuadeloupe

Paradise island

Friendship

ExcitementSportsCulture

Eleuthra/sports interaction: Combined effect greater than additive main effects

Sports

Friendship

Attribute

Resort

Excitement

Culture

Rating

EleuthraMartinique

St. LuciaGuadeloupe

Paradise Island

Two-Way ANOVA Data Layout: Club Med Example

Page 49: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

49

• Factor A main effects test:H0: i= 0 for all i=1,2,...,aH1: Not all i are 0

• Factor B main effects test:H0: j= 0 for all j=1,2,...,bH1: Not all i are 0

• Test for (AB) interactions:H0: ij= 0 for all i=1,2,...,a and j=1,2,...,bH1: Not all ij are 0

• Factor A main effects test:H0: i= 0 for all i=1,2,...,aH1: Not all i are 0

• Factor B main effects test:H0: j= 0 for all j=1,2,...,bH1: Not all i are 0

• Test for (AB) interactions:H0: ij= 0 for all i=1,2,...,a and j=1,2,...,bH1: Not all ij are 0

Hypothesis Tests a Two-Way ANOVA

Page 50: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

50

In a two-way ANOVA: xijk=+i+ j + (ijk + ijk

• SST = SSTR +SSE

• SST = SSA + SSB +SS(AB)+SSE

In a two-way ANOVA: xijk=+i+ j + (ijk + ijk

• SST = SSTR +SSE

• SST = SSA + SSB +SS(AB)+SSE

SST SSTR SSE

x x x x x x

SSTR SSA SSB SS AB

xi

x xj

x xij

xi

xj

x

( ) ( ) ( )

( )

( ) ( ) ( )

2 2 2

2 2 2

Sums of Squares

Page 51: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

51

Source ofVariation

Sum of Squares

Degreesof Freedom Mean Square F Ratio

Factor A SSA a-1MSA

SSAa

1

FMSAMSE

Factor B SSB b-1MSB

SSBb

1

FMSBMSE

Interaction SS(AB) (a-1)(b-1)MS AB

SS ABa b

( )( )

( )( ) 1 1

FMS AB

MSE ( )

Error SSE ab(n-1)MSE

SSEab n

( )1Total SST abn-1

A Main Effect Test: F(a-1,ab(n-1)) B Main Effect Test: F(b-1,ab(n-1))

(AB) Interaction Effect Test: F((a-1)(b-1),ab(n-1))

The Two-Way ANOVA Table

Page 52: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

52

Source ofVariation

Sum of Squares

Degreesof Freedom Mean Square F Ratio

Location 1824 2 912 8.94 *

Artist 2230 2 1115 10.93 *

Interaction 804 4 201 1.97

Error 8262 81 102

Total 13120 89

=0.01, F(2,81)=4.88 Both main effect null hypotheses are rejected.=0.05, F(4,81)=2.48 Interaction effect null hypotheses are not rejected.=0.01, F(2,81)=4.88 Both main effect null hypotheses are rejected.=0.05, F(4,81)=2.48 Interaction effect null hypotheses are not rejected.

Example 9-4: Two-Way ANOVA (Location and Artist)

Page 53: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

53

6543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0F

f(F)

F Distribution with 2 and 81 Degrees of Freedom

F0.01=4.88

=0.01

Location test statistic=8.94Artist test statistic=10.93

6543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0 F

f(F)

F Distribution with 4 and 81 Degrees of Freedom

Interaction test statistic=1.97

=0.05

F0.05=2.48

Hypothesis Tests

Page 54: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

54

Kimball’s Inequality gives an upper limit on the true probability of at least one Type I error in the three tests of a two-way analysis:

1- (1-1) (1-2) (1-3)

Kimball’s Inequality gives an upper limit on the true probability of at least one Type I error in the three tests of a two-way analysis:

1- (1-1) (1-2) (1-3)

Tukey Criterion for factor A:

where the degrees of freedom of the q distribution are now a and ab(n-1). Note that MSE is divided by bn.

Tukey Criterion for factor A:

where the degrees of freedom of the q distribution are now a and ab(n-1). Note that MSE is divided by bn.

T qMSE

bn

Overall Significance Level and Tukey Method for Two-Way ANOVA

Page 55: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

55

Template for a Two-Way ANOVA

ANOVA.xle

Page 56: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

56

Source ofVariation

Sum of Squares

Degreesof Freedom Mean Square F Ratio

Factor A SSA a-1 MSASSAa

1 FMSAMSE

Factor B SSB b-1MSB

SSBb

1F

MSBMSE

Factor C SSC c-1MSC

SSCc

1

FMSCMSE

Interaction (AB)

SS(AB) (a-1)(b-1)MS AB

SS ABa b

( )( )

( )( )

1 1F

MS ABMSE

( )

Interaction (AC)

SS(AC) (a-1)(c-1)MS AC

SS ACa c

( )( )

( )( ) 1 1

FMS AC

MSE ( )

Interaction (BC)

SS(BC) (b-1)(c-1)MS BC

SS BCb c

( )( )

( )( ) 1 1

FMS BC

MSE ( )

Interaction (ABC)

SS(ABC) (a-1)(b-1)(c-1) MS ABCSS ABC

a b c( )

( )( )( )( )

1 1 1F

MS ABCMSE

( )

Error SSE abc(n-1) MSESSE

abc n ( )1

Total SST abcn-1

Extension of ANOVA to Three Factors

Page 57: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

• The case of one data point in every cell presents a problem in two-way ANOVA.

• There will be no degrees of freedom for the error term.

• What can be done?

• If we can assume that there are no interactions between the main effects, then we can use SS(AB) and its associated degrees of freedom (a – 1)(b – 1) in place of SSE and its degrees of freedom.

• We can then conduct main effects tests using MS(AB).

• See the next slide for the ANOVA table.

Two-Way ANOVA with One Observation per Cell

Page 58: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

Two-Way ANOVA with One Observation per Cell

Source of Variation

Sum of Squares

Degrees of Freedom

Mean Square F Ratio

Factor A SSA a - 1

Factor B SSB b - 1

“Error” SS(AB) (a – 1)(b – 1)

Total SST ab - 1

1

aSSAMSA

1

bSSBMSB

)1)(1()()(

ba

ABSSABMS

)(ABMSMSAF

)(ABMSMSBF

Page 59: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

59

Class exercise, 15 min 某洗髮精工廠製造三種洗髮精,分別適用乾性、中性與油性髮

質。假設過去五個月的銷售業績如下表:

給定 α=0.05,應用變異數分析檢定:1.乾性、中性與油性的平均銷售業績是否相等?2.過去五個月的平均銷售業績是否相等?

銷售業績月份 乾性 中性 油性六月 7 9 12七月 11 14 11八月 13 11 8九月 8 9 7十月 9 10 13

Page 60: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

60

Class exercise (continued)

銷售業績

月份 乾性 中性 油性 和

六月 7 9 12 28

七月 11 14 11 36

八月 13 11 8 32

九月 8 9 7 24

十月 9 10 13 32

48 53 51 152

Page 61: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

61467.39

5333.215

152]

5

51

5

53

5

48[

)(

])(

[

7333.2715

152]

3

32

3

24

3

32

3

36

3

28[

)(

]

)(

[

7333.6915

1521610

)(

)(

161016949...12149)(

152

2222

22

222222

22

2

2

2

2

SSTcSSTrSSTSSE

n

x

n

xSSTc

n

x

n

x

SSTr

n

x

xSST

x

x

j

i jij

i

iij

i

i jij

i

jij

i j

i jij

ij

i jij

ij

Class exercise (continued)

Page 62: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

62

變異源 SS df MS F ratio Fcritical

月份 27.7333 4 6.9333 1.4054 3.84

髮質 2.5333 2 1.2667 0.2568 4.46

誤差 39.467 8 4.9334

總和 69.7333 14

1. 乾性、中性與油性的平均銷售業績是否相等? Yes ( 不同髮質洗頭髮的平均銷售業績相等 , F(2,8)=4.46) 2. 過去五個月的平均銷售業績是否相等? Yes ( 不同月份洗頭髮的平均銷售業績相等 , F(4,8)=3.84)

Class exercise (continued)

Page 63: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

63

Exercise, p.378, 15min• Exercise 9-20

(Ans. Location: F=50.6, significant (α =0.05)

Job type: F=50.212, significant

Interaction: F=2.14, non-significant)

• Exercise 9-21(a=2, b=2,

(c)no, p=0.5357 (d)yes, p<0.0001

(e)no interactions, p=0.1649 )

• Exercise 9-22(2. a=3; 3. b=2; 4. N=150)

Page 64: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

64

• A block( 區集 ) is a homogeneous set of subjects, grouped to minimize within-group differences.

• A competely-randomized design ( 完全隨機設計 ) is one in which the elements are assigned to treatments completely at random. That is, any element chosen for the study has an equal chance of being assigned to any treatment.

• In a blocking design ( 區集設計 ), elements are assigned to treatments after first being collected into homogeneous groups. In a completely randomized block design ( 完全隨機區集設計 ), all

members of each block (homogenous group) are randomly assigned to the treatment levels.

In a repeated measures design ( 重複量測設計 ), each member of each block is assigned to all treatment levels.

9-8 Blocking Designs

Page 65: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

65

• xij=+i+ j + ij

where is the overall mean;

i is the effect of level i(i=1,...,a) of factor A;

j is the effect of block j(j=1,...,b);

ij is the error associated with xij

ij is assumed to be distributed normally with mean zero and variance 2 for all i and j.

• xij=+i+ j + ij

where is the overall mean;

i is the effect of level i(i=1,...,a) of factor A;

j is the effect of block j(j=1,...,b);

ij is the error associated with xij

ij is assumed to be distributed normally with mean zero and variance 2 for all i and j.

Model for Randomized Complete Block Design

Page 66: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

66

Example:Med Club

• F(4,36,0.01)=3.89, 23.04 > 7.04 > 3.89• Reject Ho (Ho:5 個渡假勝地的平均滿意度相等 )• 利用集區將同性質的參與者編組 ,可降低實驗誤差

變異源 平方和 自由度 均方 F ratio

集區 2800 9 311.11 8.96

渡假勝地 3200 4 800.00 23.04

誤差 1250 36 34.72

總和 7250(Table 9-6, p.352)

Page 67: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

67

Source of Variation Sum of Squares df Mean Square F RatioBlocks 2750 39 70.51 0.69Treatments 2640 2 1320 12.93Error 7960 78 102.05Total 13350 119

= 0.01, F(2, 78) = 4.88, 12.93 > 4.88, Reject Ho ( 表示 3位候選女演員的平均觀眾支持度不全相等 )

Source of Variation Sum of Squares Degress of Freedom Mean Square F Ratio

Blocks SSBL n - 1 MSBL = SSBL/(n-1) F = MSBL/MSETreatments SSTR r - 1 MSTR = SSTR/(r-1) F = MSTR/MSEError SSE (n -1)(r - 1)Total SST nr - 1

ANOVA Table for Repeated Measures Design : Example 9-5

MSE = SSE/(n-1)(r-1)

Page 68: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

68

Template for the Randomized Block Design

Page 69: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

Two-Way ANOVA Using the Template for Problem 9-42

Page 70: 1 Using Statistics The Hypothesis Test of Analysis of Variance The Theory and Computations of ANOVA The ANOVA Table and Examples Further Analysis Models,

70

Exercise, p.387, 15min

• Exercise 9-27

• Exercise 9-28

• Exercise 9-29

• Exercise 9-30

• Case exercise 11 (p.389)