40
High IP3, 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 FEATURES Broadband upconverter/downconverter Power conversion gain of 1.8 dB Broadband RF, LO, and IF ports SSB noise figure (NF) of 9.75 dB Input IP3: 28.5 dBm Input P1dB: 13.3 dBm Typical LO drive: 0 dBm Single-supply operation: 5 V at 130 mA Adjustable bias for low power operation Exposed paddle, 4 mm × 4 mm, 24-lead LFCSP package APPLICATIONS Cellular base station receivers Radio link downconverters Broadband block conversion Instrumentation FUNCTIONAL BLOCK DIAGRAM 08079-001 GND VPLO ENBL VSET VPDT GND RFIP NC GND VPLO 7 8 15 16 17 18 21 22 23 ADL5801 19 20 GND IFON 13 14 DETO GND VPRF GND GND GND IFOP RFIN GND GND LOIP LOIN 6 5 4 3 2 1 24 9 10 11 12 DET BIAS V2I Figure 1. GENERAL DESCRIPTION The ADL5801 uses a high linearity, doubly balanced, active mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer benefits from a proprietary linearization architecture that provides enhanced input IP3 performance when subject to high input levels. A bias adjust feature allows the input linearity, SSB noise figure, and dc current to be optimized using a single control pin. An optional input power detector is provided for adaptive bias control. The high input linearity allows the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in degradation in dynamic performance. The adaptive bias feature allows the part to provide high input IP3 performance when presented with large blocking signals. When blockers are removed, the ADL5801 can auto- matically bias down to provide low noise figure and low power consumption. The balanced active mixer arrangement provides superb LO-to- RF and LO-to-IF leakage, typically better than −40 dBm. The IF outputs are designed to provide a typical voltage conversion gain of 7.8 dB when loaded into a 200 Ω load. The broad frequency range of the open-collector IF outputs allows the ADL5801 to be applied as an upconverter for various transmit applications. The ADL5801 is fabricated using a SiGe high performance IC process. The device is available in a compact 4 mm × 4 mm, 24-lead LFCSP package and operates over a −40°C to +85°C temperature range. An evaluation board is also available. Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

  • Upload
    others

  • View
    22

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

High IP3, 10 MHz to 6 GHz, Active Mixer

Data Sheet ADL5801

FEATURES Broadband upconverter/downconverter Power conversion gain of 1.8 dB Broadband RF, LO, and IF ports SSB noise figure (NF) of 9.75 dB Input IP3: 28.5 dBm Input P1dB: 13.3 dBm Typical LO drive: 0 dBm Single-supply operation: 5 V at 130 mA Adjustable bias for low power operation Exposed paddle, 4 mm × 4 mm, 24-lead LFCSP package

APPLICATIONS Cellular base station receivers Radio link downconverters Broadband block conversion Instrumentation

FUNCTIONAL BLOCK DIAGRAM

0807

9-00

1

GNDVPLO ENBL VSET

VPDT

GND

RFIP

NCGNDVPLO

7 8

15

16

17

18

212223

ADL5801

1920GNDIFON

13

14

DETO GND

VPRF

GND

GND

GND

IFOP

RFIN

GND

GND

LOIP

LOIN

6

5

4

3

2

1

24

9 10 11 12

DETBIAS

V2I

Figure 1.

GENERAL DESCRIPTION The ADL5801 uses a high linearity, doubly balanced, active mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer benefits from a proprietary linearization architecture that provides enhanced input IP3 performance when subject to high input levels. A bias adjust feature allows the input linearity, SSB noise figure, and dc current to be optimized using a single control pin. An optional input power detector is provided for adaptive bias control. The high input linearity allows the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in degradation in dynamic performance. The adaptive bias feature allows the part to provide high input IP3 performance when presented with large blocking signals. When blockers are removed, the ADL5801 can auto-matically bias down to provide low noise figure and low power consumption.

The balanced active mixer arrangement provides superb LO-to-RF and LO-to-IF leakage, typically better than −40 dBm. The IF outputs are designed to provide a typical voltage conversion gain of 7.8 dB when loaded into a 200 Ω load. The broad frequency range of the open-collector IF outputs allows the ADL5801 to be applied as an upconverter for various transmit applications.

The ADL5801 is fabricated using a SiGe high performance IC process. The device is available in a compact 4 mm × 4 mm, 24-lead LFCSP package and operates over a −40°C to +85°C temperature range. An evaluation board is also available.

Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

Page 2: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 6

ESD Caution .................................................................................. 6 Pin Configuration and Function Descriptions ............................. 7 Typical Performance Characteristics ............................................. 8

Downconverter Mode with a Broadband Balun ...................... 8 Downconverter Mode with a Mini-Circuits® TC1-1-43M+ Input Balun .................................................................................. 12 Downconverter Mode with a Johanson 3.5 GHz Input Balun .................................................................................. 14 Downconverter Mode with a Johanson 5.7 GHz Input Balun .................................................................................. 16 Upconverter Mode with a 900 MHz Output Match .............. 18 Upconverter Mode with a 2.1 GHz Output Match ................ 20 Spur Performance ....................................................................... 23

Circuit Description......................................................................... 27 LO Amplifier and Splitter.......................................................... 27 RF Voltage-to-Current (V-to-I) Converter ............................. 27 Mixer Core .................................................................................. 27 Mixer Output Load .................................................................... 27 RF Detector ................................................................................. 28 Bias Circuit .................................................................................. 28

Applications Information .............................................................. 31 Basic Connections ...................................................................... 31 RF and LO Ports ......................................................................... 31 IF Port .......................................................................................... 32 Downconverting to Low Frequencies ...................................... 33 Broadband Operation ................................................................ 34 Single-Ended Drive of RF and LO Inputs ............................... 36

Evaluation Board ............................................................................ 38 Outline Dimensions ....................................................................... 40

Ordering Guide .......................................................................... 40

REVISION HISTORY 4/14—Rev. D to Rev. E

Changes to Figure 1 .......................................................................... 1 Changes to Table 1 ............................................................................ 4 Changes to Figure 87 and Deleted Table 4; Renumbered Sequentially ..................................................................................... 27 Changes to RF Detector Section and Bias Circuit Section; Added Table 4 and Table 5; Renumbered Sequentially, and Added Figure 92, Figure 93, Figure 94, and Figure 95; Renumbered Sequentially .............................................................. 29

3/14—Rev. C to Rev. D

Changes to Pin 9, Table 3 ................................................................. 7

8/13—Rev. B to Rev. C

Changes to Table 8 .......................................................................... 38

7/13—Rev. A to Rev. B

Added Disable Voltage and Enable Voltage; Table 1 .................... 3 Changes to Table 5 and Figure 96 ................................................. 31

Added Downconverting to Low Frequencies Section and Figure 97; Renumbered Sequentially ........................................... 32 Added Broadband Operation Section and Figure 98 to Figure 101 ........................................................................................ 33 Added Single-Ended Drive of RF and LO Inputs Section and Figure 102 to Figure 105 ................................................................ 35 Updated Outline Dimensions ....................................................... 39

7/11—Rev. 0 to Rev. A

Changes to Specifications Section ................................................... 3 Changes to Typical Performance Characteristics Section ........... 8 Changes to Spur Performance Section ........................................ 23 Changes to RF Voltage-to-Current (V-to-I) Converter Section .............................................................................................. 27 Changes to RF Detector Section ................................................... 28 Changes to RF and LO Ports Section ........................................... 30

2/10—Revision 0: Initial Version

Rev. E | Page 2 of 40

Page 3: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

SPECIFICATIONS VS = 5 V, TA = 25°C, fRF = 900 MHz, fLO = (fRF − 153 MHz), LO power = 0 dBm, Z0

1 = 50 Ω, VSET = 3.6 V, unless otherwise noted.

Table 1. Parameter Test Conditions Min Typ Max Unit RF INPUT INTERFACE

Return Loss Tunable to >20 dB over a limited bandwidth 12 dB Input Impedance 50 Ω RF Frequency Range 10 6000 MHz

OUTPUT INTERFACE Output Impedance Differential impedance, f = 200 MHz 230 Ω IF Frequency Range Can be matched externally to 3000 MHz LF 600 MHz DC Bias Voltage2 Externally generated 4.75 VS 5.25 V

LO INTERFACE LO Power −10 0 +10 dBm Return Loss 15 dB Input Impedance 50 Ω LO Frequency Range 10 6000 MHz

POWER INTERFACE Supply Voltage 4.75 5 5.25 V Quiescent Current Resistor programmable 130 200 mA Disable Current ENBL pin high to disable the device 50 mA Disable Voltage ENBL pin high to disable the device 2.5 5 V Enable Voltage ENBL pin low to enable the device 0 1.8 V Enable Time Time from ENBL pin low to enable 182 ns Disable Time Time from ENBL pin high to disable 28 ns

DYNAMIC PERFORMANCE at fRF = 900 MHz/1900 MHz3 Power Conversion Gain4 fRF = 900 MHz 1.8 dB

fRF = 1900 MHz 1.8 dB Voltage Conversion Gain5 fRF = 900 MHz 7.8 dB

fRF = 1900 MHz 7.8 dB SSB Noise Figure fCENT = 900 MHz, VSET = 2.0 V 9.75 dB

fCENT = 1900 MHz, VSET = 2.0 V 11.5 dB SSB Noise Figure Under Blocking6 fCENT = 900 MHz 19.5 dB

fCENT = 1900 MHz 20 dB Input Third-Order Intercept7 fCENT = 900 MHz 28.5 dBm

fCENT = 1900 MHz 26.4 dBm Input Second-Order Intercept8 fCENT = 900 MHz 63 dBm

fCENT = 1900 MHz 49.7 dBm Input 1 dB Compression Point fRF = 900 MHz 13.3 dBm fRF = 1900 MHz 12.7 dBm LO-to-IF Output Leakage Unfiltered IF output −27 dBm LO-to-RF Input Leakage −30 dBm RF-to-IF Output Isolation −35 dBc IF/2 Spurious9 0 dBm input power, fRF = 900 MHz −67.5 dBc 0 dBm input power, fRF = 1900 MHz −53 dBc IF/3 Spurious9 0 dBm input power, fRF = 900 MHz −65.5 dBc 0 dBm input power, fRF = 1900 MHz −72.6 dBc

Rev. E | Page 3 of 40

Page 4: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

Parameter Test Conditions Min Typ Max Unit DYNAMIC PERFORMANCE at fRF = 2500 MHz10

Power Conversion Gain11 −6.1 dB Voltage Conversion Gain5 −0.1 dB SSB Noise Figure fCENT = 2500 MHz, VSET = 2.0 V 10.6 dB Input Third-Order Intercept12 fCENT = 2500 MHz 25.5 dBm Input Second-Order Intercept13 fCENT = 2500 MHz 45.3 dBm Input 1 dB Compression Point fCENT = 2500 MHz 13.8 dBm LO-to-IF Output Leakage Unfiltered IF output −31.5 dBm LO-to-RF Input Leakage −31.2 dBm RF-to-IF Output Isolation −42.5 dBc IF/2 Spurious9 0 dBm input power, fRF = 2600 MHz −50.6 dBc IF/3 Spurious9 0 dBm input power, fRF = 2600 MHz −59.8 dBc

DYNAMIC PERFORMANCE at fRF = 3500 MHz14 Power Conversion Gain15 −6.44 dB Voltage Conversion Gain5 −0.44 dB SSB Noise Figure fCENT = 3500 MHz, VSET = 3.6 V 15.8 dB Input Third-Order Intercept7 fCENT = 3500 MHz, VSET = 3.6 V 26.5 dBm Input Second-Order Intercept8 fCENT = 3500 MHz, VSET = 3.6 V 42.3 dBm Input 1 dB Compression Point 12.5 dBm LO-to-IF Output Leakage Unfiltered IF output −30.2 dBm LO-to-RF Input Leakage −29.4 dBm RF-to-IF Output Isolation −29.7 dBc IF/2 Spurious9 0 dBm input power, fRF = 3800 MHz −47.1 dBc IF/3 Spurious9 0 dBm input power, fRF = 3800 MHz −57.8 dBc

DYNAMIC PERFORMANCE at fRF = 5500 MHz16 Power Conversion Gain17 −5.2 dB Voltage Conversion Gain5 0.8 dB SSB Noise Figure fCENT = 5500 MHz, VSET = 3.6 V 16.2 dB Input Third-Order Intercept7 fCENT = 5500 MHz, VSET = 3.6 V 22.7 dBm Input Second-Order Intercept 8 fCENT = 5500 MHz, VSET = 3.6 V 35.4 dBm Input 1 dB Compression Point 11.3 dBm LO-to-IF Output Leakage Unfiltered IF output −42.6 dBm LO-to-RF Input Leakage −28.9 dBm RF-to-IF Output Isolation −46.7 dBc IF/2 Spurious9 0 dBm input power, fRF = 5800 MHz −44 dBc IF/3 Spurious9 0 dBm input power, fRF = 5800 MHz −47 dBc

DYNAMIC PERFORMANCE at fIF = 900 MHz18 Power Conversion Gain19 −6 dB Voltage Conversion Gain5 0 dB SSB Noise Figure fIF = 900 MHz, fRF = 250 MHz, VSET = 2.0 V 10.6 dB Output Third-Order Intercept20 fCENT = 153 MHz, VSET = 3.6 V 30.6 dBm Output Second-Order Intercept 21 fCENT = 153 MHz, VSET = 3.6 V 68.7 dBm Output 1 dB Compression Point 11.1 dBm LO-to-IF Output Leakage Unfiltered IF output −33.8 dBm LO-to-RF Input Leakage −33.4 dBm IF/2 Spurious9 0 dBm input power, fRF = 140 MHz,

fIF = 806 MHz −62.6 dBc

IF/3 Spurious9 0 dBm input power, fRF = 140 MHz, fIF = 806 MHz

−68.9 dBc

Rev. E | Page 4 of 40

Page 5: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

Parameter Test Conditions Min Typ Max Unit DYNAMIC PERFORMANCE at fIF = 2140 MHz22

Power Conversion Gain23 −7.25 dB Voltage Conversion Gain5 −1.25 dB SSB Noise Figure fIF = 2140 MHz, fRF = 190 MHz, VSET = 2.0 V 13.6 dB Output Third-Order Intercept24 fCENT = 170 MHz, VSET = 3.6 V 24 dBm Output Second-Order Intercept25 fCENT = 170 MHz, VSET = 3.6 V 70 dBm Output 1 dB Compression Point 9.9 dBm LO-to-IF Output Leakage Unfiltered IF output −23.8 dBm LO-to-RF Input Leakage −33.2 dBm IF/2 Spurious9 0 dBm input power, fRF = 140 MHz,

fIF = 2210 MHz −51.5 dBc

1 Z0 is the characteristic impedance assumed for all measurements and the PCB. 2 Supply voltage must be applied from an external circuit through choke inductors 3 VS = 5 V, TA = 25°C, fRF = 900 MHz/1900 MHz, fLO = (fRF – 153 MHz), LO power = 0 dBm, Z0

1= 50 Ω, VSET = 3.8 V, unless otherwise noted. 4 Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-13M+), and PCB loss. 5 ZSOURCE = 50 Ω, differential; ZLOAD = 200 Ω differential; ZSOURCE is the impedance of the source instrument; ZLOAD is the load impedance at the output. 6 fRF = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 153) MHz, blocker level = 0 dBm. 7 fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT – 153) MHz, each RF tone at −10 dBm. 8 fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT – 153) MHz, each RF tone at −10 dBm. 9 For details, see the Spur Performance section. 10 VS = 5 V, TA = 25°C, fRF = 2500 MHz, fLO = (fRF – 211 MHz), LO power = 0 dBm, Z0

1 = 50 Ω, VSET = 3.8 V, unless otherwise noted. 11 Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-43M+ and TC1-1-13M+ respectively), and PCB loss. 12 fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT – 211) MHz, each RF tone at −10 dBm. 13 fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT – 211) MHz, each RF tone at −10 dBm 14 VS = 5 V, TA = 25°C, fRF = 3500 MHz, fLO = (fRF – 153 MHz), LO power = 0 dBm, Z0

1 = 50 Ω, VSET = 3.6 V, unless otherwise noted. 15 Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (3600BL14M050), and PCB loss. 16 VS = 5 V, TA = 25°C, fRF = 5500 MHz, fLO = (fRF – 153 MHz), LO power = 0 dBm, Z0

1 = 50 Ω, VSET = 3.6 V, unless otherwise noted. 17 Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (5400BL14B050), and PCB loss. 18 VS = 5 V, TA = 25°C, fRF = 153 MHz, fLO = (fRF + 900 MHz), LO power = 0 dBm, Z0

1 = 50 Ω, VSET = 3.6 V, unless otherwise noted. 19 Including 4:1 IF port transformer (TC4-14+), RF and LO transformers (TC1-1-13M+), and PCB loss. 20 fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT + 900 MHz), each RF tone at −10 dBm. 21 fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT + 900) MHz, each RF tone at −10 dBm. 22 VS = 5 V, TA = 25°C, fRF = 153MHz, fLO = (fRF + 2140 MHz), LO power = 0 dBm, Z0

1 = 50 Ω, VSET = 4 V, unless otherwise noted. 23 Including 4:1 IF port transformer (1850BL15B200), RF and LO port transformers (TC1-1-13M+), and PCB loss. 24 fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT + 2140 MHz), each RF tone at −10 dBm. 25 fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT + 2140) MHz, each RF tone at −10 dBm.

Rev. E | Page 5 of 40

Page 6: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Supply Voltage, VPOS 5.5 V VSET, ENBL 5.5 V IFOP, IFON 5.5 V RFIN Power 20 dBm Internal Power Dissipation 1.2 W θJA (Exposed Paddle Soldered Down)1 26.5°C/W θJC (at Exposed Paddle) 8.7°C/W Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C

1 As measured on the evaluation board. For details, see the Evaluation Board section.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. E | Page 6 of 40

Page 7: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

Rev. E | Page 7 of 40

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

PIN 1INDICATOR1GND

2GND3LOIP4LOIN5GND6GND

15 RFIN16 RFIP17 GND18 VPRF

14 GND13 VPDT

7VP

LO8

GN

D9

ENB

L

11D

ETO

12G

ND

10VS

ET21

IFO

N22

NC

23G

ND

24VP

L O

20IF

OP

19G

ND

ADL5801TOP VIEW

(Not to Scale)

NOTES1. THERE IS AN EXPOSED PADDLE THAT MUST BE SOLDERED TO GROUND.2. NC = NO CONNECT.

0807

9-00

2

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions Pin No. Mnemonic Description 1, 2, 5, 6, 8, 12, 14, 17, 19, 23

GND Device Common (DC Ground).

3, 4 LOIP, LOIN Differential LO Input Terminal. Internally matched to 50 Ω. Must be ac-coupled. 7, 24 VPLO Positive Supply Voltage for LO System. 9 ENBL Detector and Mixer Bias Enable. Pull the pin high to disable the internal detector and mixer bias circuit.

The device can be operated in this mode by setting the bias level using an external supply or connecting a resistor from the VSET pin to the positive supply. See the Circuit Description section for more details. Pull the pin low to enable the internal detector and mixer bias circuit.

10 VSET Input IP3 Bias Adjustment. The voltage presented to the VSET pin sets the internal bias of the mixer core and allows for adaptive control of the input IP3 and NF characteristics of the mixer core.

11 DETO Detector Output. The DETO pin should be loaded with a capacitor to ground. The developed voltage is proportional to the rms input level. When the DETO output voltage is connected to the VSET input pin, the part auto biases and increases input IP3 performance when presented with large signal input levels.

13 VPDT Positive Supply Voltage for Detector. 15, 16 RFIN, RFIP Differential RF Input Terminal. Internally matched to 50 Ω differential input impedance. Must be

ac-coupled. 18 VPRF Positive Supply Voltage for RF Input System. 20, 21 IFOP, IFON Differential IF Output Terminal. Bias must be applied through pull-up choke inductors or the center tap

of the IF transformer. 22 NC Not Connected. EPAD The exposed paddle must be soldered to ground.

Page 8: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

TYPICAL PERFORMANCE CHARACTERISTICS DOWNCONVERTER MODE WITH A BROADBAND BALUN VS = 5 V, TA = 25°C, VSET = 3.8 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, TC4-1W+) is extracted from the gain measurement.

–4

–3

–2

–1

0

1

2

3

4

5

6

500 1000 1500 2000 2500 3000

GA

IN (d

B)

RF FREQUENCY (MHz)

TA = –40°C

TA = +85°C

TA = +25°C

0807

9-00

3

Figure 3. Power Conversion Gain vs. RF Frequency

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200 250

GA

IN (d

B)

IF FREQUENCY (MHz)

1900MHz

900MHz

0807

9-00

4

Figure 4. Power Conversion Gain vs. IF Frequency

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

2.0 3.02.5 3.5 4.0 4.5 5.0

SUPP

LY C

UR

REN

T (A

)

GA

IN (d

B)

VSET (V)

GAIN = 900MHzGAIN = 1900MHzIPOS = 900MHzIPOS = 1900MHz

0807

9-00

5

Figure 5. Power Conversion Gain and Supply Current vs. VSET

5

10

15

20

25

30

35

0

1

2

3

4

5

6

–15 –10 –5 0 5 10 15

INPU

T IP

3 (d

Bm

)

GA

IN (d

B)

LO LEVEL (dBm)

GAIN = 900MHzGAIN = 1900MHzINPUT IP3 = 900MHzINPUT IP3 = 1900MHz

0807

9-00

6

Figure 6. Power Conversion Gain and Input IP3 vs. LO Power

0

20

40

60

80

100

10

30

50

70

90

FREQ

UEN

CY

(%)

1.70

0

1.74

0

1.78

0

1.82

0

1.86

0

1.90

0

1.94

0

1.98

0

2.02

0

2.06

0

2.10

0

POWER CONVERSION GAIN (dB) 0807

9-00

7

MEAN = 1.87SD = 0.03

Figure 7. Power Conversion Gain Distribution

0

0.5

1.0

1.5

2.0

2.5

3.0

4.7 4.8 4.9 5.0 5.1 5.2 5.3

GA

IN (d

B)

SUPPLY (V)

TA = –40°C

TA = +85°C

TA = +25°C

0807

9-00

8

Figure 8. Power Conversion Gain vs. Supply Voltage

Rev. E | Page 8 of 40

Page 9: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

0

5

10

15

20

25

30

35

500 1000 1500 2000 2500 3000

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

TA = –40°C

TA = +85°C

TA = +25°C

0807

9-00

9

Figure 9. Input IP3 vs. RF Frequency

10

15

20

25

30

35

40

0 50 100 150 200 250

INPU

T IP

3 (d

Bm

)

IF FREQUENCY (MHz)

900MHz

1900MHz

0807

9-01

0

Figure 10. Input IP3 vs. IF Frequency

8

10

12

14

16

18

20

0

5

10

15

20

25

30

2.0 2.5 3.0 3.5 4.0 4.5 5.0

NO

ISE

FIG

UR

E (d

B)

INPU

T IP

3 (d

Bm

)

VSET (V)

INPUT IP3 = 900MHzINPUT IP3 = 1900MHzNF = 900MHzNF = 1900MHz

0807

9-01

1

Figure 11. Input IP3 and Noise Figure vs. VSET

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500 3000

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (MHz)

TA = –40°C

TA = +85°CTA = +25°C

0807

9-01

2

Figure 12. Input IP2 vs. RF Frequency

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

INPU

T IP

2 (d

Bm

)

IF FREQUENCY (MHz)

900MHz

1900MHz

0807

9-01

3

Figure 13. Input IP2 vs. IF Frequency

0

10

20

30

40

50

60

70

80

2.0 2.5 3.53.0 4.0 4.5 5.0

INPU

T IP

2 (d

Bm

)

VSET (V)

1900MHz

900MHz

0807

9-01

4

Figure 14. Input IP2 vs. VSET

Rev. E | Page 9 of 40

Page 10: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

0

2

4

6

8

10

12

14

16

18

20

500 1000 1500 2000 2500 3000

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

TA = –40°C

TA = +85°CTA = +25°C

0807

9-01

5

Figure 15. Input P1dB vs. RF Frequency

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250

INPU

T P1

dB (d

Bm

)

IF FREQUENCY (MHz)

900MHz

1900MHz

0807

9-01

6

Figure 16. Input P1dB vs. IF Frequency

0

2

4

6

8

10

12

14

16

18

500 1000 1500 2000 2500 3000

SSB

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz)

TA = –40°C

TA = +85°C

TA = +25°C

0807

9-01

7

Figure 17. SSB Noise Figure vs. RF Frequency (VSET = 2.0 V)

0

5

10

15

20

25

0 100 200 300 400 500 600 700

SSB

NO

ISE

FIG

UR

E (d

B)

IF FREQUENCY (MHz)

1900MHz

900MHz

0807

9-01

8

Figure 18. SSB Noise Figure vs. IF Frequency (VSET = 2.0 V)

0

5

10

15

20

25

30

–30 –25 –20 –15 –10 –5 0 5

SSB

NO

ISE

FIG

UR

E (d

B)

BLOCKER LEVEL (dBm)

0807

9-01

9

RF = 951MHz, IF = 153 MHzBLOCKER = 946MHz

RF = 1846MHz, IF = 153 MHzBLOCKER = 1841MHz

Figure 19. SSB Noise Figure vs. Blocker Level (VSET = 2.0 V)

0

2

4

6

8

10

12

14

16

18

20

–15 –10 –5 0 5 10 15

SSB

NO

ISE

FIG

UR

E (d

B)

LO LEVEL (dBm)

900MHz

1900MHz

0807

9-02

0

Figure 20. SSB Noise Figure vs. LO Power (VSET = 2.0 V)

Rev. E | Page 10 of 40

Page 11: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

35

30

25

20

15

10

5

0

0 500 1000 1500 2000 2500 3000

RF

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (MHz)

0807

9-02

1

Figure 21. RF Return Loss vs. RF Frequency

35

30

25

20

15

10

5

0

0 500 1000 1500 2000 2500 3000

LO R

ETU

RN

LO

SS (d

B)

LO FREQUENCY (MHz)

0807

9-02

2

Figure 22. LO Return Loss vs. LO Frequency

0807

9-02

3100 100010 3000

100

200

300

400

0

500

–4

–2

0

2

–6

4

IF FREQUENCY (MHz)

RES

ISTA

NC

E (Ω

)

CA

PAC

ITA

NC

E (p

F)

Figure 23. IF Differential Output Impedance (R Parallel C Equivalent)

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

500 1000 1500 2000 2500 3000

LO-T

O-IF

LEA

KA

GE

(dB

m)

LO FREQUENCY (MHz)

TA = –40°C

TA = +85°CTA = +25°C

0807

9-02

4

Figure 24. LO-to-IF Leakage vs. LO Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

500 1000 1500 2000 2500 3000

LO-T

O-R

F LE

AK

AG

E (d

Bm

)

LO FREQUENCY (MHz)

TA = –40°C

TA = +85°CTA = +25°C

0807

9-02

5

Figure 25. LO-to-RF Leakage vs. LO Frequency

–60

–50

–40

–30

–20

–10

0

500 1000 1500 2000 2500 3000

RF-

TO-IF

OU

TPU

T IS

OLA

TIO

N (d

Bc)

RF FREQUENCY (MHz)

TA = +85°C

TA = +25°CTA = –40°C

0807

9-02

6

Figure 26. RF-to-IF Leakage vs. RF Frequency

Rev. E | Page 11 of 40

Page 12: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

DOWNCONVERTER MODE WITH A MINI-CIRCUITS® TC1-1-43M+ INPUT BALUN VS = 5 V, TA = 25°C, VSET = 3.8 V, IF = 211 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless otherwise noted. Insertion loss of input and output baluns (TC1-1-43M+, TC4-1W+) is included in the gain measurement.

–4

–3

–2

–1

0

1

2

3

4

5

6

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

GA

IN (d

B)

RF FREQUENCY (MHz) 0807

9-02

7

Figure 27. Power Conversion Gain vs. RF Frequency

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0

SUPP

LY C

UR

REN

T (A

)

GA

IN (d

B)

VSET (V)

GAIN 2500M

IPOS 2500M

0807

9-02

8

Figure 28. Power Conversion Gain and IPOS vs. VSET

20

21

22

23

24

25

26

27

28

29

30

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz) 0807

9-02

9

Figure 29. Input IP3 vs. RF Frequency

8

10

12

14

16

18

20

0

5

10

15

20

25

30

2.0 2.5 3.0 3.5 4.0 4.5 5.0

NO

ISE

FIG

UR

E (d

B)

INPU

T IP

3 (d

Bm

)

VSET (V)

IIP3 2500MHz

NF 2500MHz

0807

9-03

0

Figure 30. Input IP3 and Noise Figure vs. VSET

0

10

20

30

40

50

60

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (MHz) 0807

9-03

1

Figure 31. Input IP2 vs. RF Frequency

VSET (V)

0

10

20

30

40

50

60

70

80

2.0 2.5 3.0 3.5 4.0 4.5 5.0

INPU

T IP

2 (d

Bm

)

0807

9-03

2

Figure 32. Input IP2 vs. VSET

Rev. E | Page 12 of 40

Page 13: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

0

2

4

6

8

10

12

14

16

18

20

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz) 0807

9-03

3

Figure 33. Input P1dB vs. RF Frequency

0

5

10

15

20

25

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz) 0807

9-03

4

–40°C VSET 2V+25°C VSET 2V+85°C VSET 2V

–40°C VSET 3.6V+25°C VSET 3.6V+85°C VSET 3.6V

Figure 34. Noise Figure vs. RF Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

LOTO

IF L

EAK

AG

E (d

Bm

)

LO FREQUENCY (MHz) 0807

9-03

5

Figure 35. LO to IF Leakage vs. LO Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

LOTO

RF

LEA

KA

GE

(dB

m)

LO FREQUENCY (MHz) 0807

9-03

6

Figure 36. LO to RF Leakage vs. LO Frequency

–80

–70

–60

–50

–40

–30

–20

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

RF

TO IF

OU

TPU

T IS

OLA

TIO

N (d

Bc)

RF FREQUENCY (MHz) 0807

9-03

7

Figure 37. RF to IF Output Isolation vs. RF Frequency

Rev. E | Page 13 of 40

Page 14: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

DOWNCONVERTER MODE WITH A JOHANSON 3.5 GHZ INPUT BALUN VS = 5 V, TA = 25°C, VSET = 3.6 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless otherwise noted. Insertion loss of input and output baluns (3600BL14M050, TC4-1W+) is included in the gain measurement.

–4

–3

–2

–1

0

1

2

3

4

5

6

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

GA

IN (d

B)

RF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-03

8

Figure 38. Power Conversion Gain vs. RF Frequency

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

–12

–10

–8

–6

–4

–2

0

2

2.0 2.5 3.0 3.5 4.0 4.5 5.0

SUPP

LY C

UR

REN

T (A

)

GA

IN (d

B)

VSET (V)

GAIN +25°CGAIN –40°C

GAIN +85°C

IPOS +25°CIPOS –40°C

IPOS +85°C

0807

9-03

9

Figure 39. Power Conversion Gain and IPOS vs. VSET

0

5

10

15

20

25

30

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-04

0

Figure 40. Input IP3 vs. RF Frequency

8

13

18

23

28

NO

ISE

FIG

UR

E (d

B)

0

5

10

15

20

25

30

2.0 2.5 3.0 3.5 4.0 4.5 5.0

INPU

T IP

3 (d

Bm

)

VSET (V)

IIP3, +25°CIIP3, –40°C

IIP3, +85°C

NF, +25°CNF, –40°C

NF, +85°C

0807

9-04

1

Figure 41. Input IP3 and Noise Figure vs. VSET

20

25

30

35

40

45

50

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-04

2

Figure 42. Input IP2 vs. RF Frequency

0

10

20

30

40

50

60

70

80

2.0 2.5 3.0 3.5 4.0 4.5 5.0

INPU

T IP

2 (d

Bm

)

VSET (V)

–40°C+25°C+85°C

0807

9-04

3

Figure 43. Input IP2 vs. VSET

Rev. E | Page 14 of 40

Page 15: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

0

2

4

6

8

10

12

14

16

18

20

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-04

4

Figure 44. Input P1dB vs. RF Frequency

0

5

10

15

20

25

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz) 0807

9-04

5–40°C, 3.6V+25°C, 3.6V+85°C, 3.6V

–40°C, 2.0V+25°C, 2.0V+85°C, 2.0V

Figure 45. Noise Figure vs. RF Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

LOTO

IF L

EAK

AG

E (d

Bm

)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-04

6

Figure 46. LO to IF Leakage vs. LO Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

LOTO

RF

LEA

KA

GE

(dB

m)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-04

7

Figure 47. LO to RF Leakage vs. LO Frequency

–80

–70

–60

–50

–40

–30

–20

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

RF

TO IF

OU

TPU

T IS

OLA

TIO

N (d

Bc)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-04

8

Figure 48. RF to IF Output Isolation vs. RF Frequency

Rev. E | Page 15 of 40

Page 16: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

DOWNCONVERTER MODE WITH A JOHANSON 5.7 GHZ INPUT BALUN VS = 5 V, TA = 25°C, VSET = 3.6 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless otherwise noted. Insertion loss of input and output baluns (5400BL14B050, TC4-1W+) is included in the gain measurement.

–4

–3

–2

–1

0

1

2

3

4

5

6

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

GA

IN (d

B)

RF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-04

9

Figure 49. Power Conversion Gain vs. RF Frequency

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

–16

–14

–12

–10

–8

–6

–4

–2

0

2

2.0 2.5 3.0 3.5 4.0 4.5 5.0

SUPP

LY C

UR

REN

T (A

)

GA

IN (d

B)

VSET (V)

GAIN +25°CGAIN –40°C

GAIN +85°C

IPOS +25°CIPOS –40°C

IPOS +85°C

0807

9-05

0

Figure 50. Power Conversion Gain and IPOS vs VSET

0

5

10

15

20

25

30

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-05

1

Figure 51. Input IP3 vs. RF Frequency

5

10

15

20

25

30

35

0

5

10

15

20

25

2.0 2.5 3.0 3.5 4.0 4.5 5.0

INPU

T IP

3 (d

Bm

)

VSET (V)

IIP3, +25°CIIP3, –40°C

IIP3, +85°C

NF, +25°CNF, –40°C

NF, +85°C

0807

9-05

2N

OIS

E FI

GU

RE

(dB

)

Figure 52. Input IP3 and Noise Figure vs. VSET

20

25

30

35

40

45

50

55

60

65

70

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-05

3

Figure 53. Input IP2 vs. RF Frequency

0

10

20

30

40

50

60

70

80

2.0 2.5 3.0 3.5 4.0 4.5 5.0

INPU

T IP

2 (d

Bm

)

VSET (V)

–40°C+25°C+85°C

0807

9-05

4

Figure 54. Input IP2 vs. VSET

Rev. E | Page 16 of 40

Page 17: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

0

2

4

6

8

10

12

14

16

18

20

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-05

5

Figure 55. Input P1dB vs. RF Frequency

0

5

10

15

20

25

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz) 0807

9-05

6

–40°C, 3.6V+25°C, 3.6V+85°C, 3.6V

–40°C, 2.0V+25°C, 2.0V+85°C, 2.0V

Figure 56. Noise Figure vs. RF Frequency, VSET = 3.6 V

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

LOTO

IF L

EAK

AG

E (d

Bm

)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-05

7

Figure 57. LO to IF Leakage vs. LO Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

LOTO

RF

LEA

KA

GE

(dB

m)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-05

8

Figure 58. LO to RF Leakage vs. LO Frequency

–80

–70

–60

–50

–40

–30

–20

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

RF

TO IF

OU

TPU

T IS

OLA

TIO

N (d

Bc)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-05

9

Figure 59. RF to IF Output Isolation vs. RF Frequency

Rev. E | Page 17 of 40

Page 18: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

UPCONVERTER MODE WITH A 900 MHZ OUTPUT MATCH VS = 5 V, TA = 25°C, VSET = 3.6 V, RF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, TC4-14) is included in the gain measurement.

–8

–7

–6

–5

–4

–3

–2

–1

0

1

2

300 400 500 600 700 800 900 1000 1100 1200 1300

GA

IN (d

B)

IF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-07

7

Figure 60. Power Conversion Gain vs. IF Frequency

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0

GA

IN (d

B)

VSET (V)

SUPP

LY C

UR

REN

T (A

)

GAIN +25°CGAIN –40°C

GAIN +85°C

IPOS +25°CIPOS –40°C

IPOS +85°C

Figure 61. Power Conversion Gain and IPOS vs. VSET

0

5

10

15

20

25

30

35

300 400 500 600 700 800 900 1000 1100 1200 1300

OU

TPU

T IP

3 (d

Bm

)

IF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-07

9

Figure 62. Output IP3 vs. IF Frequency

0

5

10

15

20

25

30

35

2.0 2.5 3.0 3.5 4.0 4.5 5.0

OU

TPU

T IP

3 (d

Bm

)

VSET (V)

OUTPUT IP3, +25°COUTPUT IP3, –40°C

OUTPUT IP3, +85°C

0807

9-08

0

Figure 63. Output IP3 vs. VSET

50

55

60

65

70

75

80

300 400 500 600 700 800 900 1000 1100 1200 1300

OU

TPU

T IP

2 (d

Bm

)

IF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-08

1

Figure 64. Output IP2 vs. IF Frequency

40

45

50

55

60

65

70

75

80

2.0 2.5 3.0 3.5 4.0 4.5 5.0

OU

TPU

T IP

2 (d

Bm

)

VSET (V)

–40°C+25°C+85°C

0807

9-08

2

Figure 65. Output IP2 vs. VSET

Rev. E | Page 18 of 40

Page 19: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

0

2

4

6

8

10

12

300 400 500 600 700 800 900 1000 1100

OU

TPU

T P1

dB (d

Bm

)

IF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-08

3

Figure 66. Output P1dB vs. IF Frequency

0

2

4

6

8

10

12

14

16

700 750 800 850 900 950 1000

NO

ISE

FIG

UR

E (d

B)

IF FREQUENCY (MHz) 0807

9-08

4

NF VSET = 3.6V, –40°C NF VSET = 2.0V, –40°CNF VSET = 3.6V, +25°C NF VSET = 2.0V, +25°CNF VSET = 3.6V, +85°C NF VSET = 2.0V, +85°C

Figure 67. Noise Figure vs. IF Frequency, FLO = 650 MHz

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

453 553 653 753 853 953 1053 1153 1253 1353 1453

LOTO

IF L

EAK

AG

E (d

Bm

)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-08

5

Figure 68. LO to IF Leakage vs. LO Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

453 553 653 753 853 953 1053 1153 1253 1353 1453

LOTO

RF

LEA

KA

GE

(dB

m)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-08

6

Figure 69. LO to RF Leakage vs. LO Frequency

Rev. E | Page 19 of 40

Page 20: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

UPCONVERTER MODE WITH A 2.1 GHZ OUTPUT MATCH VS = 5 V, TA = 25°C, VSET = 4 V, RF = 170 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, 1850BL15B200) is included in the gain measurement.

–4

–5

–6

–3

–2

–1

4

2

3

1

0

110 130 150 170 190 210 230 250 270 290

GA

IN (d

B)

RF FREQUENCY (MHz)

+25°C–40°C

+85°C08

079-

060

Figure 70. Power Conversion Gain vs. RF Frequency

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

2.0 2.5 3.0 3.5 4.0 4.5 5.0

SUPP

LY C

UR

REN

T (A

)

GA

IN (d

B)

VSET (V)

GAIN +25°CGAIN –40°C

GAIN +85°C

IPOS +25°CIPOS –40°C

IPOS +85°C

0807

9-06

2

Figure 71. Power Conversion Gain and IPOS vs. VSET

0

5

10

15

20

25

30

35

2.0 2.5 3.0 3.5 4.0 4.5 5.0

OU

TPU

T IP

3 (d

Bm

)

VSET (V)

OUTPUT IP3 +25°COUTPUT IP3 –40°C

OUTPUT IP3 +85°C

0807

9-06

7

Figure 72. Output IP3 vs. VSET

0

5

10

15

20

25

30

35

110 130 150 170 190 210 230 250 270 290

OU

TPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-06

5

Figure 73. Output IP3 vs. RF Frequency

50

55

60

65

70

75

80

1900 2000 2100 2200 2300 2400 2500 2600 2700

OU

TPU

T IP

2 (d

Bm

)

IF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-06

9

Figure 74. Output IP2 vs. IF Frequency

40

45

50

55

60

65

70

75

80

2.0 2.5 3.0 3.5 4.0 4.5 5.0

OU

TPU

T IP

2 (d

Bm

)

VSET (V)

–40°C+25°C+85°C

0807

9-07

0

Figure 75. Output IP2 vs. VSET

Rev. E | Page 20 of 40

Page 21: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

0

2

4

6

8

10

12

1900 2000 2100 2200 2300 2400 2500 2600 2700

OU

TPU

T P1

DB

(dB

m)

IF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-07

2

Figure 76. Output P1dB vs. IF Frequency

0

5

10

15

20

25

2000 2050 2100 2150 2200 2250 2300

NO

ISE

FIG

UR

E (d

B)

IF FREQUENCY (MHz) 0807

9-07

3

NF VSET = 3.6V, –40°C NF VSET = 2.0V, –40°CNF VSET = 3.6V, +25°C NF VSET = 2.0V, +25°CNF VSET = 3.6V, +85°C NF VSET = 2.0V, +85°C

Figure 77. Noise Figure vs. IF Frequency, FLO = 1950 MHz

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

2070 2170 2270 2370 2470 2570 2670 2770 2870

LOTO

IF L

EAK

AG

E (d

Bm

)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-07

4

Figure 78. LO to IF Leakage vs. LO Frequency

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

2070 2170 2270 2370 2470 2570 2670 2770 2870

LOTO

RF

LEA

KA

GE

(dB

m)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-07

5

Figure 79. LO to RF Leakage vs. LO Frequency

–75

–74

–73

–72

–71

–70

–69

–68

–67

–66

–65

110 130 150 170 190 210 230 250 270 290

RF

TO IF

OU

TPU

T IS

OLA

TIO

N (d

Bc)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-07

6

Figure 80. RF to IF Output Isolation vs. RF Frequency

–8

–7

–6

–5

–4

–3

–2

–1

0

1

2

1900 2000 2100 2200 2300 2400 2500 2600 2700

GA

IN (d

B)

IF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-06

1

Figure 81. Power Conversion Gain vs. IF Frequency

Rev. E | Page 21 of 40

Page 22: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

0

5

10

15

20

25

30

35

40

–4

–3

–2

–1

0

1

2

3

4

5

–10 –8 –6 –4 –2 0 2 4 6 8 10

OU

TPU

T IP

3 (d

Bm

)

GA

IN (d

B)

LO POWER (dBm)

GAIN +25°CGAIN –40°C

GAIN +85°COUTPUT IP3 +25°COUTPUT IP3 –40°C

OUTPUT IP3 +85°C

0807

9-06

3

Figure 82. Power Conversion Gain and Output IP3 vs. LO Power

–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25

GA

IN (d

B)

SUPPLY (V)

+25°C–40°C

+85°C

0807

9-06

4

Figure 83. Power Conversion Gain vs. Supply

0

5

10

15

20

25

30

35

1900 2000 2100 2200 2300 2400 2500 2600 2700

OU

TPU

T IP

3 (d

Bm

)

IF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-06

6

Figure 84. Output IP3 vs. IF Frequency

66

68

70

72

74

76

78

80

110 130 150 170 190 210 230 250 270 290

OU

TPU

T IP

2 (d

Bm

)

RF FREQUENCY (MHz)

+25°C–40°C

+85°C

0807

9-06

8

Figure 85. Output IP2 vs. RF Frequency

0

2

4

6

8

10

12

14

16

18

20

110 130 150 170 190 210 230 250 270 290

OU

TPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

–40°C+25°C+85°C

0807

9-07

1

Figure 86. Output P1dB vs. RF Frequency

Rev. E | Page 22 of 40

Page 23: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

SPUR PERFORMANCE All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board (see the Evaluation Board section). Mixer spurious products are measured in decibels relative to the carrier (dBc) from the IF output power level. Data was measured for frequencies less than 6 GHz only. The typical noise floor of the measurement system is −100 dBm.

900 MHz Downconvert Performance

VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 900 MHz, fLO = 703 MHz, Z0 = 50 Ω.

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 −33.1 −23.3 −45.8 −23.6 −45.9 −30.7 −55.4 −41.5

1 −48.8 0.0 −51.5 −19.0 −65.1 −29.6 −78.0 −50.3 −74.4 −57.7

2 −35.9 −74.9 −67.5 −66.1 −73.5 −80.5 −65.0 −89.8 −71.3 −88.5 −86.8 −98.8

3 −68.8 −64.8 −94.3 −65.9 −86.3 −70.2 −76.3 −70.6 −74.5 −81.4 ≤−100 −99.6 ≤−100

4 −47.5 −80.7 −78.0 −78.4 −95.1 −73.5 −89.4 −87.3 ≤−100 −92.7 −99.5 −99.4 ≤−100 ≤−100

5 −95.6 −74.7 −89.8 −70.7 −84.8 −90.7 −86.7 −86.4 −83.1 −73.7 −78.7 −80.7 −91.1 ≤−100 ≤−100

6 −85.7 −96.4 −83.1 −98.5 −83.3 −96.7 ≤−100 −89.4 −99.6 −96.1 −96.1 −95.4 −95.5 ≤−100 ≤−100

N 7 ≤−100 ≤−100 −95.9 ≤−100 −97.2 −83.1 −84.1 ≤−100 ≤−100 −99.7 −87.9 −88.8 −85.7 ≤−100

8 ≤−100 ≤−100 −99.0 −99.8 −86.0 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100

9 ≤−100 ≤−100 ≤−100 −90.9 −88.4 −83.5 −87.6 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100

10 ≤−100 ≤−100 ≤−100 −97.9 −95.5 −99.0 ≤−100 ≤−100 ≤−100 ≤−100

11 ≤−100 ≤−100 −92.6 −87.4 −88.2 −92.3 −99.3 ≤−100 ≤−100

12 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100

13 ≤−100 ≤−100 −95.1 −96.5 −90.4 ≤−100

14 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100

15 ≤−100 ≤−100 ≤−100 ≤−100

1900 MHz Downconvert Performance

VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 1900 MHz, fLO = 1703 MHz, Z0 = 50 Ω.

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 −31.4 −17.1 −51.4

1 −40.4 0.0 −53.6 −38.5 −71.0

2 −38.4 −66.0 −52.9 −68.1 −64.2 −86.8

3 ≤−100 −66.2 −73.2 −72.6 −79.9 −65.2 −92.8

4 ≤−100 −89.4 −86.4 −94.6 −87.4 −81.5 ≤−100

5 −83.7 −66.2 −79.3 −89.0 −75.2 ≤−100 ≤−100

6 ≤−100 −86.4 ≤−100 −99.0 −87.7 ≤−100 ≤−100

N 7 ≤−100 −92.4 −92.7 ≤−100 −98.4 ≤−100 ≤−100

8 ≤−100 ≤−100 −97.5 ≤−100 −95.4 ≤−100 ≤−100

9 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100

10 ≤−100 −97.2 −95.6 ≤−100 ≤−100 ≤−100 ≤−100

11 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100

12 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100

13 ≤−100 ≤−100 ≤−100 ≤−100

14 ≤−100 ≤−100

15 ≤−100

Rev. E | Page 23 of 40

Page 24: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

2600 MHz Downconvert Performance

VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 2600 MHz, fLO = 2350 MHz, Z0 = 50 Ω.

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

0 −31.5 −30.3

1 −40.3 0.0 −55.8 −33.8

2 −71.7 −73.6 −50.6 −70.4 −64.8

3 −83.9 −66.5 −59.8 −71.3 −84.7

4 −94.7 −77.6 −92.6 −83.8 −90.6

5 −91.4 −71.1 −89.7 −98.2 −96.3 <100

6 −83.1 −90.3 −92.9 −97.3 <100

7 <100 −91.4 <100 <100 <100

8 <100 −96.6 <100 −91.8 <100

9 <100 −97.9 <100 −98.5 <100

10 <100 −93.5 <100 −98.8 <100

11 <100 <100 <100 <100 <100

12 <100 <100 <100 <100 <100

13 <100 <100 <100 <100

14 <100 <100 <100

15 <100

3800 MHz Downconvert Performance

VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 3800 MHz, fLO = 3500 MHz, Z0 = 50 Ω.

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

0 −27.3

1 −33.7 0.0 −54.9

2 −78.5 −47.1 −66.4

3 −63.6 −57.8 −81.4

4 −89.6 −77.2 −72.2 −99.2

5 <100 −88.0 −80.4 <100

6 <100 −90.0 −90.4 <100

7 <100 −79.1 <100 <100

8 <100 −85.2 <100 <100

9 <100 <100 <100

10 <100 −95.9 <100

11 <100 <100 <100

12 <100 <100 <100

13 <100 <100 <100

14 <100 <100

15 <100

Rev. E | Page 24 of 40

Page 25: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801 5800 MHz Downconvert Performance

VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 5800 MHz, fLO = 5600 MHz, Z0 = 50 Ω.

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

0 −44.9

1 −43.9 0.0 −68.9

2 −44.0 −78.0

3 −47.0 −93.3

4 −60.6 −87.8

5 −62.7 −85.7

6 −70.2 −97.8

7 −79.5 −85.3

8 −71.2 <100

9 <100 <100

10 <100 <100

11 <100 <100

12 <100 <100

13 −100.3 <100

14 −95.6 −96.0

15 <100

806 MHz Upconvert Performance

VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 140 MHz, fLO = 946 MHz, Z0 = 50 Ω.

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

0 −35.2 −22.9 −42.8 −28.4 −59.1 −40.1

1 −66.0 0.0 −67.7 −14.0 −70.0 −37.1 −74.3

2 −67.8 −66.0 −62.9 −65.3 −61.1 −84.1 −81.2

3 −99.2 −66.2 −92.2 −69.2 −84.9 −84.3 <100

4 −77.1 −97.2 −85.1 −97.8 −82.0 <100 <100

5 −88.7 <100 −88.5 −92.9 −96.4 −93.6 <100 <100

6 −86.1 <100 −92.7 −95.8 −87.5 −99.5 <100 <100

7 −90.2 <100 <100 −84.6 <100 −88.0 <100 <100

8 −73.8 <100 −94.8 −96.4 −93.4 −99.6 <100 <100

9 −91.1 −96.3 <100 −91.5 −100.3 −93.3 <100 <100

10 −66.2 <100 <100 <100 −88.3 −100.0 <100 <100

11 −87.7 −93.6 <100 −95.9 <100 <100 <100 <100

12 −69.5 −89.1 <100 <100 −93.8 <100 <100 <100 <100

13 −85.2 −95.7 <100 <100 −97.7 −90.5 −96.0 <100 <100

14 −65.2 −85.9 <100 −93.1 −94.5 <100 <100 <100 <100

15 −91.3 −93.5 <100 −96.6 v98.7 −93.5 −99.6 <100 <100

Rev. E | Page 25 of 40

Page 26: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet 2210 MHz Upconvert Performance

VS = 5 V, VSET = 4.0 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 140 MHz, fLO = 2350 MHz, Z0 = 50 Ω.

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

0 −21.0 −12.8

1 −81.3 0.0 −70.1

2 −66.0 −58.8 −51.5

3 <100 −56.7 −78.2

4 −74.4 −86.3 −76.5

5 <100 −75.3 −88.0

6 −90.9 −81.4 −91.5

7 −96.4 −71.2 −85.9

8 −75.8 −89.7 −86.3 <100

9 −92.9 −86.2 −92.2 <100

10 −66.5 <100 −97.5 <100

11 −83.7 −98.4 −97.9 <100

12 −64.8 <100 −93.1 <100

13 −81.2 <100 <100 <100

14 −64.5 <100 −91.0 <100

15 −85.3 <100 <100 −95.4

Rev. E | Page 26 of 40

Page 27: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

CIRCUIT DESCRIPTION The ADL5801 includes a double-balanced active mixer with a 50 Ω input impedance and 250 Ω output impedance. In addition, the ADL5801 integrates a local oscillator (LO) amplifier and an RF power detector that can be used to optimize the mixer dynamic range. The RF and LO are differential, providing max-imum usable bandwidth at the input and output ports. The LO also operates with a 50 Ω input impedance and can, optionally, be operated differentially or single ended. The input, output, and LO ports can be operated over an exceptionally wide frequency range. The ADL5801 can be configured as a downconvert mixer or as an upconvert mixer.

The ADL5801 can be divided into the following sections: the LO amplifier and splitter, the RF voltage-to-current (V-to-I) converter, the mixer core, the output loads, the RF detector, and the bias circuit. A simplified block diagram of the device is shown in Figure 87. The LO block generates a pair of differential LO signals to drive two mixer cores. The RF input power is converted into RF currents by the V-to-I converter that then feed into the two-mixer core. The internal differential load of the mixer provides a wideband 250 Ω output impedance from the mixer. Reference currents to each section are generated by the bias circuit, which can be enabled or disabled using the ENBL pin. A detailed description of each section of the ADL5801 follows.

GNDVPLO ENBL VSET

VPDT

GND

RFIP

NCGNDVPLO

7 8

15

16

17

18

212223

ADL5801

1920GNDIFON

13

14

DETO GND

VPRF

GND

GND

GND

IFOP

RFIN

GND

GND

LOIP

LOIN

6

5

4

3

2

1

24

9 10 11 12

DETBIAS

V2I

0807

9-12

7

Figure 87. Block Diagram

LO AMPLIFIER AND SPLITTER The LO input is conditioned by a series of amplifiers to provide a well controlled and limited LO swing to the mixer core, resulting in excellent input IP3. The LO input is amplified using a broadband low noise amplifier (LNA) and is then followed by LO limiting amplifiers. The LNA input impedance is nominally 50 Ω. The LO circuit exhibits low additive noise, resulting in an excellent mixer noise figure and output noise under RF blocking. For optimal performance, the LO inputs should be driven differentially but at lower frequencies; single-ended drive is acceptable.

RF VOLTAGE-TO-CURRENT (V-TO-I) CONVERTER The differential RF input signal is applied to a V-to-I converter that converts the differential input voltage to output currents. The V-to-I converter provides a 50 Ω input impedance. The V-to-I section bias current can be adjusted up or down using the VSET pin. Adjusting the current up improves IP3 and P1dB input but degrades the SSB noise figure. Adjusting the current down improves the SSB noise figure but degrades IP3 and P1dB input. Conversion gain remains nearly constant over a wide range of VSET pin settings, allowing the part to be adjusted dynamically without affecting conversion gain.

MIXER CORE The ADL5801 has a double-balanced mixer that uses high per-formance SiGe NPN transistors. This mixer is based on the Gilbert cell design of four cross-connected transistors.

MIXER OUTPUT LOAD The mixer load uses a pair of 125 Ω resistors connected to the positive supply. This provides a 250 Ω differential output resis-tance. The mixer output should be pulled to the positive supply externally using a pair of RF chokes or using an output transformer with the center tap connected to the positive supply. It is possible to exclude these components when the mixer core current is low, but both P1dB input and IP3 input are then reduced.

The mixer load output can operate from direct current (dc) up to approximately 600 MHz into a 200 Ω load. For upconversion applications, the mixer load can be matched using off-chip matching components. Transmit operation up to 3 GHz is possible. See the Applications Information section for matching circuit details.

Rev. E | Page 27 of 40

Page 28: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

RF DETECTOR An RF power detector is buffered from the V-to-I converter section. This detector has a power response range from approximately −25 dBm up to 0 dBm and provides a current output. The output current is designed to be connected to the VSET pin to boost the mixer core current when large RF signals are present at the mixer input. An external capacitor can be used to adjust the response time of this function. If not used, the DETO pin can be left open or connected to ground.

The detector was characterized under the conditions specified in the Downconverter Mode with a Broadband Balun section. Pin 11 (DETO) was connected to Pin 10 (VSET), and the voltage on these pins was plotted vs. the RF input power level over temperature and a number of devices.

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

–35 –30 –25 –20 –15 –10 –5 0 5

DET

ECTO

R O

UTP

UT

VOLT

AG

E (V

)

RF INPUT (dBm)

–40°C+25°C+85°C

0807

9-08

7

Figure 88. Detector Output Voltage vs. RF Input

The input IP3, gain and supply current were also recorded under these conditions. The result can be seen in Figure 89 through Figure 91.

–5

0

5

10

15

20

25

30

40

35

–35 –30 –25 –20 –15 –10 –5 0 5

INPU

T IP

3 (d

Bm

)

RF INPUT (dBm)

–40°C+25°C+85°C

0807

9-08

8

Figure 89. Input IP3 vs. RF Input

–5.0

–4.0

–3.0

–2.0

–1.0

0

1.0

2.0

3.0

4.0

5.0

–35 –30 –25 –20 –15 –10 –5 0 5

GA

IN (d

B)

RF INPUT (dBm)

–40°C+25°C+85°C

0807

9-09

0

Figure 90. Power Conversion Gain vs. RF Input

0

20

40

60

80

100

120

140

160

–35 –30 –25 –20 –15 –10 –5 0 5

SUPP

LY C

UR

REN

T (m

A)

RF INPUT (dBm)

–40°C+25°C+85°C

0807

9-08

9

Figure 91. Supply Current vs. RF Input

BIAS CIRCUIT A band gap reference circuit generates the reference currents used by mixers. The bias circuit and the internal detector can be enabled and disabled using the ENBL pin. Pulling the ENBL pin high shuts off the bias circuit and the internal detector. However, the ENBL pin does not alter the current in the LO section and, therefore, does not provide a true power-down feature. When the ENBL pin is pulled high, the device can be operated by applying an external voltage to the VSET pin or by connecting a resistor from the VSET pin to the positive supply. Internally, the VSET pin features a series resistance and diode to ground; therefore, a simple voltage divider driving the pin is not sufficient. Table 4 lists some typical values for this resistor and the resulting VSET value and supply current when the ENBL pin is set high. Use Table 4 to select the appropriate value of R10 (see Figure 110) to achieve the desired mixer bias level. In this mode of operation, the VSET pin must not be left floating, and placeholders R7 and R9 must remain open.

Rev. E | Page 28 of 40

Page 29: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801 Table 4. Suggested Values of R10 (When ENBL Pin is High) R10 (Ω) VSET (V) IPOS (mA)1 226 4.14 140 488 4.00 126 562 3.90 123 568 3.89 123 659 3.78 120 665 3.77 120 694 3.74 119 760 3.67 116 768 3.66 116 1000 3.44 109 1100 3.36 107 1150 3.33 106 1200 3.29 105 1300 3.22 102 1400 3.16 100 1500 3.10 99 1600 3.05 97 1700 3.00 95 1800 2.95 94 1900 2.91 92 2000 2.87 91 2300 2.76 87 5900 2.18 68 1 IPOS is the mixer supply current.

If the ENBL pin is pulled low, the bias circuit and internal detector of the device are enabled. In this mode, the device can be operated by applying an external voltage to the VSET pin or by connecting a resistor from the VSET pin to the positive supply. Table 5 lists some typical values for this resistor and the resulting VSET value and supply current when the ENBL pin is set low. Use Table 5 to select the appropriate value of R10 (see Figure 110) to achieve the desired mixer bias level. In this mode of operation, R7 and R9 must remain open.

Optionally, the VSET pin can be connected to the DETO pin to provide dynamic mixer bias control using the internal detector.

Figure 92 is a comparison of the input IP3 performance vs. RF input power levels at 2 GHz, when the ENBL pin is pulled high and low. Pulling ENBL high results in improved linearity across input power levels, while pulling ENBL low results in enhanced IP3 performance at higher power levels. The device also exhibits improved spur performance when the ENBL pin is pulled high. Figure 95 is a comparison of the 4LO-5RF and 6LO-7RF spurs vs. RF input power levels at 900 MHz with ENBL high and low.

Table 5. Suggested Values of R10 (When ENBL Pin is Low) R10 (Ω) VSET (V) IPOS (mA)1 226 4.5 160 562 4.01 146 568 4 145 659 3.9 142 665 3.89 142 694 3.85 142 760 3.8 139 768 3.79 139 1000 3.6 133 1100 3.53 131 1150 3.5 130 1200 3.47 129 1300 3.4 127 1400 3.35 126 1500 3.3 124 1600 3.26 122 1700 3.21 121 1800 3.17 120 1900 3.14 119 2000 3.1 118 2300 3 114 5900 2.5 98 Open 2.03 82 1 IPOS is the mixer supply current.

0

5

10

15

20

25

30

35

–30 –25 –20 –15 –10 –5 0

INPU

T IP

3 (d

Bm

)

RF INPUT LEVEL (dBm)

ENBL LOW

ENBL HIGH

0807

9-19

2

fRF = 2000MHzfLO = 1797MHzfIF = 203MHz

Figure 92. Input IP3 vs. RF Input Level at 2 GHz, VSET = 3.8 V,

with ENBL High and Low

Rev. E | Page 29 of 40

Page 30: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet Figure 93 is a plot of the input IP3 vs. RF input power levels for varying VSET levels at 2 GHz, when the ENBL pin is pulled high. The device exhibits the best linearity at a VSET level of 4.0 V in this mode of operation. As mentioned previously, the VSET level can be set using an external voltage or by placing a resistor from the VSET pin to the positive supply. Figure 94 is a plot of the input IP3 vs. RF input power levels for a VSET level of 4.0 V, when the ENBL is pulled high for varying temperature and frequency conditions. The device is well behaved across varying frequency levels and exhibits excellent temperature sensitivity.

–30

–25

–20

–15

–10 –5 0

INPU

T IP

3 (d

Bm

)

RF INPUT LEVEL (dBm)

VSET = 3.40VVSET = 3.60VVSET = 3.80VVSET = 4.05VVSET = 4.20VVSET = 4.40VVSET = 4.65V

0807

9-19

3

15

20

25

30

35

fRF = 2000MHzfLO = 1797MHzfIF = 203MHz

Figure 93. Input IP3 vs. RF Input Level at 2 GHz for

Varying VSET levels, ENBL High

–30

–25

–20

–15

–10 –5 0

15

20

25

30

35

INPU

T IP

3 (d

Bm

)

RF INPUT LEVEL (dBm)

0807

9-19

4

–40°C AT 1.0GHz–40°C AT 1.5GHz–40°C AT 2.0GHz–40°C AT 2.5GHz

+25°C AT 1.0GHz+25°C AT 1.5GHz+25°C AT 2.0GHz+25°C AT 2.5GHz

+85°C AT 1.0GHz+85°C AT 1.5GHz+85°C AT 2.0GHz+85°C AT 2.5GHz

Figure 94. Input IP3 vs. RF Input Level for Across Varying Frequency and

Temperature Conditions, VSET = 4.0 V, ENBL High

–140

–120

–100

–80

–60

–40

–20

0

20

–20 –15 –10 –5 0 5

SPU

R L

EVEL

, REL

ATIV

ETO

TH

E C

AR

RIE

R (d

Bc)

RF INPUT POWER LEVEL (dBm)

ADL5801 IF, ENBL LOWADL5801 4LO-5RF SPUR, ENBL LOW fRF = 900MHz

fLO = 1077MHzfIF = 177MHz

ADL5801 6LO-7RF SPUR, ENBL LOWADL5801 IF TONE, ENBL HIGHADL5801 4LO-5RF SPUR, ENBL HIGHADL5801 6LO-7RF SPUR, ENBL HIGH

0807

9-19

5

Figure 95. 4LO-5RF and 6LO-7RF Spurs vs. RF Input Level at 900 MHz,

with ENBL High and Low

Rev. E | Page 30 of 40

Page 31: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

APPLICATIONS INFORMATION BASIC CONNECTIONS The ADL5801 is designed to translate between radio frequencies (RF) and intermediate frequencies (IF). For both upconversion and downconversion applications, RFIP (Pin 16) and RFIN (Pin 15) must be configured as the input interfaces. IFOP (Pin 20) and IFON (Pin 21) must be configured as the output interfaces. Individual bypass capacitors are needed in close proximity to each supply pin (Pin 7, Pin 13, Pin 18, and Pin 24), the VSET control pin (Pin 10), and the DETO detector output pin (Pin 11). When the on-chip detector is chosen to form a closed loop, automatically controlling the VSET pin, R7 can be populated with a 0 Ω resistor. Alternatively, simply use a jumper between the VSET and DETO test points for evaluation. Figure 96 illustrates the basic connections for ADL5801 operation.

RF AND LO PORTS The RF and LO input ports are designed for a differential input impedance of approximately 50 Ω. Figure 97 and Figure 98 illustrate the RF and LO interfaces, respectively. It is recommended that each of the RF and LO differential ports be driven through a balun for optimum performance. It is also necessary to ac couple both RF and LO ports. Using proper value capacitors may help improve the input return loss over desired frequencies. Table 6 and Table 9 list the recommended components for various RF and LO frequency bands in upconvert and downconvert modes. The characterization data is available in the Typical Performance Characteristics section.

GNDVPLO ENBL VSET

VPDT

RFIP

NC

GND

GNDVPLO

LOIP

T2T4T7

T3T6T9

C4

C5

C50

C6

C1 C12

C18

C8

C10

C9

C2

C3

T1T5T8

C17

VPOS

VSET

R10

R9R7

VPOS

VPOS

VPOS

IFOP

LOIP

LOIN

C7VPOS

DETO

LOIN

GND

GND

ADL5801

GND

GNDIFON

DETO GND

VPRF

GND

GND

IFOP

RFIN

24

1

2

3

4

5

7 8 9 10 11 12

6

18

17

16

15

14

13

23 22 21 20 19

0807

9-12

8

IFON

ENBL

R12

R8

RFIP

RFINR4

R16

R14

C20

R50

C19

C13

L3L1

L4

L5

L2

R3

R13R11

R2

Figure 96. Basic Connections Schematic

Rev. E | Page 31 of 40

Page 32: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

RFIP

T3

C8

C9

RFIP

ADL5801

GND

GND

RFIN

17

16

15

14

0807

9-12

9

Figure 97. RF Interface

GND

LOIP

T2

C4

C5LOIP LOIN

GND

GND

ADL5801

GND

1

2

3

4

5

6

0807

9-13

0

Figure 98. LO Interface

Table 6. Suggested Components for the RF and LO Interfaces in Downconvert Mode RF and LO Frequency T2, T3 C8, C9 C4, C5 10 MHz Mini-Circuits TC1-1-13M+ 1 nF 1 nF 900 MHz Mini-Circuits TC1-1-13M+ 5.6 pF 100 pF 1900 MHz Mini-Circuits TC1-1-13M+ 5.6 pF 100 pF 2500 MHz Mini-Circuits TC1-1-43M+ 2 pF 8 pF 3500 MHz 3600BL14M050 1.5 pF 1.5 pF 5500 MHz 5400BL14B050 3 pF 3 pF 10 MHz to 6000 MHz

Mini-Circuits TCM1-63AX+ 1 nF 1 nF

Table 7. Suggested Components for the RF Interface in Upconvert Mode RF Frequency T3 C8, C9 153 MHz TC1-1-13M+ 470 pF

IF PORT The IF port features an open-collector, differential output interface. It is necessary to bias the open collector outputs using one of the schemes presented in Figure 99 and Figure 100.

Figure 99 shows the use of center-tapped impedance transformers. The turns ratio of the transformer should be selected to provide the desired impedance transformation. In the case of a 50 Ω load impedance, a 4:1 impedance ratio transformer should be used to transform the 50 Ω load into a 200 Ω differential load at the IF output pins.

Figure 100 shows a differential IF interface where pull-up choke inductors are used to bias the open-collector outputs. The

shunting impedance of the choke inductors used to couple dc current into the mixer core should be large enough at the IF frequency of operation not to load down the output current before it reaches the intended load. Additionally, the dc current handling capability of the selected choke inductors must be at least 45 mA.

The self-resonant frequency of the selected choke inductors must be higher than the intended IF frequency. A variety of suitable choke inductors is commercially available from manufacturers such as Coilcraft® and Murata. An impedance transforming network may be required to transform the final load impedance to 200 Ω at the IF outputs.

Table 8 lists suggested components for the IF port in the upconvert and downconvert modes.

NCGND

C50

C13

L3R3 R2

T1T5T8

VPOS

IFOP

GNDIFON IFOP23 22 21 20 19

ADL5801 0807

9-13

1

Figure 99. Biasing the IF Port Open-Collector Outputs

Using a Center-Tapped Impedance Transformer

NCGND

C20 C19

C13

L3L1 L2

C3 C2

T1T5T8

VPOS VPOS

GNDIFON IFOP23 22 21 20 19

ADL5801

ZL

IMPEDANCETRANSFORMING

NETWORK

0807

9-13

2

Figure 100. Biasing the IF Port Open-Collector Outputs

Using Pull-Up Choke Inductors

Table 8. Suggested Components for the IF Port in Upconvert and Downconvert Modes

IF Frequency Mode of Operation T1 L3

0 MHz to 500 MHz Downconvert TC4-1W+ Open 900 MHz Upconvert TC4-14+ 27 nH 2140 MHz Upconvert 1850BL15B200 3.3 nH

Rev. E | Page 32 of 40

Page 33: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

DOWNCONVERTING TO LOW FREQUENCIES For downconversion to lower frequencies, the device should be biased at the output with a resistor. The common-mode voltage at the IF output of the device should be 3.75 V to ensure optimal performance. Figure 101 provides a sample setup to downconvert a 900 MHz input signal down to 100 kHz. In the setup depicted in Figure 101, the output of the device is biased with 50 Ω resistors. In this mode of operation, the device exhibits 2.0 dB of conversion gain when a signal at 500 MHz was downcoverted to a 100 kHz, 10 kHz or 1 kHz.

NCGND

C200.1µF

C190.1µF

10µF 10µF

T1T5T8

VPOS VPOS

GNDIFON IFOP23 22 21 20 19

ADL5801

ZL

IMPEDANCETRANSFORMING

NETWORK

0807

9-13

6

50Ω 50Ω

Figure 101. Resistive Bias Network to Downconvert Signals to Low

Frequencies

Rev. E | Page 33 of 40

Page 34: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

BROADBAND OPERATION The ADL5801 can support input frequencies from 10 MHz to 6 GHz. The device can be operated with a broadband balun such as the MiniCircuits TCM1-63AX+ for applications that need wideband frequency coverage. Figure 102 illustrates a sample setup configuration with the MiniCircuits TCM1-63AX+ balun populated on the RF and LO ports. This single setup solution provides the option to utilize the complete input frequency range of the device.

GNDVPLO ENBL VSET

VPDT

RFIP

NC

GND

GNDVPLO

LOIP

R160Ω

C41nF

C51nF

C20100pF

R500Ω

Mini-CircuitsTC4-1W+

Mini-CircuitsTCM1-63AX+

Mini-CircuitsTCM1-63AX+

C500.1µF

C60.1µF

C10.1µF

C12100pF

C180.1µF

C81nF

C100.1µF

C91nF

C20.1µF

C3100pF

C17100pF

C110.1µF

R9

R10

R80Ω

RFIP

VPOS

VPOS

VSET

VPOS

IFOP

LOIN

LOIP

IFON

RFIN

C7100pF

VPOSENBL

DETO

LOIN

GND

GND

ADL5801

GND

GNDIFON

DETO GND

VPRF

GND

GND

IFOP

RFIN

24

1

2

3

4

5

7 8 9 10 11 12

6

18

17

16

15

14

13

23 22 21 20 19

0807

9-13

7

Figure 102. Sample Setup Configuration with the MiniCircuits TCM1-63AX+ Broadband Balun

Rev. E | Page 34 of 40

Page 35: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801 Figure 103 to Figure 105 demonstrate the performance of the mixer with the MiniCircuits TCM1-63AX+ populated on the RF and LO ports.

–10

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

GA

IN, I

IP3,

IIP2

(dB

, dB

m)

RF FREQUENCY (MHz)

IIP2 (dBm)

CONVERSION GAIN (dB)IIP3 (dBm)

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)PRF = –10dBm, PLO = 0dBmIIP3: 1MHz TONE SPACING BETWEEN CHANNELSIIP2: 15MHz TONE SPACING BETWEEN CHANNELS

0807

9-13

8

Figure 103. Gain, IIP3, IIP2 vs. RF Frequency

0

2

4

6

8

10

12

14

16

18

20

0 1000 2000 3000 4000 5000 6000

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz)

VSET = 2.0VVSET = 3.6V

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)PRF = –10dBm, PLO = 0dBmIIP3: 1MHz TONE SPACING BETWEEN CHANNELSIIP2: 15MHz TONE SPACING BETWEEN CHANNELS

0807

9-13

9

Figure 104. Noise Figure vs. RF Frequency

–40

–35

–30

–25

–20

–15

–10

–5

0

0 1000 2000 3000 4000 5000 6000

INPU

T R

ETU

RN

LO

SS (d

B)

RF FREQUENCY (MHz)

0807

9-14

0

Figure 105. Input Return Loss vs. RF Frequency

The device maintains an Input IP3 of 20 dBm or better and conversion gain of −2 dB or better across the 10 MHz to 6 GHz frequency band.

Rev. E | Page 35 of 40

Page 36: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

SINGLE-ENDED DRIVE OF RF AND LO INPUTS The RF and LO ports of the active mixer can be driven single-ended without baluns for single-ended operation. In this configuration, the unused RF and LO ports should be ac grounded using a 1 nF capacitor. Figure 106 depicts setup configuration suggested to operate the device in the single-ended mode.

GNDVPLO ENBL VSET

VPDT

RFIP

NC

GND

GNDVPLO

LOIP

R140Ω

C41nF

C51nF

C20100pF

R500Ω

Mini-CircuitsTC4-1W+C50

0.1µF

C60.1µF

C10.1µF

C12100pF

C180.1µF

C81nF

C100.1µF

C91nF

C20.1µF

C3100pF

C17100pF

C110.1µF

R9

R10

R10Ω

RFIP

VPOS

VPOS

VSET

VPOS

IFOP

LOIN

LOIP

IFON

RFIN

C7100pF

VPOSENBL

DETO

LOIN

GND

GND

ADL5801

GND

GNDIFON

DETO GND

VPRF

GND

GND

IFOP

RFIN

24

1

2

3

4

5

7 8 9 10 11 12

6

18

17

16

15

14

13

23 22 21 20 19

0807

9-14

1

Figure 106. Single-Ended Configuration to Operate the ADL5801

Rev. E | Page 36 of 40

Page 37: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801 Figure 107 to Figure 109 demonstrate the performance of the mixer in the single ended mode.

–10

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

GA

IN, I

IP3,

IIP2

(dB

, dB

m)

RF FREQUENCY (MHz)

IIP2 (dBm)

CONVERSION GAIN (dB)IIP3 (dBm)

0807

9-14

2

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)PRF = –10dBm, PLO = 0dBmIIP3: 1MHz TONE SPACING BETWEEN CHANNELSIIP2: 15MHz TONE SPACING BETWEEN CHANNELS

Figure 107. Gain, IIP3, IIP2 vs. RF Frequency

0

5

10

15

20

0 1000 2000 3000 4000 5000 6000

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz)

VSET = 2.0VVSET = 3.6V

0807

9-14

3

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)PRF = –10dBm, PLO = 0dBmIIP3: 1MHz TONE SPACING BETWEEN CHANNELSIIP2: 15MHz TONE SPACING BETWEEN CHANNELS

Figure 108. Noise Figure vs. RF Frequency

–35

–30

–25

–20

–15

–10

–5

0

0 1000 2000 3000 4000 5000 6000

INPU

T R

ETU

RN

LO

SS (d

B)

RF FREQUENCY (MHz)

0807

9-14

4

fIF = 153MHzfLO: 163MHz TO 6153MHz (HIGH SIDE LO)PRF = –10dBm, PLO = 0dBmIIP3: 1MHz TONE SPACING BETWEEN CHANNELSIIP2: 15MHz TONE SPACING BETWEEN CHANNELS

Figure 109. Input Return Loss vs. RF Frequency

Rev. E | Page 37 of 40

Page 38: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801 Data Sheet

EVALUATION BOARD An evaluation board is available for the ADL5801. The standard evaluation board is fabricated using Rogers® RO3003 material. Each RF, LO, and IF port is configured for single-ended signaling via a balun transformer. The schematic for the evaluation board is shown in Figure 110. Table 9 describes the various configuration options for the evaluation board. Layout for the board is shown in Figure 111 and Figure 112.

GNDVPLO ENBL VSET

VPDT

RFIP

NC

GND

GNDVPLO

LOIPR14

R16T2T4T7

T3T6T9

C4

C5

C20

R50

C50

C6

C1 C12

C18

C8

C10

C19

C13

L3L1 L2

C9

L4

R3

C2

C3

R13R11

R2

T1T5T8

L5

C17

C11

R7R9

R10

R12

R8

RFIP

VPOS

VPOS

VPOS

VSET

VPOS

IFOP

LOIN

LOIP

IFON

RFIN

C7VPOS

ENBL

DETO

LOIN

GND

GND

ADL5801

GND

GNDIFON

DETO GND

VPRF

GND

GND

IFOP

RFIN

24

1

2

3

4

5

7 8 9 10 11 12

6

18

17

16

15

14

13

23 22 21 20 19

0807

9-13

3

Figure 110. Evaluation Board Schematic

Rev. E | Page 38 of 40

Page 39: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

Data Sheet ADL5801

Table 9. Evaluation Board Configuration Components Function Default Conditions C2, C3, C6, C7, C10, C11 Power supply decoupling. Nominal supply decoupling consists of a

0.1 µF capacitor to ground in parallel with 100 pF capacitors to ground, positioned as close to the device as possible. Series resistors are provided for enhanced supply decoupling using optional ferrite chip inductors.

C2, C6, C10, C11 = 0.1 µF (size 0402) C3, C7 = 100 pF (size 0402)

C8, C9, L4, L5, R4, R8, R12, T3, T6, T9, RFIN, RFIP

RF input interfaces. (Use RFIN for operation). Input channels are ac-coupled through C8 and C9. R8 and R12 provide options when additional matching is needed. T3 is a 1:1 balun used to interface to the 50 Ω differential inputs. T6 and T9 provide options when high frequency baluns are used and require smaller balun footprints.

C8, C9 = 1 nF (size 0402) L4, L5 = 0 Ω (size 0402) R12 = open (size 0402) R4, R8 = 0 Ω (size 0402) T3 = TCM1-63AX+ (Mini-Circuits)

C13, C19, C20, C50, L1, L2, L3, R2, R3, R11, R13, R50, T1, T5, T8, IFON, IFOP

IF output interfaces. The 200 Ω open collector IF output interfaces are biased through the center tap of a 4:1 impedance transformer at T1. C50 provides local bypassing with R50 available for additional supply bypassing. L1 and L2 provide options when pull-up choke inductors are used to bias the open-collector outputs. C13, L3, R2, and R3 are provided for IF filtering and matching options. T5 and T8 provide options when high frequency baluns are used and require smaller balun footprints.

C13 = open (size 0402) C19, C20 = 100 pF (size 0402) C50 = 0.1 µF (size 0402) L1, L2 = open (size 0805) L3 = open (size 0402) R2, R3, R13, R50 = 0 Ω (size 0402) R11 = open (size 0402) T1 = TC4-1W+ (Mini-Circuits)

C4, C5, R14, R16, T2, T4, T7, LOIN, LOIP

LO interface. (Use LOIN for operation). C4 and C5 provide ac coupling for the local oscillator input. T2 is a 1:1 balun that allows single-ended interfacing to the differential 50 Ω local oscillator input. T4 and T7 provide options when high frequency baluns are used and require smaller balun footprints.

C4, C5 = 1 nF (size 0402) R14 = open (size 0402) R16 = 0 Ω (size 0402) T2 = TCM1-63AX+

C1, C12, R7, DETO DETO interface. C1 and C12 provide decoupling for the DETO pin. R7 provides access to the VSET pin when automatic input IP3 control is needed.

C1 = 0.1 µF (size 0603) C12 = 100 pF (size 0402) R7 = open (size 0402)

C17, C18, R9, R10, VSET VSET bias control. C17 and C18 provide decoupling for the VSET pin. R9 and R10 form an optional resistor divider network between VPOS and GND, allowing for a fixed bias setting. Supply 3.8 V at the VSET pin when the DETO pin is not connected for automatic input IP3 control.

C17 = 100 pF (size 0402) C18 = 0.1 µF (size 0603) R9, R10 = open (size 0402)

0807

9-13

4

Figure 111. Evaluation Board Top Layer

0807

9-13

5

Figure 112. Evaluation Board Bottom Layer

Rev. E | Page 39 of 40

Page 40: 10 MHz to 6 GHz, Active Mixer Data Sheet ADL5801 · mixer core with integrated LO buffer amplifier to provide high dynamic range frequency conversion from 10 MHz to 6 GHz. The mixer

ADL5801

OUTLINE DIMENSIONS

COMPLIANT TOJEDEC STANDARDS MO-220-VGGD-8 04-1

1-20

12-A

10.50BSC

PIN 1INDICATOR

2.50 REF

0.500.400.30

TOP VIEW

12° MAX 0.80 MAX0.65 TYP

SEATINGPLANE

COPLANARITY0.08

1.000.850.80

0.300.230.18

0.05 MAX0.02 NOM

0.20 REF

0.25 MIN

2.652.50 SQ2.35

24

7

19

12

13

18

6

0.60 MAX

0.60 MAX

PIN 1INDICATOR

4.104.00 SQ3.90

3.75 BSCSQ

EXPOSEDPAD

FOR PROPER CONNECTION OFTHE EXPOSED PAD, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

BOTTOM VIEW

Figure 113. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]

4 mm × 4 mm Body, Very Thin Quad (CP-24-3) Dimensions shown in millimeters

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option

Ordering Quantity

ADL5801ACPZ-R7 −40°C to +85°C 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-24-3 1,500 per Reel ADL5801-EVALZ Evaluation Board 1

1 Z = RoHS Compliant Part.

©2010–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08079-0-4/14(E)

Rev. E | Page 40 of 40